
RcppGSL: Easier GSL use from R via Rcpp

Dirk Eddelbuettel Romain François

Version 0.2.3 as of January 10, 2015

Abstract

The GNU Scientific Library, or GSL, is a collection of numerical routines for scientific computing (Galassi
et al., 2010). It is particularly useful for C and C++ programs as it provides a standard C interface to a
wide range of mathematical routines such as special functions, permutations, combinations, fast fourier
transforms, eigensystems, random numbers, quadrature, random distributions, quasi-random sequences,
Monte Carlo integration, N-tuples, differential equations, simulated annealing, numerical differentiation,
interpolation, series acceleration, Chebyshev approximations, root-finding, discrete Hankel transforms
physical constants, basis splines and wavelets. There are over 1000 functions in total with an extensive
test suite.

The RcppGSL package provides an easy-to-use interface between GSL data structures and R using
concepts from Rcpp (Eddelbuettel and François, 2011; Eddelbuettel, François, Allaire, Chambers, Bates,
and Ushey, 2014; Eddelbuettel, 2013) which is itself a package that eases the interfaces between R and
C++.

1 Introduction

The GNU Scientific Library, or GSL, is a collection of numerical routines for scientific computing (Galassi
et al., 2010). It is a rigourously developed and tested library providing support for a wide range of scientific
or numerical tasks. Among the topics covered in the GSL are complex numbers, roots of polynomials,
special functions, vector and matrix data structures, permutations, combinations, sorting, BLAS support,
linear algebra, fast fourier transforms, eigensystems, random numbers, quadrature, random distributions,
quasi-random sequences, Monte Carlo integration, N-tuples, differential equations, simulated annealing,
numerical differentiation, interpolation, series acceleration, Chebyshev approximations, root-finding,
discrete Hankel transforms least-squares fitting, minimization, physical constants, basis splines and
wavelets.

Support for C programming with the GSL is readily available: the GSL itself is written in C and provides
a C-language Application Programming Interface (API). Access from C++ is therefore possible, albeit not
at the abstraction level that can be offered by dedicated C++ implementations.1

The GSL is somewhat unique among numerical libraries. Its combination of broad coverage of scientific
topics, serious implementation effort and the use of a FLOSS license have lead to a fairly wide usage
of the library. As a concrete example, we can consider the the CRAN repository network for the R
language and environment (R Development Core Team, 2013). CRAN contains over a dozen packages
interfacing the GSL: copula, dynamo, gsl, gstat, magnets, mvabund, QRMlib, RBrownie, RDieHarder,
RHmm, segclust, surveillance, and topicmodels. This is a clear indication that the GSL is popular among
programmers using either the C or C++ language for solving problems applied science.

At the same time, the Rcpp package (Eddelbuettel and François, 2011; Eddelbuettel et al., 2014)
offers a higher-level abstraction between R and underlying C++ (or C) code. Rcpp permits R objects
like vectors, matrices, lists, functions, environments, . . ., to be manipulated directly at the C++ level,

1Several C++ wrappers for the GSL have been written over the years yet none reached a state of completion comparable to the
GSL itself. Three such wrapping library are http://cholm.home.cern.ch/cholm/misc/gslmm/, http://gslwrap.sourceforge.
net/ and http://code.google.com/p/gslcpp/.

1

http://cholm.home.cern.ch/cholm/misc/gslmm/
http://gslwrap.sourceforge.net/
http://gslwrap.sourceforge.net/
http://code.google.com/p/gslcpp/

alleviates the needs for complicated and error-prone parameter passing and memory allocation. It also
permits compact vectorised expressions similar to what can be written in R directly at the C++ level.

The RcppGSL package discussed here aims the help close the gap. It tries to offer access to GSL
functions, in particular via the vector and matrix data structures used throughout the GSL, while staying
closer to the ‘whole object model’ familar to the R programmer.

The rest of paper is organised as follows. The next section shows a motivating example of a fast linear
model fit routine using GSL functions. The following section discusses support for GSL vector types, which
is followed by a section on matrices.

2 Motivation: FastLm

Fitting linear models is a key building block of analysing data and modeling. R has a very complete and
feature-rich function in lm() which can provide a model fit as we a number of diagnostic measure, either
directly or via the corresponding summary() method for linear model fits. The lm.fit() function also
provides a faster alternative (which is however recommend only for for advanced users) which provides
estimates only and fewer statistics for inference. This sometimes leads users request a routine which is
both fast and featureful enough. The fastLm routine shown here provides such an implementation. It uses
the GSL for the least-squares fitting functions and therefore provides a nice example for GSL integration
with R.

2

#include <RcppGSL.h>

#include <gsl/gsl_multifit.h>

#include <cmath>

extern "C" SEXP fastLm(SEXP ys, SEXP Xs) {

try {

RcppGSL::vector<double> y = ys; // create gsl data structures from SEXP
RcppGSL::matrix<double> X = Xs;

int n = X.nrow(), k = X.ncol();

double chisq;

RcppGSL::vector<double> coef(k); // to hold the coefficient vector
RcppGSL::matrix<double> cov(k,k); // and the covariance matrix

// the actual fit requires working memory we allocate and free
gsl_multifit_linear_workspace *work = gsl_multifit_linear_alloc (n, k);

gsl_multifit_linear (X, y, coef, cov, &chisq, work);

gsl_multifit_linear_free (work);

// extract the diagonal as a vector view
gsl_vector_view diag = gsl_matrix_diagonal(cov) ;

// currently there is not a more direct interface in Rcpp::NumericVector
// that takes advantage of wrap, so we have to do it in two steps
Rcpp::NumericVector std_err ; std_err = diag;

std::transform(std_err.begin(), std_err.end(), std_err.begin(), sqrt);

Rcpp::List res = Rcpp::List::create(Rcpp::Named("coefficients") = coef,

Rcpp::Named("stderr") = std_err,

Rcpp::Named("df") = n - k);

// free all the GSL vectors and matrices -- as these are really C data structures
// we cannot take advantage of automatic memory management
coef.free(); cov.free(); y.free(); X.free();

return res; // return the result list to R

} catch(std::exception &ex) {

forward_exception_to_r(ex);

} catch(...) {

::Rf_error("c++ exception (unknown reason)");

}

return R_NilValue; // -Wall
}

We first initialize a RcppGSL vector and matrix, each templated to the standard numeric type double

(and the GSL supports other types ranging from lower precision floating point to signed and unsigned
integers as well as complex numbers). We the reserve another vector and matrix to hold the resulting
coefficient estimates as well as the estimate of the covariance matrix. Next, we allocate workspace using a
GSL routine, fit the linear model and free the workspace. The next step involves extracting the diagonal
element from the covariance matrix. We then employ a so-called iterator—a common C++ idiom from the
Standard Template Library (STL)—to iterate over the vector of diagonal and transforming it by applying
the square root function to compute our standard error of the estimate. Finally we create a named list

3

with the return value before we free temporary memory allocation (a step that has to be done because the
underlying objects are really C objects conforming to the GSL interface and hence without the automatic
memory management we could have with C++ vector or matrix structures as used through the Rcpp
package) and return the result to R.

We should note that RcppArmadillo (François, Eddelbuettel, and Bates, 2014; Eddelbuettel and
Sanderson, 2014) implements a matching fastLm function using the Armadillo library by Sanderson
(2010), and can do so with more compact code due to C++ features.

3 Vectors

This section details the different vector represenations, starting with their definition inside the GSL. We
then discuss our layering before showing how the two types map. A discussion of read-only ‘vector view’
classes concludes the section.

3.1 GSL Vectors

GSL defines various vector types to manipulate one-dimensionnal data, similar to R arrays. For example
the gsl_vector and gsl_vector_int structs are defined as:

typedef struct{
size_t size;

size_t stride;

double * data;

gsl_block * block;

int owner;

} gsl_vector;

typedef struct {

size_t size;

size_t stride;

int * data;

gsl_block_int * block;

int owner;

}

gsl_vector_int;

A typical use of the gsl_vector struct is given below:

int i;

gsl_vector * v = gsl_vector_alloc (3); // allocate a gsl_vector of size 3

for (i = 0; i < 3; i++) { // fill the vector
gsl_vector_set (v, i, 1.23 + i);

}

double sum = 0.0 ; // access elements
for (i = 0; i < 3; i++) {

sum += gsl_vector_set(v, i) ;

}

gsl_vector_free (v); // free the memory

4

3.2 RcppGSL::vector

RcppGSL defines the template RcppGSL::vector<T> to manipulate gsl_vector pointers taking advan-
tage of C++ templates. Using this template type, the previous example now becomes:

int i;

RcppGSL::vector<double> v(3); // allocate a gsl_vector of size 3

for (i = 0; i < 3; i++) { // fill the vector
v[i] = 1.23 + i ;

}

double sum = 0.0 ; // access elements
for (i = 0; i < 3; i++) {

sum += v[i] ;

}

v.free() ; // free the memory

The class RcppGSL::vector<double> is a smart pointer, that can be used anywhere where a raw
pointer gsl_vector can be used, such as the gsl_vector_set and gsl_vector_get functions above.

Beyond the convenience of a nicer syntax for allocation and release of memory, the RcppGSL::vector
template faciliates interchange of GSL vectors with Rcpp objects, and hence R objects. The following exam-
ple defines a .Call compatible function called sum_gsl_vector_int that operates on a gsl_vector_int
through the RcppGSL::vector<int> template specialization:

// [[Rcpp::export]]
int sum_gsl_vector_int(RcppGSL::vector<int> vec){

int res = std::accumulate(vec.begin(), vec.end(), 0) ;

vec.free() ; // we need to free vec after use
return res ;

}

p The function can then simply be called from R :

> .Call("sum_gsl_vector_int", 1:10)

[1] 55

A second example shows a simple function that grabs elements of an R list as gsl_vector objects
using implicit conversion mechanisms of Rcpp

5

// [[Rcpp::export]]
double gsl_vector_sum_2(Rcpp::List data){

// grab "x" as a gsl_vector through the RcppGSL::vector<double> class
RcppGSL::vector<double> x = data["x"] ;

// grab "y" as a gsl_vector through the RcppGSL::vector<int> class
RcppGSL::vector<int> y = data["y"] ;

double res = 0.0 ;

for(size_t i=0; i< x->size; i++){

res += x[i] * y[i] ;

}

// as usual with GSL, we need to explicitely free the memory
x.free() ;

y.free() ;

// return the result
return res ;

}

called from R :

> data <- list(x = seq(0,1,length=10), y = 1:10)

> .Call("gsl_vector_sum_2", data)

[1] 36.66667

3.3 Mapping

Table 1 shows the mapping between types defined by the GSL and their corresponding types in the
RcppGSL package.

gsl vector RcppGSL

gsl_vector RcppGSL::vector<double>

gsl_vector_int RcppGSL::vector<int>

gsl_vector_float RcppGSL::vector<float>

gsl_vector_long RcppGSL::vector<long>

gsl_vector_char RcppGSL::vector<char>

gsl_vector_complex RcppGSL::vector<gsl_complex>

gsl_vector_complex_float RcppGSL::vector<gsl_complex_float>

gsl_vector_complex_long_double RcppGSL::vector<gsl_complex_long_double>

gsl_vector_long_double RcppGSL::vector<long double>

gsl_vector_short RcppGSL::vector<short>

gsl_vector_uchar RcppGSL::vector<unsigned char>

gsl_vector_uint RcppGSL::vector<unsigned int>

gsl_vector_ushort RcppGSL::vector<insigned short>

gsl_vector_ulong RcppGSL::vector<unsigned long>

Table 1: Correspondance between GSL vector types and templates defined in RcppGSL.

3.4 Vector Views

Several GSL algorithms return GSL vector views as their result type. RcppGSL defines the template class
RcppGSL::vector_view to handle vector views using C++ syntax.

6

// [[Rcpp::export]]
Rcpp::List test_gsl_vector_view(){

int n = 10 ;

RcppGSL::vector<double> v(n) ;

for(int i=0 ; i<n; i++){

v[i] = i ;

}

RcppGSL::vector_view<double> v_even = gsl_vector_subvector_with_stride(v,0,2,n/2);

RcppGSL::vector_view<double> v_odd = gsl_vector_subvector_with_stride(v,1,2,n/2);

List res = List::create(

_["even"] = v_even,

_["odd"] = v_odd

) ;

v.free() ; // we only need to free v, the views do not own data
return res ;

}

As with vectors, C++ objects of type RcppGSL::vector_view can be converted implicitly to their
associated GSL view type. Table 2 displays the pairwise correspondance so that the C++ objects can be
passed to compatible GSL algorithms.

gsl vector views RcppGSL

gsl_vector_view RcppGSL::vector_view<double>

gsl_vector_view_int RcppGSL::vector_view<int>

gsl_vector_view_float RcppGSL::vector_view<float>

gsl_vector_view_long RcppGSL::vector_view<long>

gsl_vector_view_char RcppGSL::vector_view<char>

gsl_vector_view_complex RcppGSL::vector_view<gsl_complex>

gsl_vector_view_complex_float RcppGSL::vector_view<gsl_complex_float>

gsl_vector_view_complex_long_double RcppGSL::vector_view<gsl_complex_long_double>

gsl_vector_view_long_double RcppGSL::vector_view<long double>

gsl_vector_view_short RcppGSL::vector_view<short>

gsl_vector_view_uchar RcppGSL::vector_view<unsigned char>

gsl_vector_view_uint RcppGSL::vector_view<unsigned int>

gsl_vector_view_ushort RcppGSL::vector_view<insigned short>

gsl_vector_view_ulong RcppGSL::vector_view<unsigned long>

Table 2: Correspondance between GSL vector view types and templates defined in RcppGSL.

The vector view class also contains a conversion operator to automatically transform the data of the
view object to a GSL vector object. This enables use of vector views where GSL would expect a vector.

4 Matrices

The GSL also defines a set of matrix data types : gsl_matrix, gsl_matrix_int etc ... for which RcppGSL
defines a corresponding convenience C++ wrapper generated by the RcppGSL::matrix template.

4.1 Creating matrices

The RcppGSL::matrix template exposes three constructors.

7

// convert an R matrix to a GSL matrix
matrix(SEXP x) throw(::Rcpp::not_compatible)

// encapsulate a GSL matrix pointer
matrix(gsl_matrix* x)

// create a new matrix with the given number of rows and columns
matrix(int nrow, int ncol)

4.2 Implicit conversion

RcppGSL::matrix defines implicit conversion to a pointer to the associated GSL matrix type, as well as
dereferencing operators, making the class RcppGSL::matrix look and feel like a pointer to a GSL matrix
type.

gsltype* data ;

operator gsltype*(){ return data ; }

gsltype* operator->() const { return data; }

gsltype& operator*() const { return *data; }

4.3 Indexing

Indexing of GSL matrices is usually the task of the functions gsl_matrix_get, gsl_matrix_int_get, ...
and gsl_matrix_set, gsl_matrix_int_set, ...

RcppGSL takes advantage of both operator overloading and templates to make indexing a GSL matrix
much more convenient.

RcppGSL::matrix<int> mat(10,10); // create a matrix of size 10x10

for(int i=0; i<10: i++) { // fill the diagonal
mat(i,i) = i ;

}

4.4 Methods

The RcppGSL::matrix type also defines the following member functions:

nrow extracts the number of rows
ncol extract the number of columns
size extracts the number of elements
free releases the memory

4.5 Matrix views

Similar to the vector views discussed above, the RcppGSL also provides an implicit conversion operator
which returns the underlying matrix stored in the matrix view class.

5 Using RcppGSL in your package

The RcppGSL package contains a complete example providing a single function colNorm which computes
a norm for each column of a supplied matrix. This example adapts a matrix example from the GSL manual
that has been chose merely as a means to showing how to set up a package to use RcppGSL.

8

Needless to say, we could compute such a matrix norm easily in R using existing facilities. One such
possibility is a simple apply(M, 2, function(x) sqrt(sum(x^2))) as shown on the corresponding
help page in the example package inside RcppGSL. One point in favour of using the GSL code is that
it employs a BLAS function so on sufficiently large matrices, and with suitable BLAS libraries installed,
this variant could be faster due to the optimised code in high-performance BLAS libraries and/or the
inherent parallelism a multi-core BLAS variant which compute compute the vector norm in parallel. On
all ‘reasonable’ matrix sizes, however, the performance difference should be neglible.

5.1 The configure script

5.1.1 Using autoconf

Using RcppGSL means employing both the GSL and R. We may need to find the location of the GSL
headers and library, and this done easily from a configure source script which autoconf generates from
a configure.in source file such as the following:

AC_INIT([RcppGSLExample], 0.1.0)

Use gsl-config to find arguments for compiler and linker flags
##
Check for non-standard programs: gsl-config(1)
AC_PATH_PROG([GSL_CONFIG], [gsl-config])

If gsl-config was found, let’s use it
if test "${GSL_CONFIG}" != ""; then

Use gsl-config for header and linker arguments (without BLAS which we get from R)
GSL_CFLAGS=‘${GSL_CONFIG} --cflags‘

GSL_LIBS=‘${GSL_CONFIG} --libs-without-cblas‘

else
AC_MSG_ERROR([gsl-config not found, is GSL installed?])

fi

Now substitute these variables in src/Makevars.in to create src/Makevars
AC_SUBST(GSL_CFLAGS)

AC_SUBST(GSL_LIBS)

AC_OUTPUT(src/Makevars)

Such a source configure.in gets converted into a script configure by invoking the autoconf

program.

5.1.2 Using functions provided by RcppGSL

RcppGSL provides R functions that allows one to retrieve the same information. Therefore the configure
script can also be written as:

#!/bin/sh

GSL_CFLAGS=‘${R_HOME}/bin/Rscript -e "RcppGSL:::CFlags()"‘

GSL_LIBS=‘${R_HOME}/bin/Rscript -e "RcppGSL:::LdFlags()"‘

sed -e "s|@GSL_LIBS@|${GSL_LIBS}|" \
-e "s|@GSL_CFLAGS@|${GSL_CFLAGS}|" \
src/Makevars.in > src/Makevars

Similarly, the configure.win for windows can be written as:

9

GSL_CFLAGS=‘${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe -e "RcppGSL:::CFlags()"‘

GSL_LIBS=‘${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe -e "RcppGSL:::LdFlags()"‘

sed -e "s|@GSL_LIBS@|${GSL_LIBS}|" \
-e "s|@GSL_CFLAGS@|${GSL_CFLAGS}|" \
src/Makevars.in > src/Makevars.win

5.2 The src directory

The C++ source file takes the matrix supplied from R and applies the GSL function to each column.

#include <RcppGSL.h>

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_blas.h>

extern "C" SEXP colNorm(SEXP sM) {

try {

RcppGSL::matrix<double> M = sM; // create gsl data structures from SEXP
int k = M.ncol();

Rcpp::NumericVector n(k); // to store results

for (int j = 0; j < k; j++) {

RcppGSL::vector_view<double> colview = gsl_matrix_column (M, j);

n[j] = gsl_blas_dnrm2(colview);

}

M.free() ;

return n; // return vector

} catch(std::exception &ex) {

forward_exception_to_r(ex);

} catch(...) {

::Rf_error("c++ exception (unknown reason)");

}

return R_NilValue; // -Wall
}

The Makevars.in file governs the compilation and uses the values supplied by configure during
build-time:

set by configure
GSL_CFLAGS = @GSL_CFLAGS@

GSL_LIBS = @GSL_LIBS@

combine with standard arguments for R
PKG_CPPFLAGS = $(GSL_CFLAGS)

PKG_LIBS = $(GSL_LIBS)

The variables surrounded by will be filled by configure during package build-time.

5.3 The R directory

The R source is very simply: a single matrix is passed to C++:

10

> colNorm <- function(M) {

+ stopifnot(is.matrix(M))

+ res <- .Call("colNorm", M, package="RcppGSLExample")

+ }

6 Using RcppGSL with inline

The inline package (Sklyar, Murdoch, Smith, Eddelbuettel, and François, 2013) is very helpful for
prototyping code in C, C++ or Fortran as it takes care of code compilation, linking and dynamic loading
directly from R. It is being used extensively by Rcpp, for example in the numerous unit tests.

The example below shows how inline can be deployed with RcppGSL. We implement the same column
norm example, but this time as an R script which is compiled, linked and loaded on-the-fly. Compared to
standard use of inline, we have to make sure to add a short section declaring which header files from
GSL we need to use; the RcppGSL then communicates with inline to tell it about the location and names
of libraries used to build code against GSL.

> require(inline)

> inctxt='

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_blas.h>

'

> bodytxt='

RcppGSL::matrix<double> M = sM; // create gsl data structures from

SEXP

int k = M.ncol();

Rcpp::NumericVector n(k); // to store results

for (int j = 0; j < k; j++) {

RcppGSL::vector_view<double> colview = gsl_matrix_column (M, j);

n[j] = gsl_blas_dnrm2(colview);

}

M.free() ;

return n; // return vector

'

> foo <- cxxfunction(

+ signature(sM="numeric"),

+ body=bodytxt, inc=inctxt, plugin="RcppGSL")

> M <- outer(sin(0:9), rep(1,10), "*") + outer(rep(1, 10), cos(0:9), "*")

> foo(M)

[1] 4.314614 3.120504 2.193159 3.261141 2.534157 2.572810

[7] 4.204689 3.652017 2.085236 3.073134

The RcppGSL inline plugin supports creation of a package skeleton based on the inline function.

> package.skeleton("mypackage", foo)

7 Using RcppGSL with Rcpp Attributes

Rcpp Attributes (Allaire, Eddelbuettel, and François, 2013) builds on the features of the inline package
described in previous section, and streamline the compilation, loading and linking process even further.
It leverages the existing plugins for inline. This section illustrates how the example from the previous
section can be written using Rcpp Attributes.

11

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_blas.h>

#include <RcppGSL.h>

// declare a dependency on the RcppGSL package; also activates plugin
//
// [[Rcpp::depends(RcppGSL)]]

// declare the function to be ’exported’ to R
//
// [[Rcpp::export]]
Rcpp::NumericVector foo(Rcpp::NumericMatrix sM) {

RcppGSL::matrix<double> M = Rcpp::as<RcppGSL::matrix<double> >(sM);

int k = M.ncol();

Rcpp::NumericVector n(k); // to store results

for (int j = 0; j < k; j++) {

RcppGSL::vector_view<double> colview = gsl_matrix_column (M, j);

n[j] = gsl_blas_dnrm2(colview);

}

M.free() ;

return n; // return vector
}

/*** R
see Section 8.4.13 of the GSL manual:
create M as a sum of two outer products
M <- outer(sin(0:9), rep(1,10), "*") +

outer(rep(1, 10), cos(0:9), "*")
foo(M)
*/

With the code above stored in a file, say, “gslNorm.cpp” one can simply call sourceCpp() to have the
wrapper code added, and all of the compilation, linking and loading done — including the execution of
the short R segment at the end:

> sourceCpp("gslNorm.cpp")

See the vignette “Rcpp-attributes” (Allaire et al., 2013) of the Rcpp package (Eddelbuettel et al., 2014)
for details.

8 Summary

The GNU Scientific Library (GSL) by Galassi et al. (2010) offers a very comprehensive collection of
rigorously developed and tested functions for applied scientific computing under a common Open Source
license. This has lead to widespread deployment of GSL among a number of disciplines.

Using the automatic wrapping and converters offered by the RcppGSL package presented here, R
users and programmers can now deploy algorithmns provided by the GSL with greater ease.

References

J. J. Allaire, Dirk Eddelbuettel, and Romain François. Rcpp Attributes, 2013. URL http://CRAN.

R-Project.org/package=Rcpp. Vignette included in R package Rcpp.

12

http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=Rcpp

Dirk Eddelbuettel. Seamless R and C++ Integration with Rcpp. Use R! Springer, New York, 2013. ISBN
978-1-4614-6867-7.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(8):1–18, 2011. URL http://www.jstatsoft.org/v40/i08/.

Dirk Eddelbuettel and Conrad Sanderson. RcppArmadillo: Accelerating R with high-performance C++
linear algebra. Computational Statistics and Data Analysis, 71:1054–1063, March 2014. doi: 10.1016/j.
csda.2013.02.005. URL http://dx.doi.org/10.1016/j.csda.2013.02.005.

Dirk Eddelbuettel, Romain François, JJ Allaire, John Chambers, Douglas Bates, and Kevin Ushey. Rcpp:
Seamless R and C++ Integration, 2014. URL http://CRAN.R-Project.org/package=Rcpp. R package
version 0.11.0.

Romain François, Dirk Eddelbuettel, and Douglas Bates. RcppArmadillo: Rcpp integration for Armadillo
templated linear algebra library, 2014. URL http://CRAN.R-Project.org/package=RcppArmadillo.
R package version 0.4.000.2.

Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken, Michael Booth,
and Fabrice Rossi. GNU Scientific Library Reference Manual, 3rd edition, 2010. URL http://www.gnu.

org/software/gsl. Version 1.14. ISBN 0954612078.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2013. URL http://www.R-project.org/.

Conrad Sanderson. Armadillo: An open source C++ algebra library for fast prototyping and computation-
ally intensive experiments. Technical report, NICTA, 2010. URL http://arma.sf.net.

Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel, and Romain François. inline: Inline C, C++,
Fortran function calls from R, 2013. URL http://CRAN.R-Project.org/package=inline. R package
version 0.3.13.

13

http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=RcppArmadillo
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
http://www.R-project.org/
http://arma.sf.net
http://CRAN.R-Project.org/package=inline

	Introduction
	Motivation: FastLm
	Vectors
	GSL Vectors
	RcppGSL::vector
	Mapping
	 Vector Views

	Matrices
	Creating matrices
	Implicit conversion
	Indexing
	Methods
	Matrix views

	Using RcppGSL in your package
	The configure script
	Using autoconf
	Using functions provided by RcppGSL

	The src directory
	The R directory

	Using RcppGSL with inline
	Using RcppGSL with Rcpp Attributes
	Summary

