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Motivation: What describes our current situation?

CPU Transistor Counts 1971-2008 & Moore’s Law Moore’s LaW: CompUterS
keep getting faster and
Feano0000] faster
e But at the same time out
g toomon e datasets get bigger and
'% 1,000,000 —| "" blgger
10000 = So we're still waiting and
oo waiting . ..

‘ ‘ ‘ ‘ Hence: A need for higher
' / faster / further / ...
computing with R.

Date of introduction

Source: http://en.wikipedia.org/wiki/Moore’ s_law
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Motivation: Presentation Roadmap

We will start by measuring how we are doing before looking at
ways to improve our computing performance.

We will look at vectorisation, as well as various ways to compile
code. We will look at debugging tools and tricks as well.

We will discuss several ways to get more things done at the
same time by using simple parallel computing approaches.

Next, we look at ways to compute with R beyond the memory
limits imposed by the R engine.

Last but not least we look at ways to automate running R code.
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Software Support

The tutorial is supported by a ’live cdrom’. The (updated) iso
file Quantian_ Dec2008 tutorial.iso can be downloaded
from http://quantian.alioth.debian.org/.

The iso image contains a complete Debian operating sytem
including the graphical KDE user interface. All the software
demonstrated during the tutorial is available and fully functional.
This includes

» R and all packages used,

» the accelerated Ra variant,

» Open MPI, NWS, Slurm and more,
» Emacs, ESS and a few other tools.

The versions correspond to the to the December 2008
snapshot of the upcoming Debian release.
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Software Support cont.

The iso file can be burned to a cdrom that can be used to boot
up a workstation.
Alternatively, virtualisation software such as

» VMware Player / Workstation (Windows, Linux),

» VMware Fusion (Mac OS X),

» VirtualBox (Windows, Linux) or

» QEMU (Linux)
can be used to run a’virtual’ guest computer alongside the host
computer.

The software can also be installed to disk and updated using
standard Debian tools; see the documentation for the 'Debian
Live’ tools used.
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Appendix: Software Support cont.

Known issues with the provided iso file are:

» The cdrom appears to fail on some Dell models, there may
be a BIOS incompatibility with the syslinux bootloader.
Failures with the Parallels virtualisation for OS X were also
reported, at least for the August 2008 release.

» No wireless extensions: if a laptop is booted off a cdrom,

chances are that wireless will not be supported due to lack
of binary firmware.

We will provide some examples or tips for Virtualbox, in

particular the so-called Open Source Edition virtualbox-ose,
that is readily available for Debian and Ubuntu.
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Debian Live

The cdrom / iso was built using the excellent Debian Live toolkit.

Consequently, the documentation for Debian Live at
http://wiki.debian.org/DebianLive/ should be
consulted in case of questions.

In particular, the FAQ at
http://wiki.debian.org/DebianLive/FAQ is quite
helpful.
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Virtualbox networking

By default, virtualbox sets up networking using NAT: the
virtualbox client can go ’outside’, but cannot be seen from the
outside due to the NAT layer. This is similar to how home
networking is often invisible behind a single wired or wireless
router with NAT capabilities.

When using Linux as a host operating system, it is possible to
set up bridge networking where the virtualbox client becomes
visible to the network just like another machine. See for
example the short tutorial at
http://www.ubuntugeek.com/ how-to-set—-up
—host-interface —networking
—for-virtualbox—on—-ubuntu.html.
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Virtualbox networking

For example, on a Debian/Ubuntu host, the networking can be
configured via

auto br0

iface br0 inet static
address 192.168.1.10
netmask 255.255.255.0
network 192.168.1.0
broadcast 192.168.1.255
gateway 192.168.1.4
bridge_ports eth0 vbox0

which sets up a bridge interface to two interfaces vbox0 and
vbox1. These can then be assigned as host interface in the
virtualbox console.
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Profiling

We need to know where our code spends the time it takes to
compute our tasks. Measuring is critical.

R already provides the basic tools for performance analysis.

» the system.time function for simple measurements.
» the Rprof function for profiling R code.
» the Rprofmem function for profiling R memory usage.

In addition, the profr package on CRAN can be used to
visualize Rprof data.
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Profiling cont.

The chapter Tidying and profiling R code in the R Extensions
manual is a good first source for documentation on profiling and
debugging.

Simon Urbanek has a page on benchmarks (for Macs) at
http://r.research.att.com/benchmarks/

Lastly, we can also profile compiled code.

The following example (taken from the manual) contains two
calls to Rprof to turn profiling on and off.
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RProf example

library (MASS); library (boot)
storm.fm <- nls(Time ~ b*Viscosity/ (Wt - c), stormer, \
start = ¢ (b=29.401, c=2.2183))
st <- cbind(stormer, fit=fitted(storm.fm))
storm.bf <- function(rs, i) {
st$Time <- st$fit + rs[i]

tmp <- nls(Time ~ (b *» Viscosity)/ (Wt - c), st, \
start = coef(storm.fm))
tmpSmS$getAllPars ()

}

# remove mean

rs <— scale(resid(storm.fm), scale = FALSE)
Rprof ("boot.out")

# pretty slow

storm.boot <- boot (rs, storm.bf, R = 4999)
Rprof (NULL)
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RProf example cont.

We can run the example via either one of
cat profilingExample.R | R ——-no-save # N = 4999
cat profilingSmall.R | R ——no-save # N = 99

We can then analyse the output using two different ways. First,

directly from R into an R object:
data <- summaryRprof ("boot.out")

print (str(data))
Second, from the command-line (on systems having Per1)
R CMD Prof boot.out | less

Third, profr can directly profile, evaluate, and optionally plot,

an expression. Note that we reduce N here:
pr <- profr(storm.boot <- boot(rs, storm.bf, R = 199))

plot (pr)

ggplot (pr) ## using library(ggplot2)

In this example, the code is already very efficient and no
'smoking gun’ reveals itself for further improvement.
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profr example

The profr function can be very useful for its quick visualisation
of the RProf output. Consider this contrived example:
sillysum <- function(N) {s <- 0;

for (i in 1:N) s <= s + 1i; s}
ival <- 1/5000
Rprof ("/tmp/sillysum.out", interval=ival)
a <- sillysum(le6); Rprof (NULL)
plot (parse_rprof ("/tmp/sillysum.out", interval=ival))
and a more efficient solution where we use a larger N:
efficientsum <- function(N) { s <- sum(seq(l,N)); s }
ival <- 1/5000
Rprof ("/tmp/effsum.out", interval=ival)
a <- efficientsum(le7); Rprof (NULL)
plot (parse_rprof ("/tmp/effsum.out"”, interval=ival))

We can run the complete example via
cat rprofChartExample.R | R —-—no-save
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profr example cont.

Profile of inefficient summation
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RProfmem example

When R has been built with the enable-memory-profiling
option, we can also look at use of memory and allocation.

To continue with the R Extensions manual example, we issue
calls to Rprofmem to start and stop logging to a file as we did
for Rprof:
Rprofmem (" /tmp/boot .memprof", threshold=1000)
storm.boot <- boot (rs, storm.bf, R = 4999)
Rprofmem (NULL)

Looking at the results files shows, and we quote, that apart
from some initial and final work in ‘boot’ there are no vector
allocations over 1000 bytes.

We also mention in passing that the t racemem function can log
when copies of a (presumably large) object are being made.
Details are in section 3.3.3 of the R Extensions manual.
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Profiling compiled code

Profiling compiled code typically entails rebuilding the binary
and libraries with the —gp compiler option. In the case of R, a
complete rebuild is required.

Add-on tools like valgrind and kcachegrind can be helpful.
Two other options are mentioned in the R Extensions manual
section of profiling for Linux.

First, sprof, part of the C library, can profile shared libraries.
Second, the add-on package oprofile provides a daemon
that has to be started (stopped) when profiling data collection is
to start (end).

A third possibility is the use of the Google Perftools package
which we will illustrate.
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Profiling with Google Perftools

The Google Perftools package provides four modes of
performance analysis / improvement:

» a thread-caching malloc (memory allocator),
» a heap-checking facility,
» a heap-profiling facility and
» cpu profiling.
Here, we will focus on the last feature.

There are two possible modes of running code with the cpu
profile.

The preferred approach is to link with -1profiler.
Alternatively, one can dynamically pre-load the profiler library.
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Profiling with Google Perftools

# turn on profiling and provide a profile log file
LD_PRELOAD="/usr/lib/libprofiler.so.0" \
CPUPROFILE=/tmp/rprof.log \
r profilingSmall.R
We can then analyse the profiling output in the file. The profiler
(renamed from pprof t0 google—-pprof on Debian) has a
large number of options. Here just use two different formats:
# show text output
google-pprof —-cum —-text \

/usr/bin/r /tmp/rprof.log | less

# or analyse call graph using gv
google-pprof —-—gv /usr/bin/r /tmp/rprof.log

The shell script googlePerftools. sh runs the complete
example.
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Profiling with Google Perftools

This can generate complete (yet complex) graphs.
Juse/bin/r

“Total samples: 28
Focusing on: 28

Dropped nodes with <= 0 abs(samples) | of 27 (96.4%)
Dropped edges with <= 0 samples

ot (=i [
= e e

e

[m] = - =
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Profiling with Google Perftools

Another output for format is for the callgrind analyser that is
part of valgrind—a frontend to a variety of analysis tools such
as cachegrind (cache simulator), callgrind (call graph tracer),
helpgrind (race condition analyser), massif (heap profiler), and
memcheck (fine-grained memory checker).

For example, the KDE frontend kcachegrind can be used to

visualize the profiler output as follows:
google-pprof —-callgrind \

/usr/bin/r /tmp/gpProfile.log \

> googlePerftools.callgrind
kcachegrind googlePerftools.callgrind
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Profiling with Google Perftools

Profiling

Kcachegrmd running on the the profiling output looks as foIIows
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Vectorisation

Revisiting our trivial trivial example from the preceding section:
> sillysum <- function(N) { s <- 0;

for (1 in 1:N) s <- s + 1; return(s) }
> system.time (print (sillysum(le7)))

[1] 5e+13
user system elapsed
13.617 0.020 13.701
>

> system.time (print (sum(as.numeric(seqg(l,1e7)))))

[1] 5e+13
user system elapsed
0.224 0.092 0.315
>

Replacing the loop yielded a gain of a factor of more than 40.
Hence it pays to know the corpus of available functions.
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Vectorisation cont.

A more interesting example is provided in a case study on the
Ra (c.f. next section) site and taken from the S Programming
book:
Consider the problem of finding the distribution of the
determinant of a 2 x 2 matrix where the entries are
independent and uniformly distributed digits 0, 1, ...,
9. This amounts to finding all possible values of
ac — bd where a, b, ¢ and d are digits.
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Vectorisation cont.

The brute-force solution is using explicit loops over all
combinations:
dd.for.c <- function() {

val <- NULL

for (a in 0:9) for (b in 0:9)
for (d in 0:9) for (e in 0:9)

val <- c(val, ax*b - dxe)

table (val)

}

The naive time is ,
> mean (replicate (10, system.time (dd.for.c()) ["elapsed"])

[1] 0.2678
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Vectorisation cont.

The case study discusses two important points that bear
repeating:
» pre-allocating space helps with performance:
val <- double (10000)
reduces the time to 0.1204

» switching to faster functions can help too as tabulate
outperforms table and reduced the time further to 0.1180.
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Vectorisation cont.

However, by far the largest improvement comes from
eliminating the four loop with two calls each to outer:
dd.fast.tabulate <- function() {

val <- outer(0:9, 0:9, "x")

val <- outer(val, wval, "-")

tabulate (val)
}

The time for the most efficient solution is:
> mean (replicate (10,

system.time (dd.fast.tabulate()) ["elapsed"]))

[1] 0.0014 _
which is orders of magnitude faster.

All examples can be run via the script dd.naive.r.
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Accelerated R with just-in-time compilation

Stephen Milborrow recently released a set of patches to R that
allow ’just-in-time compilation’ of loops and arithmetic
expression. Together with his jit package on CRAN, this can
be used to obtain speedups of standard R operations.

Our trivial example run in Ra:
library (jit)
sillysum <- function(N) { jit(l); s <= 0; \
for (i in 1:N) s <- s + 1; return(s) }
> system.time (print (sillysum(le7)))
[1] 5e+13

user system elapsed
1.548 0.028 1.577

which gets a speed increase of a factor of five — not bad at all.
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Accelerated R with just-in-time compilation

The last looping example can be improved with jit:
dd.for.pre.tabulate.jit <- function() {

jit (1)
val <- double (10000)
i <=0
for (a in 0:9) for (b in 0:9)
for (d in 0:9) for (e in 0:9) {
val[i <= 1 4+ 1] <- a*b - dxe
}
tabulate (val)
}

> mean (replicate (10, system.time (dd.for.pre.tabulate.jit()) ["

[1] 0.0053
or only about three to four times slower than the non-looped

solution using 'outer—a rather decent improvement.
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Accelerated R with just-in-time compilation

Comparison of R and Ra on 'dd' example

Ra achieves very good
— r decreases in total
computing time in these
examples but cannot
improve the efficient
solution any further.

Ra and jit are still fairly

new and not widely

deployed yet, but readily
. —_— available in Debian and

naive naive+prealloc n+p+tabulate outer U bu nt u

time in seconds
0.15 0.20 0.25
L L |

0.10
L

0.05
I

0.00

Source: Our calculations
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Optimised Blas

Blas (’basic linear algebra subprogram’, see Wikipedia) are
standard building block for linear algebra. Highly-optimised
libraries exist that can provide considerable performance gains.

R can be built using so-called optimised Blas such as Atlas
('free’), Goto (not 'free’), or those from Intel or AMD; see the 'R
Admin’ manual, section A.3 'Linear Algebra’.

The speed gains can be noticeable. For Debian/Ubuntu, one
can simply install on of the at las-base-* packages.

An example from the old README.Atlas, running with R 2.7.0,
follows:
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Optimised Blas cont.

# with Atlas

> mm <—- matrix(rnorm(4+«1076), ncol = 2%x10"3)
> mean (replicate (10,

system.time (crossprod(mm)) ["elapsed"]))
[1] 3.8465

# with basic. non-optmised Blas,
# ie after dpkg —--purge atlas3-base libatlas3gf-base

> mm <- matrix (rnorm(4+«1076), ncol = 2x10"3)
> mean (replicate (10,

system.time (crossprod(mm)) ["elapsed"]))
[1] 8.9776

So for pure linear algebra problems, we may get an
improvement by a factor of two or larger by using binary code
that is optimised for the cpu class. This is likely to be more
pronounced on multi-cpu machines.

Higher increases are possibly by 'tuning’ the library, see the

Atlas documentatlonbirk Eddelbuettel Intro to High-Performance R @ BdC/BoC Dec 2008
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From Blas to GPUs.

The next frontier for hardware acceleration is computing on
GPUs (‘graphics programming units’, see Wikipedia).

GPUs are essentially hardware that is optimised for both /O
and floating point operations, leading to much faster code
execution than standard CPUs on floating-point operations.
Development kits are available (e.g Nvidia CUDA) and the
recently announced OpenCL programming specification should
make GPU-computing vendor-independent.

Some initial work on integration with R has been undertaken
but there appear to no easy-to-install and easy-to-use kits for R
—yet.

So this provides a perfect intro for the next subsection on
compilation.
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Compiled Code

Beyond smarter code (using e.g. vectorised expression and/or
just-in-time compilation), compiled subroutines or accelerated
libraries, the most direct speed gain is to switch to compiled
code.

This section covers two possible approaches:

» inline for automated wrapping of simple expression
» Rcpp for easing the interface between R and C++

Another different approach is to keep the core logic 'outside’ but
to embed R into the application. There is some documentation
in the 'R Extensions’ manual, and packages like RApache or
littler offer concrete examples. This does however require
a greater familiarity with R internals.

Dirk Eddelbuettel Intro to High-Performance R @ BdC/BoC Dec 2008


http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Measure Vector Parallel OutOfMem Automation Compiling

Compiled Code: The Basics

- O © 0O N O O & W N =

R offers several functions to access compiled code: . c and
.Fortranaswellas .call and .External. (R Extensions,
sections 5.2 and 5.9; Software for Data Analysis). .C and
.Fortran are older and simpler, but more restrictive in the
long run.

The canonical example in the documentation is the convolution
function:

void convolve(double *xa, int xna, double xb,
int xnb, double xab)

{
int i, j, nab = xna + xnb — 1;
for(i = 0; i < nab; i++)
ab[i] = 0.0;
for(i = 0; i < xna; i++)
for(j = 0; j < *nb; j++)
ab[i + j] += a[i] = b[j];
}
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Compiled Code: The Basics cont.

The convolution function is called from R by

conv <— function(a, b)
.C("convolve",
as.double(a),
as.integer(length(a)),
as.double(b) ,
as.integer(length (b)),
ab = double(length(a) + length(b) — 1))$ab

N o g~ W N =

As stated in the manual, one must take care to coerce all the
arguments to the correct R storage mode before calling . C as
mistakes in matching the types can lead to wrong results or
hard-to-catch errors.

The script convolve.C.sh compiles and links the source
code, and then calls R to run the example.
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Compiled Code: The Basics cont.

Using .call, the example becomes

#include <R.h>
#include <Rdefines.h>

SEXP convolve2 (SEXP a, SEXP b)

{
int i, j, na, nb, nab;
double xxa, =*xb, xxab;
SEXP ab;

0 N O g B~ W N =

©

10| PROTECT(a = AS_NUMERIC(a));
11|  PROTECT(b = AS_NUMERIC(b));
12 na = LENGTH(a); nb = LENGTH(
13| PROTECT(ab = NEW_NUMERIC(nab
14| xa = NUMERIC_POINTER(a); xb
15| xab = NUMERIC_POINTER(ab) ;

)

b); nab = na + nb — 1;
))s

NUMERIC_POINTER(b) ;

16 for(i = 0; i < nab; i++) xab[i] = 0.0;
17 for(i = 0; i < na; i++)
18 for(j = 0; j <nb; j++) xab[i + j] += xa[i] = xb[]];

19|  UNPROTECT(3) ;
20 return(ab);
21] }
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Compiled Code: The Basics cont.

Now the call simply becomes easier using the function name
and the vector arguments as all handling is done at the C/C++
level:

conv <- function(a, b) .Call("convolve2", a, b)

The script convolve.Call.sh compiles and links the source
code, and then calls R to run the example.

In summary, we see that
» there are different entry points
» using different calling conventions

» leading to code that may need to do more work at the
lower level.
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Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the
function cfunction that can wrap Fortan, C or C++ code.

1| ## A simple Fortran example

2| code <— "

3 integer i

4 do 1 i=1, n(1)

5 1 x(i) = x(i)*=*3

ol v

7| cubefn <— cfunction(signature (n="integer", x="numeric"),
8 code, convention=".Fortran")
9| X <— as.numeric(1:10)

10| n <— as.integer(10)

11| cubefn(n, x)$x

cfunction takes care of compiling, linking, loading, .. .by
placing the resulting dynamically-loadable object code in the
per-session temporary directory used by R.

Runthisvia cat inline.Fortan.R | R -no-save.
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Compiled Code: inline cont.

O©CoONOOHA~WN =

inline defaults to using the .call () interface:

## Use of .Call convention with C code
## Multyplying each image in a stack with a 2D Gaussian at a given position
code <— "
SEXP res;
int nprotect = 0, nx, ny, nz, x, y;
PROTECT(res = Rf_duplicate(a)); nprotect++;
nx = INTEGER(GET_DIM(a)) [0];
ny = INTEGER(GET_DIM(a))[1];
nz = INTEGER(GET_DIM(a))[2];
double sigma2 = REAL(s)[0] = REAL(s)[0], d2 ;
double cx = REAL(centre)[0], cy = REAL(centre)[1], xdata, =rdata;
for (int im = 0; im < nz; im++) {
data = &(REAL(a)[im«nxxny]); rdata = &(REAL(res)[imxnxxny]);
for (x = 0; X < nx; X++)
for (y = 0; y < ny; y++) {
d2 = (x—cx)*(x—cx) + (y—cy)=*(y—cy);
rdata[x + yxnx] = data[x + yxnx] x exp(—d2/sigma2);
}

}
UNPROTECT( nprotect) ;
return res;

"

funx <— cfunction(signature (a="array", s="numeric", centre="numeric"), code)

x <— array (runif(50«50), c¢(50,50,1))
res <— funx(a=x, s=10, centre=c(25,15)) ## actual call of compiled function
if (interactive()) image(res[,,1])
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Compiled Code: inline cont.

0 N O g~ W N =

w N = O O

14
15
16
17

We can revisit the earlier distribution of determinants example.

If we keep it very simple and pre-allocate the temporary vector
in R, the example becomes

code <— "
if (isNumeric(vec)) {
int xpv = INTEGER(vec);
int n = length(vec);
if (n = 10000) {
int i = 0;
for (int a = 0; a < 9; a++)
for (int b = 0; b < 9; b++)
for (int ¢ = 0; ¢ < 9; Cc++)
for (int d = 0; d < 9; d++)
pv[i++] = axb — cxd;
}

}

return (vec);

funx <— cfunction (signature (vec="numeric"), code)
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Compiled Code: inline cont.

We can use the inlined function in new function to be timed:
dd.inline <- function() {

X <— integer (10000)

res <- funx (vec=x)

tabulate (res)

}

> mean (replicate (100, system.time(dd.inline()) ["elapsed"

[1] 0.00051

Even though it uses the simplest algorithm, pre-allocates
memory in R and analyse the result in R , it still more than twice
as fast than the previous best solution.

The script dd.inline.r runs this example.
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Compiled Code: Rcpp

Rcpp Mmakes it easier to interface C++ and R code.

Using the .call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.

One major advantage of using .Ccal1 is that vectors (or
matrices) can be passed directly between R and C++ without
the need for explicit passing of dimension arguments. And by
using the C++ class layers, we do not need to directly
manipulate the SEXP objects.

So let us rewrite the 'distribution of determinant’ example one
more time.
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Rcpp example

The simplest version can be set up as follows:

1| #include <Rcpp.hpp>

2

3| RcppExport SEXP dd_rcpp (SEXP v) {

4 SEXP rl = R_NilValue; /1 Use this when there is nothing to be returned
5 .

6 RcppVector<int> vec(v); /1 vec parameter viewed as vector of doubles.
7 int n = vec.size(), i = 0;

8

9 for (int a = 0; a < 9; a++)

10 for (int b = 0; b < 9; b++)

1 for (int ¢ = 0; ¢ < 9; c++)

12 for (int d = 0; d < 9; d++)

13 vec(i++) = axb — cxd;

14

15 RcppResultSet rs; /1 Build result set to be returned as a list to
16 rs.add(-"vec”, vec); /1 vec as named element with name ’'vec’

17 rl = rs.getReturnList(); /1 Get the list to be returned to R.

18

19 return rl;

20| }

but it is actually preferable to use the exception-handling
feature of C++ as in the slightly longer next version.
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Rcpp example cont.

1| #include <Rcpp.hpp>

2

3| RcppExport SEXP dd_rcpp (SEXP v) {

4 SEXP rl = R_NilValue; /1 Use this when there is nothing to be returned.
5 charx exceptionMesg = NULL; /1 msg var in case of error

6

7 try {

8 RcppVector<int> vec(v); /1 vec parameter viewed as vector of doubles.
9 int n = vec.size(), i = 0;

10 for (int a = 0; a < 9; a++)

11 for (int b = 0; b < 9; b++)

12 for (int ¢ = 0; c < 9; c++)

13 for (int d = 0; d < 9; d++)

14 vec(i++) = axb — cxd;

15

16 RcppResultSet rs; // Build result set to be returned as a list to R.
17 rs.add("vec", vec); I/ vec as named element with name ’vec’

18 rl = rs.getReturnList(); /1 Get the list to be returned to R.

19 } catch(std::exception& ex) {

20 exceptionMesg = copyMessageToR(ex.what());

21 } catch(...) {

22 exceptionMesg = copyMessageToR ("unknown reason");

23 }

24

25 if (exceptionMesg != NULL)

26 error (exceptionMesg) ;

27

28 return rl;

29| }
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Rcpp example cont.

We can create a shared library from the source file as follows:

PKG_CPPFLAGS='‘r —e’cat (Rcpp:::RcppCxxFlags())’ " \
R CMD SHLIB dd.rcpp.cpp \
‘r —e’cat (Rcpp:::RcpplLdFlags())’

g++ —-I/usr/share/R/include \
-I/usr/1lib/R/site-library/Rcpp/lib \
-fpic —-g -02 \
—-c dd.rcpp.cpp -0 dd.rcpp.o

g++ —-shared -o dd.rcpp.so dd.rcpp.o \
-L/usr/lib/R/site-library/Rcpp/lib \
-1Rcpp -W1, -rpath, /usr/lib/R/site-library/Rcpp/lib \
-L/usr/1lib/R/1ib -1R

Note how we let the Rcpp package tell us where header and

library files are stored.
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Rcpp example cont.

We can then load the file using dyn . load and proceed as in
the inline example.

dyn.load ("dd.rcpp.so")

dd.rcpp <- function() {
X <- integer (10000)
res <- .Call("dd_rcpp", x)
tabulate (resS$vec)

mean (replicate (100, system.time(dd.rcpp()) ["elapsed"])))
[1] 0.00047

This beats the inline example by a neglible amount which is
probably due to some overhead the in the easy-to-use inlining.

The file dd. rcpp. sh runs the full Repp example.
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Rcpp example cont.

Two tips for easing builds with Rcpp:

For command-line use, it is easiest to link Rcpp . h to
/usr/local/include, and 1ibRcpp.so to
/usr/local/lib. The example reduces to

R CMD SHLIB dd.rcpp.cpp
as header and library will be found in the default locations.

For package building, we can have a file src/Makevars with
# compile flag providing header directory

PKG_CXXFLAGS='‘Rscript -e ’'cat (Rcpp:::RcppCxxFlags())’"
# link flag providing libary and path
PKG_LIBS=‘Rscript —-e ’cat (Rcpp:::RcppLdFlags())”’ "

See the help (Rcpp-package) page for more.
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Debugging example: valgrind

Analysis of compiled code is mainly undertaken with a
debugger like gdb, or a graphical frontend like ddd.

Another useful tool is valgrind which can find memory leaks.
We can illustrate its use with a recent real-life example.

RMySQL had recently been found to be leaking memory when
database connections are being established and closed. Given
how RPostgreSQL shares a common heritage, it seemed like
a good idea to check.
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Debugging example: valgrind

We create a small test script which opens and closes a
connection to the database in a loop and sends a small 'select’
querey. We can run this in a way that is close to the suggested
use from the 'R Extensions’ manual:

R —-d "valgrind —-tool=memcheck
—leak-check=full" -vanilla < valgrindTest.R
which creates copious output, including what is on the next
slide.

Given the source file and line number, it is fairly straightforward
to locate the source of error: a vector of pointers was freed
without freeing the individual entries first.
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Debugging example: valgrind

The state before the fix:

= 2,991 bytes in 299 blocks are definitely lost in loss record 34 of 47
at 0x4023D6E: malloc (vg_replace_malloc.c:207)

by 0x6781CAF: RS_DBI_copyString (RS-DBI.c:592)

by 0x6784B91: RS_PostgreSQL_createDataMappings (RS-PostgreSQL.c:400)
by 0x6785191: RS_PostgreSQL_exec (RS-PostgreSQL.c:366)

by 0x40C50BB: (within /usr/lib/R/1ib/1libR.so)

by 0x40EDD49: Rf_eval (in /usr/lib/R/1ib/1ibR.so)

by 0x40F00DC: (within /usr/lib/R/1ib/1ibR.so)

by 0x40EDA74: Rf_eval (in /usr/lib/R/1ib/1ibR.so)

by 0x40F0186: (within /usr/lib/R/1ib/1ibR.so)

by 0x40EDA74: Rf_eval (in /usr/lib/R/1ib/1libR.so)

by 0x40F16E6: Rf_applyClosure (in /usr/lib/R/1lib/1libR.so)

by 0x40ED99A: Rf_eval (in /usr/lib/R/1ib/1ibR.so)

LEAK SUMMARY:
definitely lost: 3,063 bytes in 301 blocks.
indirectly lost: 240 bytes in 20 blocks.
possibly lost: 9 bytes in 1 blocks.
still reachable: 13,800,378 bytes in 8,420 blocks.
suppressed: 0 bytes in 0 blocks.
Reachable blocks (those to which a pointer was found) are not shown.
To see them, rerun with: --leak-check=full --show-reachable=yes
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Debugging example: valgrind

The state after the fix:

= 312 (72 direct, 240 indirect) bytes in 2 blocks are definitely lost in loss record
at 0x4023D6E: malloc (vg_replace_malloc.c:207)

by 0x43F1563: nss_parse_service_list (nsswitch.c:530)

by 0x43F1CC3: __nss_database_lookup (nsswitch.c:134)

by 0x445EF4B: 2727

by 0x445FCEC: ?727?

by 0x43ABOF1l: getpwuid_r@RGLIBC_2.1.2 (getXXbyYY_r.c:226)
by O0x43AAA76: getpwuid (getXXbyYY.c:116)

by 0x4149412: (within /usr/lib/R/1ib/1libR.so)

by 0x412779D: (within /usr/lib/R/1ib/1ibR.so)

by 0x40EDA74: Rf_eval (in /usr/lib/R/1ib/1ibR.so)

by 0x40F00DC: (within /usr/lib/R/1lib/1libR.so)

by 0x40EDA74: Rf_eval (in /usr/lib/R/1ib/1ibR.so)

= LEAK SUMMARY:
definitely lost: 72 bytes in 2 blocks.
indirectly lost: 240 bytes in 20 blocks.

possibly lost: 0 bytes in 0 blocks.
still reachable: 13,800,378 bytes in 8,420 blocks.

suppressed: 0 bytes in 0 blocks.

3820== Reachable blocks (those to which a pointer was found) are not shown.

#==3820== To see them, rerun with: --leak-check=full --show-reachable=yes

showing that we recovered 3000 bytes.
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Outline

Parallel execution: Explicitly and Implicitly
Explicitly paralle using clustered computing
Resource management and queue system
Implicitly parallel using several cores
Example
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Embarassingly parallel

Several R packages on CRAN provide the ability to execute
code in parallel:

» NWS

Rmpi

snow (using MPI, PVM, NWS or sockets)
papply

taskPR

vV v v Y

A recent paper (Schmidberger, Morgan, Eddelbuettel, Yu,
Rossini, Tierney and Mansmann, 2008) surveys the field.
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NWS Intro

NWS, or NetWorkSpaces, is an alternative to MPI (which we
discuss below). Based on Python, it may be easier to install (in
case administrator rights are unavailable) and use than MPI. It
is accessible from R, Python and Matlab. It is also
cross-platform.

NWS is available via Sourceforge as well as CRAN. An
introductory article (focussing on Python) appeared last
summer in Dr. Dobb’s.

On Debian and Ubuntu, installing the python-nwsserver
package on at least the server node, and installing
r—-cran—-nws on each client is all that is needed. Other system
may need to install the twisted framework for Python first.
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NWS data store example

A simple example, adapted from one of the package demos:

ws <—- netWorkSpace ('r place’) # create a ’'value store’
nwsStore (ws, 'x’, 1) # place a value (as fifo)

we can list
and lookup
and overwrite

cat (nwsListVars (ws), "\n")
nwsFind(ws, ’'x’)

nwsStore (ws, ’'x’, 2)

cat (nwsListVars (ws), "\n")

s

now see two entries

=

cat (nwsFetch(ws, 'x’), ’"\n’) we can fetch
cat (nwsFetch(ws, ’'x’), "\n’) we can fetch
)

cat (nwsListVars (ws), "\n’) # and none left

=

cat (nwsFetchTry (ws,’x’,’'no go’),’\n’) # can’t fetch

The script nwsVariableStore.r contains this and a few
more commands.
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NWS sleigh example

The NWS component sleigh is an R class that makes it very
easy to write simple parallel programs. Sleigh uses the
master/worker paradigm: The master submits tasks to the
workers, who may or may not be on the same machine as the

master.
# create a sleigh object on two nodes using ssh
s <- sleigh(nodelList=c("joe", "ron"), launch=sshcmd)

# execute a statement on each worker node
eachWorker (s, function() x <<- 1)

# get system info from each worker
eachWorker (s, Sys.info)

# run a lapply-style funct. over each list elem.
eachElem (s, function(x) {x+1}, 1list(1:10))

stopSleigh (s)
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NWS sleigh cont.

Also of note is the extended caretNWs version of caret by
Max Kuhn, and described in a recent Journal of Statistical
Software article.

caret (short for 'Classification and Regression Training’)
provides a consistent interface for dozens of modern regression
and classification techniques.

caretNWS uses nws and sleigh to execeute embarassingly
parallel task: bagging, boosting, cross-validation,
bootstrapping, ... This is all done 'behind the scenes’ and thus
easy to deploy.

Schmidberger et al find NWS to be competitive with the other
parallel methods for non-degenerate cases where the ratio
between communication and computation is balanced.
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Rmpi

Rmpi is @ CRAN package that provides and interface between
R and the Message Passing Interface (MPI), a standard for
parallel computing. (c.f. Wikipedia for more and links to the
Open MPI and MPICH2 projects for implementations).

The preferred implementation for MPI is now Open MPI.
However, the older LAM implementation can be used on those
platforms where Open MPI is unavailable. There is also an
alternate implementation called MPICH2. Lastly, we should
also mention the similar Parallel Virtual Machine (PVM) tool;
see its Wikipedia page for more.

Rmpi allows us to use MPI directly from R and comes with
several examples. However, we will focus on the higher-level
usage via snow.
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MPI Example

0 N O g~ W N =

o

11
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13
14
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16
17
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19
20

Let us look at the MP T variant of the 'Hello, World!" program:

#include <stdio.h>

#include "mpi.h"

int main(int argc, charxx argv)

{
int rank, size, namelen;
char processorName [ MPI_MAX_PROCESSOR NAME];
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COVMM WORLD, &rank) ;
MPI_Comm_size (MPI_COVMM WORLD, &size);
MPI_Get_processor_name(processorName, &namelen);
printf("Hello, rank %d, size %d on processor %s\n",

rank, size, processorName);

MPI_Finalize () ;
return 0;

}
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MPI Example: cont.

Explicitly

We can compile the previous example via
$ mpicc -o mpiHelloWorld mpiHelloWorld.c

If it it has been copied across several Open MPI-equipped

hosts, we can execute it N times on the M listed hosts via:
S orterun -n 8 -H

Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,

rank
rank
rank
rank
rank
rank

’

’

’

’

’

a N w o O

r
rank 7,
rank 1,

size
size
size
size
size
size
size
size

ron, joe,wayne,tony /tmp/mpiHelloWorld

O 00 O 00 0 0

on
on
on
on
on
on
on
on

processor
processor
processor
processor
processor
processor
processor
processor

ron
ron
wayne
tony
wayne
joe
tony
joe

Notice how the order of execution is indeterminate.
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MPI Example: cont.

Besides orterun (which replaces the mpirun command used
by other MPI imnplementations), Open MPI also supplies
ompi_info to query parameter settings.

Open MPi has very fine-grained configuration options that
permit e.g. attaching particular jobs to particular cpus or cores.

Detailed documentation is provided at the web site
http://www.openmpi.org.

We will concentrate on using MPI via the Rmpi package.
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Rmpi

0 N O g s W NN =

Rmpi, a CRAN package by Hao Yu, wraps many of the MPI API
calls for use by R.

The preceding example can be rewritten in R as

#1/usr/ binlenv r
library (Rmpi) # calls MPI_Init

rk <— mpi.comm.rank(0)

Sz <— mpi.comm.size (0)

name <— mpi.get.processor.name()

cat("Hello, rank", rk, "size", sz, "on", name, "\n")
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Parallel

OutOfMem  Automation Explicitty Res.Management Implicitly Example

$ orterun -n 8 -H ron, joe,wayne,tony \
/tmp/mpiHelloWorld.r

Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,

rank
rank
rank
rank
rank
rank
rank
rank

oDy Jd Wb O

size
size
size
size
size
size
size
size

on
on
on
on
on
on
on
on

O 00 0O O 00 O 00 O

ron
ron
tony
tony
wayne
wayne
joe
joe
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Rmpi: cont.

Explicitly Res.Management Implicitly Example

We can also exectute this as a one-liner using r (which we
discuss later):

$ orterun -n 8 -H ron, joe,wayne, tony\

"of",
"Ol’l",

r —-1Rmpi -e’cat ("Hello", \
mpi.comm.rank (0),
mpi.comm.size (0),

\
\

mpi.get.processor.name (), "\n")’

Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,

rank
rank
rank
rank
rank
rank
rank
rank

0N OOy Jd Wb O

size
size
size
size
size
size
size
size

on ron
on ron
on tony
on tony
on wayne
on wayne
on joe
on joe

O 00 O 00 0 O 0
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Rmpi: cont.

Rmpi offers a large number functions, mirroring the rich API
provided by MPI.

Rmpi also offers extensions specific to working with R and its
objects, including a set of app1y-style functions to spread load
across the worker nodes.

However, we will use Rmpi mostly indirectly via snow.
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SNOW

The snow package by Tierney et al provides a convenient
abstraction directly from R.

It can be used to initialize and use a compute cluster using one
of the available methods direct socket connections, MPI, PVM,
or (since the most recent release), NWS. We will focus on MPI.

A simple example:
cl <- makeCluster (4, "MPI")
print (clusterCall (cl, function() \
Sys.info () [c("nodename", "machine")]))
stopCluster(cl)

which we can as a one-liner as shown on the next slide.
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snow: Example

$ orterun -n 1 -H ron, joe r —-lsnow,Rmpi \
-e’cl <- makeCluster (4, "MPI"); \
res <—- clusterCall(cl, \
function() Sys.info () ["nodename"]); \
print (do.call (rbind, res)); \
stopCluster(cl)”’

4 slaves are spawned successfully. 0 failed.
nodename
r]
;1 "ron
]
]

4

Sw N

[
[
[
[ ’

Note that we told orterun to start on only one node — as snow
then starts four instances (which are split evenly over the two
given hosts).
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snow: Example cont.

The power of snow lies in the ability to use the app1y-style
paradigm over a cluster of machines:

params <_ C("A", "B", "C", "D", "E", "F", "G", “H")
cl <- makeCluster (4, "MPI")

res <- parSapply(cl, params, \

FUN=function (x) myBigFunction (x))
will ‘'unroll’ the parameters params one-each over the function
argument given, utilising the cluster c1. In other words, we will
be running four copies of myBigFunction () at once.

So the snow package provides a unifying framework for
parallelly executed apply functions.

We will come back to more examples with snow below.
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papply, biopara and taskPR

We saw that Rmpi and Nws have apply-style functions, and
that snow provides a unified layer. papply is another CRAN
package that wraps around Rmp1i to distribute processing
apply-style functions across a cluster.

However, using the Open MPI-based rmpi package, | was not
able to get papply to actually successfully distribute — and
retrieve — results across a cluster. So snow remains the
preferred wrapper.

biopara is another package to distribute load across a cluster
using direct socket-based communication. We consider snow
to be a more general-purpose package for the same task.

taskPR uses the MPI protocol directly rather than via Rmpi. It
is however hard-wired to use LAM and failed to launch under
the Open MPI-implementation.
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slurm resource management and queue system

Once the number of compute nodes increases, it becomes
important to be able to allocate and manage resources, and to
queue and batch jobs. A suitable tool is s1urm, an
open-source resource manager for Linux clusters.

Paraphrasing from the slurm website:
» it allocates exclusive and/or non-exclusive access to
resources (computer nodes) to users;

» it provides a framework for starting, executing, and
monitoring (typically parallel) work on a set of allocated
nodes.

» it arbitrates contention for resources by managing a queue
of pending work.

Slurm is being developed by a consortium including LLNL, HP,
Bull, and Linux Networks.
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slurm example

Slurm is rather rich in features; we will only scratch the surface
here.

Slurm can use many underlying message passing /
communications protocols, and MPI is well supported.

In particular, Open MPI works well with slurm. That is an
advantage inasmuch as it permits use of Rmpi.
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slurm example

A simple example:

$ srun -N 2 r —1Rmpi -e’cat ("Hello", \
mpi.comm.rank (0), "of", \
mpi.comm.size (0), "on", \
mpi.get.processor.name (), "\n")’

Hello 0 of 1 on ron

Hello 0 of 1 on joe
$ srun -n 4 -N 2 -O r —1Rmpi -e’cat ("Hello", \

mpi.comm.rank (0), "of", \
mpi.comm.size (0), "on", \

mpi.get.processor.name (), "\n")’

Hello 0 of 1 on ron
Hello 0 of 1 on ron
Hello O of 1 on joe
Hello O 1 on Jjoe

This shows how to overcommit jobs per node, and provides an
example where we set the number of worker instances on the
command-line.
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slurm example

Additional coomand-line tools of interest are salloc, sbatch,
scontrol, squeue, scancel and sinfo. For example, to
see the status of a compute cluster:

$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug* up infinite 2 idle mccoy, ron

This shows two idle nodes in a partition with the default name
‘debug’.

The sview graphical user interface combines the functionality
of a few of the command-line tools.

A more complete example will be provided below.
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Using all those cores

Multi-core hardware is now a default, and the number of cores
per cpus will only increase. It is therefore becoming more
important for software to take advantage of these features.

Two recent (and still ’experimental’) packages by Luke Tierney
are addressing this question:

» pnmath uses OpenMP compiler directives for explicitly
parallel code;

» pnmath0 uses pthreads and implements the same
interface.

They can be found at http:
//www.stat.uiowa.edu/~luke/R/experimental/
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pnmath and pnmath0

Both pnmath and pnmathO provide parallelized vector math
functions and support routines.

Upon loading either package, a number of vector math
functions are replaced with versions that are parallelized using
OpenMP. The functions will be run using multiple threads if their
results will be long enough for the parallel overhead to be
outweighed by the parallel gains. On load a calibration
calculation is carried out to asses the parallel overhead and
adjust these thresholds.

Profiling is probably the best way to assess the possible
usefulness. As a quick illustrations, we compute the gtukey
function on a eight-core machine:
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pnmath and pnmath0 illustration

$ r —e’N=1e3;print (system.time (qtukey (seq(l,N)/N,2,2)))"’

user system elapsed
66.590 0.000 66.649

$ r —-lpnmath -e’N=1e3; \
print (system.time (gtukey (seq(1,N)/N,2,2)))’

user system elapsed
67.580 0.080 9.938

$ r —lpnmathO -e’N=1e3; \
print (system.time (gtukey (seqg(1,N)/N,2,2)))’

user system elapsed
68.230 0.010  9.983
The 6.7-fold reduction in ’elapsed’ time shows that the multithreaded
version takes advantage of the 8 available cores at a sub-linear
fashion as some communications overhead is involved.

These improvements will likely be folded into future R.versions.
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Scripting example for R and slurm

Being able to launch numerous R jobs in a parallel
environments is helped by the ability to 'script’ R.
Several simple methods existed to start R:

» R CMD BATCH file.R

» echo “commands” | R —-no-save

» R —no-save < file.R > file.Rout

These are suitable for one-off scripts, but may be too fragile for
distributed computing.
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Use scripting with r

The r command of the 1ittler package (as well as R’s
Rscript) provide more robust alternatives.
r can also be used four different ways:
» r file.R
» echo “commands” | r
» r —1Rmpi —e ’"cat ("Hello",
mpi.get.processor.name ())’

» and shebang-style in script files: #! /usr/bin/r

It is the last point that is of particular interest in this HPC
context.

Also of note is the availability of the getopt package on CRAN.
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slurm and snow

Having introduced snow, slurm and r, we would like to
combine them.
However, there is are problems:

» snow has a master/worker paradigm yet s1urm launches
its nodes symmetrically,

» slurm’s srun has limits in spawning jobs

» with srun, we cannot communicate the number of nodes
'dynamically’ into the script: snow’s cluster creation needs
a hardwired number of nodes
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slurm and snow solution

snow Solves the master / worker problem by auto-discovery
upon startup. The package contains two internal files
RMPISNOW and RMPISNOWprofile that use a combination of
shell and R code to determine the node idendity allowing it to
switch to master or worker functionality.

We can reduce the same problem to this for our R script:
ndsvpid <- Sys.getenv ("OMPI_MCA_ns_nds_vpid")

if (ndsvpid == "0") { # are we the master ?
makeMPIcluster ()
} else { # or are we a slave ?

sink (file="/dev/null")
slavelLoop (makeMPImaster ())
a()
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slurm and snow solution

For example
1| #!/usr/ binlenv r
2
3| suppressMessages (library (Rmpi))
4| suppressMessages (library (snow))
5
6| mpirank <— mpi.comm.rank(0) # just FYI
7| ndsvpid <— Sys.getenv("OMPI_MCA ns_nds_vpid")
8| if (ndsvpid == "0") { # are we master ?
9 cat("Launching master", ndsvpid, "\n")
10 cl <— makeMPIcluster ()

} else { # or are we a slave ?

12 cat("Launching slave", ndsvpid, "\n")
13 sink (file="/dev/null")

14 slaveLoop (makeMPImaster () )

15 q()

16| }

17| stopCluster(cl)
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slurm and snow solution

The example creates
$ orterun -H ron, joe -n 4 rMPIsnowSimple.r

Launching slave 2

Launching master 0

Launching slave 1

Launching slave 3

and we see that N — 1 workers are running with one instance
running as the coordinating manager node.
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salloc for snow

The other important aspect is to switch to salloc (which will
call orterun) instead of srun.

We can either supply the hosts used using the —w switch, or
rely on the slurm. conf file.

But importantly, we can govern from the call how many
instances we want running (and have neither the srun
limitation requiring overcommitting nor the hard-coded snow
cluster-creation size):

$ salloc -w ron,mccoy orterun -n 7 rMPIsnow.r

We ask for a s1urm allocation on the given hosts, and instruct
Open MPI to run seven instances.
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salloc for snow

#1/usr/ bin/env r

suppressMessages (library (Rmpi) )
suppressMessages (library (snow))

ndsvpid <— Sys.getenv("OMPI_MCA _ns_nds_vpid")

if (ndsvpid == "0") { # are we master ?
makeMPIcluster ()

} else { # or are we a slave ?
sink (file="/dev/null")
slaveLoop (makeMPImaster () )

a()

0 N O g~ W N =

w N = O O

}

## a trivial main body
cl <— getMPlIcluster ()
clusterEvalQ(cl, options("digits.secs"=3)) # show millisec
res <— clusterCall(cl, function() \

paste (Sys.info () [ "nodename"], format(Sys.time())))
print(do. call (rbind,res))
stopCluster(cl)

N = 4 a2
O © O N O U p

N
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salloc for snow

$ salloc -w ron, joe -n 7 rMPIsnow.r

salloc: Granted job allocation 8
[,1]

[1,] "joe 2008-12-19 21:18:08.787"

[2,] "ron 2008-12-19 21:18:08.997"

[3,] "joe 2008-12-19 21:18:08.771"

[4,] "ron 2008-12-19 21:18:09.011"

[5,]1 "joe 2008-12-19 21:18:08.781"
]

"ron 2008-12-19 21:18:09.014"
sall: Relinquishing job allocation 8
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A complete example

cl <-= NULL
ndsvpid <- Sys.getenv ("OMPI_MCA_ns_nds_vpid")

if (ndsvpid == "0") { # are we master?
cl <- makeMPIcluster ()
} else { # or are we a slave?

sink (file="/dev/null")
slaveLoop (makeMPImaster ())
a()
}
clusterEvalQ(cl, library (RDieHarder))
res <- parLapply(cl, c("mt19937","mt19937_1999",
"mt19937_1998", "R _mersenne_twister"),
function (x) {
dieharder (rng=x, test="operm5",
psamples=100, seed=12345,
rngdraws=100000)
})
stopCluster (cl)
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A complete example cont.

This uses RDieHarder to test four Mersenne-Twister
implementations at once.

A simple analysis shows the four charts and prints the four
p-values:

pdf ("/tmp/snowRDH.pdf")

lapply (res, function(x) plot (x))

dev.off ()

print ( do.call (rbind,
lapply (res, function(x) { x[[1]] }

Dirk Eddelbuettel Intro to High-Performance R @ BdC/BoC Dec 2008



Measure Vector Parallel OutOfMem Automation Explicitly Res.Management Implicity Example

A complete example cont.

$ salloc -w ron, joe —n 5 snowRDieharder.r

salloc: Granted job allocation 10

[,1]
[1,] 0.1443805247
[2,] 0.0022301018
[3,]7 0.0001014794
[4,] 0.0061524281

sall: Relinquishing job allocation 10
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Example summary

We have seen
» how 1ittler can help us script R tasks
» how Rmpi, snow and slurm can interact nicely
» a complete example using RDieHarder to illustrate these
concepts
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Extending physical RAM limits

Two fairly recent CRAN packages ease the analysis of large
datasets.

» f£f which maps R objects to files and is therefore only
bound by the available filesystem space

» bigmemory which maps R objects to dynamic objects not
managed by R

Both packages can use the biglm package for out-of-memory
(generalized) linear models.

Also worth mentioning are the older packages g.data for
delayed data assignment from disk, £ilehash which takes a
slightly more database-alike view by ’attaching’ objects that are
still saved on disk, and R . huge which also uses the disk to
store the data.
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biglm

The biglm package provides a way to operate on
‘larger-than-memory’ datasets by operating on ’chunks’ of data
at a time.
make.data <- function ... # see ’'help(bigglm)
dataurl <-
"http://faculty.washington.edu/tlumley/NO2.dat"
airpoll <- make.data(dataurl, chunksize=150, \
col.names=c ("logno2", "logcars", "temp", \
"windsp", "tempgrad", "winddir", "hour", "day")
b <- bigglm(exp (logno2)~logcars+temp+windsp, \
data=airpoll, family=Gamma (log), \
start=c(2,0,0,0),maxit=10)

)

summary (b)
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£ £ was the winner of the UseR! 2007 ’large datasets’
competition. It has undergone a complete rewrite for version
2.0 which was released in 2008. The following illustration (from
an example in the package) is for version 1.0 of £f and will not
run with version 2.*.
data ("trees")
# create ffm object, convert ’'trees’, creates files
m <- ffm("foom.f£f", c (31, 3))
m[1l:31, 1:3] <- trees[1:31, 1:3]
# create a ffm.data.frame wrapper around ffm object
ffmdf <- ffm.data.frame(m,c("Girth", "Height", "Volume"))
# define formula and fit the model
fg <- log (Volume) ~ log(Girth) + log(Height)
ffmdf.out <- bigglm(fg,data=ffmdf,

chunksize=10, sandwich=TRUE)
Running object.size () onthe f£f object shows that it

occupies less memory than the (puny) trees dataset.
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bigmemory

The bigmemory package allows us to allocate and access
memory managed by the operating system but 'outside’ of the
view of R.

> object.size( big.matrix(1000,1000, "double") )

[1] 372
> object.size( matrix (double (1000%x1000), ncol=1000) )
[1] 8000112

Here we see thatto R, a big.matrix of 1000 x 1000
elements occupies only 372 bytes of memory. The actual size
of 800 mb is allocated by the operating system, and R
interfaces it via an ’external pointer’ object.
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bigmemory cont.

We can illustrate bigmemory by adapting the previous

example:

bm <- as.big.matrix(as.matrix(trees), type="double")

colnames (bm) <- colnames (trees)

fg <= log(Volume) ~ log(Girth) + log(Height)

bm.out <- biglm.big.matrix(fg, data=bm, chunksize=10,\
sandwich=TRUE)

As before, the memory use of the new 'out-of-memory’ object is

smaller than the actual dataset as the ‘real’ storage is outside of

what the R memory manager sees.

bigmemory can also provide shared memory allocation: one
(large) object can accessed by several R process as proper
locking mechanisms are provided.
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littler

Both r (from the 1ittler package) and Rscript (included
with R) allow us to write simple scripts for repeated tasks.
#!/usr/bin/env r
# a simple example to install one or more packages
if (is.null(argv) | length(argv)<l) {
cat ("Usage: installr.r pkgl [pkg2 pkg3 ...]\n")
al)
}

## adjust as necessary, see help(’download.packages’)
repos <- "http://cran.us.r-project.org"
lib.loc <- "/usr/local/lib/R/site-library"
install.packages (argv, lib.loc,

repos, dependencies=TRUE)
If saved as install.r, we can call it via
$ install.r ff bigmemory

The getopt package makes it a lot easier for r to support
command-line options.
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Rscript

Rscript can be used in a similar fashion.

Previously we had to use
$ R —-slave < cmdfile.R

S cat cmdfile.R | R ——slave
$ R CMD BATCH cmdfile.R
or some shell-script varitions around this theme.

By providing r and Rscript, we can now write 'R scripts’ that
are executable. This allows for automation in cron jobs,
Makefile, job queues, ...
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RPy

0 N O g s W NN =

0 N O O~ WN = O O

RPy packages provides access to R from Python:

from rpy import x
set_default_mode(NO_CONVERSION) # avoid automatic conversion
r.library ("nnet")
model = r("Fxy~x+y")
df = r.data_frame(x = r.c(0,2,5,10,15)
,y = r.c(0,2,5,8,10)
,Fxy = r.c(0,2,5,8,10))
NNModel = r.nnet(model, data = df

, size =10, decay =1e-3

, lineout=True, skip=True

, maxit=1000, Hess =True)
XG = r.expand_grid(x = r.seq(0,7,1), y = r.seq(0,7,1))
X r.seq(0,7,1)
y = r.seq(0,7,1)

set_default_mode(BASIC_CONVERSION) # automatic conv. back on
fit = r.predict (NNModel,XG)
print fit
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Wrapping up

In this tutorial session, we have

| 4

>

seen several ways to profile execution times;

looked a different vectorisation examples, as well speed
increases from using compiled code;

provided an introduction to parallel execution frameworks
such as Nws, MPI and snow as well as the slurm
resource managers;

briefly looked at packages such as ff and bigmemory
that can help with larger data sets;

briefly looked at ways to script R tasks using 1ittler and
Rscript
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Wrapping up

More questions ?

» A good new resource is the mailing list r—-sig-hpc.

» And don’t hesitate to email me at
dirk@eddelbuettel.com
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