1L ILLINOIS

http://dirk.eddelbuettel.com/papers/chirug_nov2019_rocker.pdf

TODAY'S TALK

Brief Outline

- Docker Intro: Appeal of Containers, “Lego” blocks, ...
- Brief Overview of Docker and its commands
- Building and Customizing via two “blogged” examples

- Debug with gcc-9 on macOS

- Easy installation of “heavy” packages

- Going Further: More about Rocker

Rocker, Nov'19 2/55

A Personal Timeline

- Docker itself started in 2013

- | started experimenting with it around spring of 2014

- Was convinced enough to say ‘will change how we build and
test’ in keynote at useR! 2014 conference in mid-2014

- Started the Rocker Project with Carl Boettiger fall 2014

- Gave three-hour tutorial at useR! in 2015

- Active development of multiple (widely-used) containers

- Introductory paper in R Journal, 2017

Rocker, Nov'19 3/55

http://dirk.eddelbuettel.com/papers/useR2014_keynote.pdf
http://rocker-project.org
http://dirk.eddelbuettel.com/papers/useR2015_docker.pdf
https://journal.r-project.org/archive/2017/RJ-2017-065/index.html

ROCKER PROJECT

Rocker Project - Mozilla Firefox
£~ Rocker Project

&« ¢ @ D& heep ww.rocker-project.org

Rocker Project A HomE [0 imaces &% use -

The Rocker Project

Docker/Containers for the R Environment.

Source: https://www.rocker-project.org

Rocker, Nov'19

https://www.rocker-project.org

ROCKER PAPER

<«

R Anntroduction to Roc:

cC @

Navigation
Current Issue
Accepted articles
Archive

RNews

News and Notes
Submissions
Reviews and
Proofreading
Editorial Board

Subscribe
RSS Feed &
ISSN: 2073-4859

An Introduction to Rocker... The R Journal - Mozilla Firefox

ournal.r-project.org/arc

The R Journal: article published in 2017, volume 9:2

An Introduction to Rocker: Docker Containers for R (fh

Carl Boettiger and Dirk Eddelbuettel , The R Journal (2017) 9:2, pages 527-536.

Abstract We describe the Rocker project, which provides a widely-used suite of Docker images with
customized R environments for particular tasks. We discuss how this sulte is organized, and how these
tools can Increase portabilty, scaling, reproducibit, and convenience of R users and developers
Received: 2017-10-12; online 2017-11-27

CRAN packages: packrat, rhub, tidyverse
CRAN Task Views implied by cited CRAN packages: ReproducibleResearch

This article is licensed under a Creative Commons Attribution 4.0 International license.

Source: https://journal.r-project.org/archive/2017/R3-2017-065/index.html

Rocker, Nov'19

i @

555

https://journal.r-project.org/archive/2017/RJ-2017-065/index.html

ROCKER PAPER

CONTRIBUTED RESEARCH ARTICLE 527

An Introduction to Rocker: Docker
Containers for R

by Carl Boettiger, Dirk Eddelbuettel

Abstract We describe the Rocker project, which provides a widely-used suite of Docker images with
customized R environments for particular tasks. We discuss how this suite is organized, and how these

tools can increase portability, scaling, and of R users and develop

Introduction

The Rocker project was launched in October 2014 as a collaboration between the authors to provide
high-quality Docker images containing the R environment (Boettiger and Eddelbuettel, 2014). Since
that time, the project has seen both considerable uptake in the community and substantial development
and evolution. Here we seek to document the project’s objectives and uses.

What is Docker?

Docker is a popular open-source tool to create, distribute, deploy, and run software applications
using containers. Containers provide a virtual environment (see Clark et al. (2014) for an overview of
common virtual requiring all op needs to
run. Docker containers are lightweight as they share the operating system kernel, start instantly using
alayered filesystem which minimizes disk footprint and download time, are built on open standards
that run on all major platforms (Linux, Mac, Windows), and provide an added layer of security by
running an application in an isolated environment (Docker, 2015). Familiarity with a few key terms is
helpful in understanding this paper. The term “container” refers to an isolated software environment
on a computer. R users can think of running a container as analogous to loading an R package; a
container is an active instance of a static Docker image. A Docker “image” is a binary archive of that
software, analogous to an R binary package: a given version is downloaded only once, and can then
be “run” to create a container whenever it is needed. A “Dockerfile” is a recipe, the source-code, to
create a Docker image. Pre-built Docker images are publicly available through Docker Hub, which
plays a role for central distribution similar to CRAN in our anal lngy Development and contributions
to the Rocker project focus on the of these Dockerfiles.

Source: https://journal.r-project.org/archive/2017/R3-2017-065/index.html
Rocker, Nov'19 6/55

https://journal.r-project.org/archive/2017/RJ-2017-065/index.html

So what is it?

- Think of its ‘containers’ as something portable like a zipfile
- A'container’ allows you to execute code based on what is in it
- Portable: same container used on Linux, Window, macOS
- However this really shines on Linux:
- as it requires only a very thin layer above the operating system
- on macOS and Windows intermediating layer has to be provided
- heavy usage in cloud deployments
- Still, what is phenomenal are the
- portability
- encapsulation
- security

- reproducibility
Rocker, Nov'19 7/55

DOCKER INTRO

What Is a Container? | Docker - Google Chrome
& Whatis a Contai

€ > C @ https//www.docker.com/resourc

Q. Product Support Company Partners ContactUs Signin

Wdocker WhyDocker? Products Solutions Customers Resources

What is a Container?

A standardized unit of software

Source: https://www.docker.com/resources/what-container

Rocker, Nov'19

https://www.docker.com/resources/what-container

DOCKER INTRO

Containerized Applications

Docker

Host Operating System

Package Software into
Standardized Units for
Development, Shipment and
Deployment

A container is a standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one computing
environment to another. A Docker container image is a lightweight, standalone,
executable package of software that includes everything needed to run an
application: code, runtime, system tools, system libraries and settings.

Container images become containers at runtime and in the case of Docker containers
- images become containers when they run on Docker Engine. Available for both
Linux and Windows-based applications, containerized software will always run the
same, regardless of the infrastructure. Containers isolate software from its
environment and ensure that it works uniformly despite differences for instance
between development and staging

Docker containers that run en Docker Engine:

+ Standard: Docker created the industry standard for containers, so they could be
portable anywhere

Lightweight: Containers share the machine's OS system kernel and therefore do
not require an OS per application. driving higher server efficiencies and reducing
server and licensing costs

Secure: Applications are safer in containers and Docker provides the strongest
default isolation capabilities in the industry

Source: https://www.docker.com/resources/what-container

Rocker, Nov'19

9/55

https://www.docker.com/resources/what-container

DOCKER INTRO

Docker Containers Are

Everywhere: Linux,

Windows, Data center,)
Cloud, Serverless, etc. Docker Today @

Docker container technology was launched in 2013 as an open source
Docker Engine.

= _O

Datacenter Cloud

It leveraged existing computing concepts around containers and
specifically in the Linux world, primitives known as cgroups and
namespaces. Docker's technology is unique because it focuses on the
requirements of developers and systems operators to separate

application dependencies from infrastructure.

Success in the Linux world drove a partnership with Microsoft that
brought Docker containers and its functionality to Windows Server
(sometimes referred to as Docker Windows containers).

Technology available from Docker and its open source project, Moby
has been leveraged by all major data center vendors and cloud
providers. Many of these providers are leveraging Docker for their
container-native laa$ offerings. Additionally, the leading open source
serverless frameworks utilize Docker container technology.

Source: https://www.docker.com/resources/what-container

Rocker, Nov'19 10/55

https://www.docker.com/resources/what-container

DOCKER INTRO

Comparing Containers and Virtual Machines

Containers and virtual machines have similar resource isolation and allocation benefits, but
function differently because containers virtualize the operating system instead of hardware.
Containers are more portable and efficient.

Containerized Applications Virtual Machine | | Virtual Machine | | Virtual Machine

Guest Guest Guest
Operating Operating Operating
System System System

Host Operating System

Infrastructure

Infrastructure

Source: https://www.docker.com/resources/what-container

Rocker, Nov'19 11/55

https://www.docker.com/resources/what-container

DOCKER IN SIMPLEST TERMS

Simplifying Somewhat:
- A container can run a single process

- (as opposed to a virtual machine behaving more like a whole
computer system)

- So it helps to think of Docker encapsulating a single command
- (though that command may spawn more commands)
- Docker containers can be orchestrated and combined

- each container can provide its services on a network port

- common pattern may be one for database, one for webserver, ...)

Rocker, Nov'19 12/55

DOCKER ‘TERMINOLOGY’

Some Informal Definitions

- Image is a provided Docker run-time; can be built locally or
downloaded

- Container is (possibly) stateful instance of a container, either
running or suspended

- We will be a little sloppy and use container and image
interchangeably

- On the hand, a virtual machine, on the hand, tends to be a
heavier software layer provide a full virtual system. VMware and

VirtualBox are two well-known systems.

Rocker, Nov'19 13/55

DOCKER: BASIC COMMANDS

Rocker, Nov'19 14/55

DoCKER COMMANDS

Basic commands
- docker help lists the available commands
- docker images lists installed images
- docker run runs a container (with extra args, see below)
- docker ps shows currently running containers

- docker pull someuser/somecontainer:version

imports container (version optional; latest is default)
- docker build to create a new container
- docker rm container removes a container

- docker rmi imageid removes an image

Rocker, Nov'19 15/55

DoCKER COMMANDS

docker images
- list installed containers, versions, sizes
- very helpful for quick overview

- can also list sub-sets per repository and/or tag

Rocker, Nov'19 16/55

DoCKER COMMANDS

docker run

- Bread and butter command to use Docker

- Common arguments
- --rmto remove artifacts after run (“clean up”)
- -ti to add terminal and interactive use
- -v LocalDir:MountedDir to make local dir available
- -w WorkDir to switch to workdir
- -p 8787:8787 to publish container port 8787 as host port 8787
- container/tag:version
- cmdline arguments for container application

- plus many more options so see documentation

- When named container is not locally installed it is pulled

Rocker, Nov'19 17/55

DoCKER COMMANDS

docker pull (and docker commit)
- Main command to obtain images from repository / registry
- By default uses hub.docker.com / cloud.docker.com registries

- Note that pulled containers can be altered and saved via

docker commit

Rocker, Nov'19 18/55

DoCKER COMMANDS

docker pull (and docker commit)
- Main command to obtain images from repository / registry
- By default uses hub.docker.com / cloud.docker.com registries

- Note that pulled containers can be altered and saved via

‘docker commit’

Rocker, Nov'19 19/55

DoCKER COMMANDS

docker build
- Principal command to create new images

- Containers are ‘layered”:

- easy to start from existing container making small change
- creating new augmented or adapted container

- Input is a text file Dockerfile

- Many tutorials available to get started

Rocker, Nov'19 20/55

USE CASE ILLUSTRATIONS

Rocker, Nov'19 21/55

SIMPLE DOCKER EXAMPLES

Use multiple R versions

- E.g. test an R package against multiple R releases

- test code against current and development versions of tools

- access to different R versions via different r-base containers
- just specify different tags for different R versions

- (Rocker also has another stack for explicitly versioned images)

$ docker run --rm -ti r-base:latest R --version | head -1
R version 3.6.1 (2019-07-05) -- "Action of the Toes”

$ docker run --rm -ti r-base:3.5.3 R --version | head -1
R version 3.5.3 (2019-03-11) -- ”"Great Truth”

$ docker run --rm -ti r-base:3.4.2 R --version | head -1
R version 3.4.2 (2017-09-28) -- "Short Summer”

$

Rocker, Nov'19 22/55

SIMPLE DOCKER EXAMPLES

Test against development versions
Sometimes we want to test against new development versions
- These versions may still be unfinished and undergo changes

- This makes using them in a ‘sandbox’ ideal — great container use

edd@rob:~$ docker run --rm -ti rocker/drd:latest RD --version | head -4

R Under development (unstable) (2019-11-23 r77455) -- "Unsuffered Consequences”
Copyright (C) 2019 The R Foundation for Statistical Computing

Platform: x86_64-pc-linux-gnu (64-bit)

edd@rob:~$
(This shows the November 23 sources of R-devel. So with very little effort we get access to recent
development versions—as the container builds are triggered weekly by a a crontab entry invoking a

web trigger at hub.docker.com.)

Rocker, Nov'19 23/55

https://hub.docker.com

SIMPLE DOCKER EXAMPLES

Test with special versions
- We have R containers for ‘undefined behavior sanitizer’ (UBSAN)

- This uses R built with particular compilation options which can

detect ‘undefined behavior’

- Similarly, R has another checker ‘rchk’ = and a container

Rocker, Nov'19 24/55

MOTIVATING EXAMPLES

Rocker, Nov'19 25/55

DEBUGGING WITH NEWER / DIFFERENT TOOLCHAINS

@ Thinking inside the box

< C ® Notsecure | dirkeddelbuettel.com/blog/code; £ €0 (-]

Dirk Eddelbuettel 8iog Code Publications Talks Other

Mon, 05 Aug 2019

#23: Debugging with Docker and Rocker — A Concrete Example helping on macOS

Welcome to the 23nd post in the rationally reasonable R rants series, or R* for short. Today's post was motivated by an exchange on the r-devel
list earlier in the day, and a few subsequent off-list emails.

Roger Koenker posted a question: how to best debug an issue arising only with gfortran-9 which is difficult to get hold off on his macos
development platform. Some people followed up, and I mentioned that | had good success using Docker, and particularly our Rocker containers—
and outlined a quick mini-tutorial (which had one mini-typo lacking the imporant slash in -w /work). Roger and | followed up over a few more
off-list emails, and by and large this worked for him.

S0 what follows below is a jointly written / edited ‘mini HOWTO" of how to deploy Docker on macOS for debugging under particular toolchains
more easily available on Linux. Windows and Linux use should be very similar, albeit differ in the initial install. In fact, I frequently debug or test in
Docker sessions when | do not want to install on my Linux host system. Roger sent one version (I had also edited) back to the list. What follows is
my final version

Debugging with Docker: Getting Hold of Particular Compilers

Context: The quantreg package was seen exhibiting errors when compiled with gfortran-9 . The following shows how to use gfortran-9 on
macOS by virtue of Docker. It is written in Roger Koenker's voice, but authored by Roger and myself,

With extensive help from Dirk Eddelbuettel | have installed docker on my mac mini from
https://hub.docker . con/editions/conmunity/docker- ce-desktop-mac

which installs from a dmg in quite standard fashion. This has allowed me to simulate running R in a Debian environment with gfortran-9 and begin
the process of debugging my ancient rgbr.f code.

Some further details

Step 0: Install Docker and Test

Install Docker for macOS following this Docker guide. Do some initial testing, e.g.

docker --version
docker run hello-world

W3 ®in &N -

Rocker, Nov'19 26/55

DEBUGGING WITH NEWER / DIFFERENT TOOLCHAINS

Context

- Roger Koenker gets CRAN email about issue with a new compiler
- He works on macOS without easy access to new gcc versions

- Building gcc from source a bit painful

- But what if we could just run it ?

- | email Roger, give some pointers and hints ...

- .. and he fixed the issue

- So we wrote a blog post

Rocker, Nov'19 27/55

http://dirk.eddelbuettel.com/blog/2019/08/05#023_rocker_debug_example

DEBUGGING WITH NEWER / DIFFERENT TOOLCHAINS

More detail (see the blog post for more)

- Step 0: Get Docker installed (which is easy-ish on mac/win/lin)
- Step 1: Install Rocker’s r-base container with current R
- Step 2: Use Docker options -vO:I -wI to
- map ‘outer’ dir O, say, ~/proj/abc to ‘inner’ |, say /work
- start Docker session in ‘inner’ dir, say /work
- Step 3: Update with apt, install gcc-9 + gfortran-9
- Step 4: Deal with build dependencies for the package
- Step 5: Set compiler flags in ~/.R/Makevars
- Step 6: Install R source package in question (here: quantreg)
- Step 7: Debug issue at hand and solve problem

Rocker, Nov'19 28/55

http://dirk.eddelbuettel.com/blog/2019/08/05#023_rocker_debug_example
https://cran.r-project.org/package=quantreg

USING ROCKER WITH PPAS

© Wb nHE R *

< C ® Notsecure | dirk.eddelbuettel.com/blog/code/ra/ * = v 0 "G £ 40 @

Dirk Eddelk | Blog Code Talks Other

Sun, 09 Jun 2019

#22: Using Rocker and PPAs for Fun and Profit
Welcome to the 22nd post in the reasonably rational R recommendations series, or R* for short

“This post premieres something new: a matching vide in lightning talk style:

‘G R4 Video #1: Using Rocker with PPAs fo... [i
Watch later®, Saré

The topic is something we had mentioned a few times before in this *4 blog series, for example in this post on finding deb packages as well as in
this post on binary installations. Binaries rocks, where available, and Michael Rutter's PPAS should really be known and used more widely. Hence
the video and supporting slides

Icodelra | permanent link

W 3G

Y >

Rocker, Nov'19 29/55

DEBUGGING WITH NEWER / DIFFERENT TOOLCHAINS

More detail
- This illustrates what we touched upon earlier
- Installing, say, r-cran-rstan from binary is
- asingle and fast step
- as opposed to compiling from source
- Another famous example also shown: r-cran-tidyverse
- Several blog posts describe approaches
- “Seeing is believing” so | made a video and slides
- Video demonstrates installation “live” and backed by slides

Rocker, Nov'19 30/55

DETAILED EXAMPLE: RSTAN

Rocker, Nov'19 31/55

RSTAN

We fire up our r-base container for a working basic R installation:

eddarob:~$ docker run --rm -ti r-base

R version 3.5.3 (2019-03-11) -- "Great Truth”
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or

‘help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

Rocker, Nov'19 32/55

RSTAN

Interactively, we ask R to install rstan

> install.packages(”rstan”)

Installing package into ‘/usr/local/lib/R/site-library’
(as ‘lib’ is unspecified)
‘stringr’, ‘labeling’, ‘munsell’, ‘RColorBrewer’, ‘fansi’, ‘pillar’, ‘pkgconfig’,
‘backports’, ‘processx’, ‘assertthat’, ‘magrittr’, ‘digest’, ‘gtable’, ‘lazyeval’,
‘plyr’, ‘reshape2’, ‘rlang’, ‘scales’, ‘tibble’, ‘viridisLite’,

‘matrixStats’, ‘checkmate’, ‘callr’, ‘cli’, ‘crayon’,
‘rprojroot’, ‘ggplot2’, ‘StanHeaders’,

‘pkgbuild’, ‘RcppEigen’, ‘BH’

‘withr’,
‘desc’, ‘prettyunits’, ‘R6’,

‘inline’, ‘gridExtra’, ‘Rcpp’, ‘loo’

trying URL 'https://cloud.r-project.org/src/contrib/glue_1.3.1.tar.gz’
Content type 'application/x-gzip' length 122950 bytes (120 KB)

downloaded 120 KB

trying URL 'https://cloud.r-project.org/src/contrib/stringi_1.4.3.tar.gz
Content type 'application/x-gzip' length 7290890 bytes (7.0 MB)

downloaded 7.0 MB

[... many more downloads omitted ...]

Rocker, Nov'19 33/55

RSTAN

We ask R to install rstan (continued)

[... quite a bit of compilation later ...]

g++ -std=gnu++14 -shared -L/usr/lib/R/1lib -Wl,-z,relro -o rstan.so chains.o init.o lang__ast_def.o
lang__grammars__bare_type_grammar_inst.o lang__grammars__expression07_grammar_inst.o
lang__grammars__expression_grammar_inst.o lang__grammars__functions_grammar_inst.o
lang__grammars__indexes_grammar_inst.o lang__grammars__program_grammar_inst.o
lang__grammars__semantic_actions.o lang__grammars__statement_2_grammar_inst.o
lang__grammars__statement_grammar_inst.o lang__grammars__term_grammar_inst.o
lang__grammars__var_deccls_grammar_inst.o lang__grammars__whitespace_grammar_inst.o misc.o
pointer-tools.o sparse_extractors.o stanc.o -L/usr/lib/R/1ib -1R

installing to /usr/local/lib/R/site-library/rstan/libs
%% R

*% inst

#% byte-compile and prepare package for lazy loading
% help

#%% installing help indices

**% copying figures

#% building package indices

#% installing vignettes

#% testing if installed package can be loaded

* DONE (rstan)

The downloaded source packages are in ‘/tmp/Rtmpo38sEq/downloaded_packages’
>

Rocker, Nov'19 34/55

We ask R to install rstan (continued)

> library(rstan)

Loading required package: ggplot2

Use suppressPackageStartupMessages() to eliminate package startup
messages.

Loading required package: StanHeaders

rstan (Version 2.18.2, GitRev: 2e1f913d3ca3)

For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).

To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)

>

Now we run rstan in this interactive R session. Can we persist it?

Rocker, Nov'19

35/55

We are in a docker container. Let's ask docker ps:

eddarob:~$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

b236f06518b5 r-base "R" 29 minutes ago Up 29 minutes loving_neumann

eddarob:~$

eddarob:~$ docker commit --author "<dirkdeddelbuettel.com>” --message "rstan demo container” \
b236f06518b5 local-rstan ## continer id here key, refers back to the running container

sha256:d72f105b396ff99400618b2d527332af2ab5fasb4s5ce88ea7aaa7a5e813a9c87

eddarob:~$

edd@rob:~$ docker images | grep stan

local-rstan latest d72f105b396f 19 seconds ago 1.23GB

eddarob:~$

So docker commit can create a new container image under a new

name — perfect for interactively modifying containers.

NB: Some whitespace removed, and lines reindented for display

Rocker, Nov'19 36/55

Run the new one

edd@rob:~$ docker run --rm -ti local-rstan

R version 3.5.3 (2019-03-11) -- "Great Truth”
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

We containerized an

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTML browser interface to help.

Type 'q()' to quit R. application!

> library(rstan)

Loading required package: ggplot2

Loading required package: StanHeaders

rstan (Version 2.18.2, GitRev: 2e1f913d3ca3)

For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).

To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)

>

Rocker, Nov'19 37/55

ALTERNATIVE: USE A DOCKERFILE

Rocker, Nov'19 38/55

A ‘Dockerfile’ is the standard way to build a container

Start from rocker's r-base or official r-base
FROM rocker/r-base:latest

Handle for maintainer; these days using LABEL is preferred
MAINTAINER "Dirk Eddelbuettel” dirk@eddelbuettel.com

Install rstan (downloads and builds all dependencies)
RUN Rscript -e 'install.packages(”rstan”)'

Make R the default
CMD [an]

Rocker, Nov'19 39/55

Building it

- Usually in a directory containing a Dockerfile
docker build --tag rocker-rstan

- Lots of other options
- Once built we can push to a repository

- Excellent alternative:

- Dockerfile at GitHub
- Build setup at cloud.docker.com (or hub.docker.com)
- Automatic build and provisioning by Docker

Rocker, Nov'19 40/55

DOCKERFILE

Building it from .deb binaries — “Lego” again as we reuse binaries
A useful (if little known) alternative is to lean on the binaries
Mentioned in my blogposts from Dec 2017 and June 2019

- Simpler, faster & more failsafe as binaries and deps pre-built

Start from Rocker container bsaed around Rutter PPAs
FROM rocker/r-ubuntu:18.04

Handle for maintainer; these days using LABEL is preferred
MAINTAINER "Dirk Eddelbuettel” dirkaeddelbuettel.com

Update and install rstan -- from binary
RUN apt-get update && apt-get install -y --no-install-recommends r-cran-rstan

Make R the default
cMD ["R"]

Rocker, Nov'19 41/55

http://dirk.eddelbuettel.com/blog/2017/12/22#014_finding_binary_deb_packages
http://dirk.eddelbuettel.com/blog/2019/06/09#022_rocker_and_ppas

More to know
- You can include multiple RUN commands:
- each produces a separate ‘layer’ cached during build
- layers are applied consecutively and can be reused
- Other arguments:

- COPY to transfer file from build area into container
- ENV to set environment variables
- PORT to provide network access to a given port
(great for ‘backend’ services like databases or other servers)

- ...and much much more

- More details at Best practices for writing Dockerfile

Rocker, Nov'19 42/55

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

DOCKER HUB / DOCKER CLOUD

Rocker, Nov'19 43/55

DOCKER HUB / DOCKER CLOUD

Clould Support for Building Docker Containers
- Branding is a little inconsistent and flips back and forth

- But in essence another excellent and free service:

- Create a repo on GitHub
- Create an account Docker Hub / Docker Cloud
- Define an automated build linking Docker Hub to GitHub

- Then (easiest setting) each commit at GitHub triggers new build

- Very useful (though at times ‘laggy’ / buys queue)

Rocker, Nov'19 4455

DOCKER HUB / DOCKER CLoOUD: GITHUB REPO

1 reppmipack / reppmipack2 Oumatcn~ 8 Kswr | 2 Yrok s

© Code Issues 4 Pul requests o Projects o Wiki Insights Settings
Sranch master ~ | reppmipack2 / docker / i/ Dockerfile

Finafile | Copy path

B8 -cetuetiol move Docketi o dockerei 4892880 on Sap 12,2018

24 1ines (19 sloc) = 736 Bytes Raw Blame History ¢ i

con/reppmlpack” \
Fk Eddelbusttel <eddgdebian.org>"

RUN apt-get update \
&8 apt-get install -y --no-install-recommends \

11bboost -progran-opt1ons-dev \
1ibboost-serialization-dev \
1ibboost-test-dev \
r-cran-repp \
r-cran-repparmadillo \

_R_CHECK_FORCE_SUGGESTS_=FALSE > -/ .R/check.Renviron

D ["bash"]

Rocker, Nov'19

GitHub source
repository (for R
package requiring
external MLPACK
machine learning
library) with
definition for
Dockerfile used for
testing same
repository.

45/55

DOCKER HUB / DOCKER CLOUD: DOCKER HUB

Simple Docker Hub

e - setup to tie

‘We made some changes to our autobuilds. Learn more.

automatic builds to

2) e ; a GitHub repository.

NOTE: Changing source reposiory may affect existing buld rules.

© reppmipack

More complicated
oTEST ® off
O intemal PullRequests

dependency-

O ntemal an Exteml Pl Reguests

© triggered builds also

O Enatie orBase mage D

possible.

» View example build rules

Rocker, Nov'19 46/55

DOCKER HUB / DOCKER CLOUD: USE IN TRAVIS ClI

D reppmipack / reppmlpack2 Oumaen o | dswr 2 Yrom o In essence, we use

© Code Issues 4 Pull requests o Projects 0 Wiki Insights. Settings

the Docker container

anch master ~ | rcppmipack2 / travis.yml Findfle Copy path

(defined in this repo
T but built by the
Docker Hub) to run

1) coeuetet T via ocke

1 contrbutor

30 lines (23 sloc) 703 Bytes

continuous
integration via Travis

nanual® C |
S{DOCKER_CNTR)
X

DOCKER_OPTS) S{DOCKER_CNTR} r -p -e 'sessionnfo()"

docker run S{DOCKER_OPTS) S{DOCKER_CNTR) R CHD build ${R_BLO_CHK 0PTS)

run S{DOCKER_OPTS) S{DOCKER_CNTR) R CHD check S(R_BLD_CHK OPTS) ReppMLPACK_*.tar.gz

Rocker, Nov'19 47/55

ROCKER USE CASES

Rocker, Nov'19 48/55

CONTAINERIZATION

Some Examples

- ‘Difficult’ or ‘Large’ Things: Rocker Project has long maintained

large ‘tidyverse’, geospatial, ... containers and more
- ‘Applications’ as for example RStudio Server or Shiny Server

- ‘Frameworks’ adding Machine Learning / Tensorflow containers

Rocker, Nov'19 49/55

REPRODUCIBILITY

Some Examples

- One key part of Rocker are the versioned containers using the
snapshot ‘MRAN’ archive provided by Microsoft

- This gives the ability to ‘freeze’ a container with software at a
given release point

- Reproducibility: ‘turn research study into container’; and
containerit does that

- Using mybinder.org is another possibily using holepunch

Rocker, Nov'19 50/55

http://o2r.info/ctv-computational-environments
https://karthik.github.io/holepunch/

OTHER TOPICS

Rocker, Nov'19 51/55

MORE DOCKER

Things we did not cover

- Composition: Orchestrating multiple containers has become a
big topic, Kubernetes is a key application here (cf. next talk)

- Docker variants and spin-offs: containerd is part of the
Docker backend and has been spun off; there is a fair amount

going on but Docker has first-mover advantage and mind-share

- Docker for science: a somewhat simpler approach called
singularity has made inroads

- And much much more...

Rocker, Nov'19 52/55

LEARN MORE ABOUT DOCKER

Some Pointers
- A Docker 101 course
- Several usage samples
- R on Docker tutorial from rOpenSci
- My (possibly dated in parts) three hour tutorial from useR! 2015

- For Rocker: Boettiger and Eddelbuettel, 2017, RjJournal

Rocker, Nov'19 53/55

https://github.com/docker/labs/tree/master/beginner/
https://docs.docker.com/samples/
http://ropenscilabs.github.io/r-docker-tutorial/
http://dirk.eddelbuettel.com/papers/useR2015_docker.pdf
https://journal.r-project.org/archive/2017/RJ-2017-065/index.html

LEARNING BY DOING

12 Thursday, December 12, 2019
> Hands-on Workshop: Introduction to Docker
for Developers

Hosted by

‘acke Moby Dock

Details

https://events.docker.com/events/details/docker-chicago-presents-hands-on
workshop-introduction-to-docker-for-developers/

Join us for the Chicago local edition of this season’s global hands-on

workshop series! Food and drinks will be provided! Bring your laptop and
#LearnDocker. There will be swag!

Rocker, Nov'19

Docker has (or had)
some meetups in
Chicago; this is AFAIK
the first in a while.

Give it a go!

54/55

THANK YOU!

slides http://dirk.eddelbuettel.com/presentations/
web http://dirk.eddelbuettel.com/
mail dirkaeddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

Rocker, Nov'19 55/55

http://dirk.eddelbuettel.com/presentations/
http://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Docker: Basic Commands
	Use Case Illustrations
	Motivating Examples
	Detailed Example: rstan
	Alternative: Use a Dockerfile
	Docker Hub / Docker Cloud
	Rocker Use Cases
	Other Topics

