RELIABLE REPRODUCIBLE
RESEARCH VIA CONTAINERS

FROM THE ROCKER PROJECT

Dirk Eddelbuettel
Data Science, Statistics & Visualization 2020

29 July 2020

l l LLI N o I s https:/ /dirk.eddelbuettel.com/papers/dssv2020_rocker.pdf

https://dirk.eddelbuettel.com/papers/dssv2020_rocker.pdf

OUTLINE

Rocker @ DSSV 2020 2/66

TODAY'S TALK

- Brief Bio
- What is Docker? How can | use it?
- What does Rocker do? What does it offer?

- Some general thoughs on Reproducibility

Rocker @ DSSV 2020 3/66

My BACKGROUND

Now

- At TileDB creating Universal Data Engine (esp. the R parts)
- Ad]. Clinical Professor at Illinois: Data Science Progr. Methods

Previously

- 20+ years in quantitative research, development, trading

But Also

- Rather involved with Open Source for 25+ years
- i.e. as a Debian Developer building a Linux distribution
- And R packages, Rocker, R Foundation Board, JSS, ...

Rocker @ DSSV 2020 4/66

https://tiledb.com
https://stat430.com

BRIEF DETOUR

Key Points of Debian Experience
- Centered around package management that simply works
- No dependency hell whatsoever
- components can be added
- or removed fluidly
- Constructing “state”: reliable, repeatable, reproducible
- Interesting other sub-parts: reproducible builds
- This has spread to many other distributions

Rocker @ DSSV 2020 5/66

DOCKER

My Journey

- The Debian experience of (then nearly 20 years) left a mark
- We had something that was technically excellent

- ... yet not widely used (on desktops/laptops)

- Virtual machines were an alternative, but clunky

- Enters Docker (in late 2013 / early 2014)

Rocker @ DSSV 2020 6/66

DOCKER

My useR! 2014 keynote
- Carved out 10 at the end of a talk (mostly on Rcpp)
- Predicted "will change how we build / test / deploy”
- At that prediction held up well as these decays
- Continuous Integration / Cloud Deployments pervasive
- Just about every service is (primarily) Linux based
- So we

- still “lost” the desktop
- but “won” compute infrastructure (“cloud”)
- and this has reproducibility implications

Rocker @ DSSV 2020 7/66

SO WHAT ARE DOCKER AND ROCKER?

Rocker @ DSSV 2020 8/66

MOTIVATION

Programming Inside a container - Daniel Lemire’s blog - Google Chrome

Programming insideaco. x | +

@ C & lemireme/blog/2020/05/22/programming-inside-a-container/ € Rps MO IO :

Programming inside a
container

Thave a small eollection of servers, laptops and desktops. My servers
were purchased and configured at different times. By design, they
have different hardware and software configurations. 1 have
processors from AMD, Intel, Ampere and Rockehip. T have a wide
Tange of Linux distributions, both old and new. 1 also mostly manage

My home page

everything myself, with some help from our lab technician for the
A papers initial setup.
M; ftware

The net result is that sometimes end up with very interesting
systems that are saddled with old Linux distributions. Reinstalling
Linux and keeping it safe and secure is hard. Furthermore, even if 1
update my Linux distributions carefully, I may end up with a
different Linux distribution than my collaborators, with a different

SUBSCRIBE

compiler and so forth. Installing multiple different compilers on the
same Linux distribution is time consuming.

WHERE TO FIND ME? So what can you do instead?

Source: https://lemire.me/blog/26020/05/22/programming-inside-a-container/
Rocker @ DSSV 2020 9/66

https://lemire.me/blog/2020/05/22/programming-inside-a-container/

MOTIVATION

Excellent discussion by Daniel Lemire

The idea of a container approach is to always start from
a pristine state. So you define the configuration that your
database server needs to have, and you launch it, in this
precise state each time. This makes your infrastructure
predictable.

We can of course substitute “predictable” with “reproducible” ...

Rocker @ DSSV 2020 10/66

ON IN SIMPLER TERMS:

Rocker @ DSSV 2020 11/66

https://commons.wikimedia.org/wiki/File:3_D-Box.jpg

ON IN SIMPLER TERMS:

Source: https://commons.wikimedia.org/wiki/File:3_D-Box.jpg

Rocker @ DSSV 2020 11/66

https://commons.wikimedia.org/wiki/File:3_D-Box.jpg

ON IN SIMPLER TERMS:

Docker is “a box”

- Standardized shape and form, identical for everyone

- “Take it anywhere, useable by everyone”

- Genius of “if someone can run a box they can run your box”

- Examples of running
- RStudio Server on OS that RStudio does not provide it for (1)
- Shiny Server on an OS that RStudio does not provide it for (I!)
- standardized setups for colleagues, Pls, students, ...

Rocker @ DSSV 2020 12/66

DOCKER

Rocker @ DSSV 2020 13/66

DOCKER: SO WHAT IS IT?

Rocker @ DSSV 2020 14/66

DOCKER: SO WHAT IS IT?

- Think of its ‘containers’ as something portable like a zipfile
- A‘container’ allows you to execute code based on what is in it
- Portable: same container used on Linux, Window, macQOS

Rocker @ DSSV 2020 14/66

DOCKER: SO WHAT IS IT?

- Think of its ‘containers’ as something portable like a zipfile
- A‘container’ allows you to execute code based on what is in it
- Portable: same container used on Linux, Window, macQOS

- However this really shines on Linux:
- it requires only a very thin layer above the operating system
- macOS & Windows need intermediating layer via VM
- hence very heavy Linux usage in cloud deployments

Rocker @ DSSV 2020 14/66

DOCKER: SO WHAT IS IT?

- Think of its ‘containers’ as something portable like a zipfile
- A‘container’ allows you to execute code based on what is in it

- Portable: same container used on Linux, Window, macQOS

- However this really shines on Linux:
- it requires only a very thin layer above the operating system
- macOS & Windows need intermediating layer via VM
- hence very heavy Linux usage in cloud deployments

- What is phenomenal are the
- portability
- encapsulation
- security
- reproducibility

Rocker @ DSSV 2020 14/66

DOCKER INTRO

What is a Container? | Docker - Google Chrome
& Whatisa Conta

€ > C @ https//wwwdocker.com/resources/what-container

Q. Product Support Company Partners ContactUs Signin

WhyDocker? Products Solutions ~ Customers Resources

What is a Container?

A standardized unit of software

Source: https://www.docker.com/resources/what-container

Rocker @ DSSV 2020

https://www.docker.com/resources/what-container

DOCKER INTRO

Package Software into
Containerized Applications Standardized Units for
Development, Shipment and
Deployment

A container is a standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one computing
environment to another. A Docker container image is a lightweight, standalone.
Docker executable package of software that includes everything needed to run an
application: code, runtime, system tools, system libraries and settings.

Host Operating System . .
Container images become containers at runtime and in the case of Docker containers

-images become containers when they run on Docker Engine. Available for both
Infrastructure c U 3

Linux and Windows-b: software will always run the

same, regardless of the infrastructure. Containers isolate software from its

environment and ensure that it works uniformly despite differences for instance
between development and staging.

Docker containers that run on Docker Engine:

- Standard: Docker created the industry standard for containers. so they could be
portable anywhere

Lightweight: Containers share the machine’s OS system kernel and therefore do
not require an OS per application, driving higher server efficiencies and reducing

server and licensing costs

Secure: Applications are safer in containers and Docker provides the strongest

default isolation capabilities in the industry

Source: https://www.docker.com/resources/what-container

Rocker @ DSSV 2020 16/66

https://www.docker.com/resources/what-container

DOCKER INTRO

Docker Containers Are

Everywhere: Linux,

Windows, Data center,)
Cloud, Serverless, etc. Docker Today @

Docker container technology was launched in 2013 as an open source

Docker Engine.

It leveraged existing computing concepts around containers and
specifically in the Linux world, primitives known as cgroups and
namespaces. Docker's technology is unique because it focuses on the
requirements of developers and systems operators to separate
application dependencies from infrastructure.

Success in the Linux world drove a partnership with Microsoft that
brought Docker containers and its functionality to Windows Server
(sometimes referred to as Docker Windows containers).

Technology available from Docker and its open source project, Moby
has been leveraged by all major data center vendors and cloud
providers. Many of these providers are leveraging Docker for their
container-native laa$ offerings. Additionally, the leading open source
serverless frameworks utilize Docker container technology.

Source: https://www.docker.com/resources/what-container

Rocker @ DSSV 2020 17/66

https://www.docker.com/resources/what-container

DOCKER INTRO

Comparing Containers and Virtual Machines

Containers and virtual machines have similar resource isolation and allocation benefits, but
function differently because containers virtualize the operating system instead of hardware.
Containers are more portable and efficient.

Containerized Applications Virtual Machine | | Virtual Machine | | Virtual Machine

Guest Guest Guest
Operating Operating Operating
System System System

Infrastructure

Host Operating System
W _

Source: https://www.docker.com/resources/what-container

Rocker @ DSSV 2020 18/66

https://www.docker.com/resources/what-container

DOCKER IN SIMPLEST TERMS

Simplifying Somewhat:
- A container can run a single process
- not a virtual machine which is more like a whole computer
- So it helps to think of Docker encapsulating a single command
- though that first command may spawn more commands
- Docker containers can be orchestrated and combined

- each container can provide its services on a network port

- common pattern may be one each for database, webserver, ...

Rocker @ DSSV 2020 19/66

DOCKER ‘TERMINOLOGY’

Some Informal Definitions
- Image is a provided Docker run-time
- can be built locally or downloaded
- Container is (possibly) stateful instance of a container
- either running or suspended

- We will be sloppy and use container and image
interchangeably
- On the other hand, a virtual machine tends to be

- a heavier software layer providing a full virtual system
- VMware and VirtualBox are two well-known systems.

Rocker @ DSSV 2020 20/66

DOCKER COMMANDS

Basic commands

- docker
- docker
- docker
- docker

- docker

help lists the available commands

images lists installed images

run runs a container (with extra args, see below)
ps shows currently running containers

pull someuser/somecontainer:version

imports container (version optional; latest is default)

- docker
- docker

- docker

Rocker @ DSSV 2020

build to create a new container
rm container removes a container

rmi imageid removes an image

21/66

DOCKER COMMANDS

docker images
- list installed containers, versions, sizes
- very helpful for quick overview

- can also list sub-sets per repository and/or tag

Rocker @ DSSV 2020 22/66

DOCKER COMMANDS

docker run

- Bread and butter command to use Docker

- Common arguments
- --rmto remove artifacts after run (“clean up”)
- -ti to add terminal and interactive use
- -v LocalDir:MountedDir to make local dir available
- -w WorkDir to switch to workdir
- -p 8787:8787 provides container port 8787 as host port 8787
- container/tag:version
- cmdline arguments for container application
- plus many more options so see documentation
- often use a shell alias dkrr to fix some of these

- When named container is not locally installed it is pulled
Rocker @ DSSV 2020 23/66

DOCKER COMMANDS

docker pull(and docker commit)
-+ Main command to obtain images from repository / registry
- By default uses hub.docker.com / cloud.docker.com registries

- Note that pulled containers can be altered and saved via
docker commit

Rocker @ DSSV 2020 24/66

DOCKER COMMANDS

docker build
- Principal command to create new images

- Containers are ‘layered”

- easy to start from existing container making small change
- creating new augmented or adapted container

- Input is a text file Dockerfile

- Many tutorials available to get started

Rocker @ DSSV 2020 25/66

USE CASES AND ILLUSTRATIONS

Rocker @ DSSV 2020 26/66

SIMPLE DOCKER EXAMPLES

Use multiple R versions
- E.g. test an R package against multiple R releases
- test code against current and development versions of tools

- access to different R versions via different r-base containers
- just specify different tags for different R versions
- Rocker also has another stack for explicitly versioned images

- more advanced use use of different R builds is also possible

Rocker @ DSSV 2020 27/66

SIMPLE DOCKER EXAMPLES

Use multiple R versions (and an alias dkrr)

$ dkrr r-base:latest R --version | head -1

R version 4.0.2 (2020-06-22) -- "Taking Off Again”

$ dkrr r-base:3.6.3 R --version | head -1

R version 3.6.3 (2020-02-29) -- "Holding the Windsock”
$ dkrr r-base:3.5.3 R --version | head -1

R version 3.5.3 (2019-03-11) -- "Great Truth”

$ dkrr r-base:3.4.2 R --version | head -1

R version 3.4.2 (2017-09-28) -- "Short Summer”

$

which generalizes to the the triplet:

dockerCommand args

Rocker @ DSSV 2020 28/66

SIMPLE DOCKER EXAMPLES

Test against development versions
- Sometimes we want to test against new development versions
- These versions may still be unfinished and undergo changes

- Containers provide ideal use via a ‘sandbox’

edd@rob:~$ docker run --rm -ti rocker/drd:latest RD --version | head -4

R Under development (unstable) (2020-07-18 r78872) -- "Unsuffered Consequences”
Copyright (C) 2020 The R Foundation for Statistical Computing

Platform: x86_64-pc-linux-gnu (64-bit)

eddarob:~$
(This shows the July 18 sources of R-devel. So with very little effort we get access to recent
development versions—as the container builds are triggered weekly by a a crontab entry invoking a

web trigger at hub.docker.com.)

Rocker @ DSSV 2020 29/66

https://hub.docker.com

CREATING A CUSTOMIZED CONTAINER

A worked example

- Installing a complex package, say, rstan can be challenging
- Proving it in a container is a good to offer it
- We show several ways and illustrate Docker use along the way

Rocker @ DSSV 2020 30/66

DETAILED EXAMPLE:

RSTAN INTERACTIVELY

Rocker @ DSSV 2020 31/66

RSTAN INTERACTIVELY

We fire up our r-base container for a working basic R installation:

eddarob:~$ docker run --rm -ti r-base

R version 4.0.2 (2020-06-22) -- "Taking Off Again”
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or

‘help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

Rocker @ DSSV 2020 32/66

RSTAN INTERACTIVELY

Interactively, we ask R to install rstan

> install.packages(”rstan”)

install.packages(”rstan”)

Installing package into ‘/usr/local/lib/R/site-library’

(as ‘lib’ is unspecified)

also installing the dependencies ‘rstudioapi’, ‘evaluate’, ‘pkgload’, ‘praise’, ‘colorspace’,
‘utf8', ‘ps’, ‘testthat’, ‘farver’, ‘labeling’, ‘lifecycle’, ‘munsell’, ‘RColorBrewer’,
‘viridisLite’, ‘ellipsis’, ‘fansi’, ‘magrittr’, ‘pillar’, ‘pkgconfig’, ‘vctrs’, ‘backports’,
‘processx’, ‘assertthat’, ‘digest’, ‘glue’, ‘gtable’, ‘isoband’, ‘rlang’, ‘scales’, ‘tibble’,
‘checkmate’, ‘matrixStats’, ‘callr’, ‘cli’, ‘crayon’, ‘desc’, ‘prettyunits’, ‘R6’, ‘rprojroot’,
‘jsonlite’, ‘curl’, ‘StanHeaders’, ‘ggplot2’, ‘inline’, ‘gridExtra’, ‘Rcpp’, ‘RcppParallel’,
‘loo’, ‘pkgbuild’, ‘withr’, ‘v8’, ‘RcppEigen’, ‘BH’

trying URL 'https://cloud.r-project.org/src/contrib/rstudioapi_0.11.tar.gz'
Content type 'application/x-gzip' length 98082 bytes (95 KB)

downloaded 95 KB

trying URL 'https://cloud.r-project.org/src/contrib/evaluate_0.14.tar.gz"'
Content type 'application/x-gzip' length 24206 bytes (23 KB)

downloaded 23 KB

[... many more downloads omitted ...]

Rocker @ DSSV 2020 33/66

RSTAN INTERACTIVELY

We ask R to install rstan (continued)
[... quite a bit of compilation, and build help to curl and v8, later ...]

ar -rs ../inst/lib//libStanServices.a stan_fit.o stan_fit_base.o

ar: creating ../inst/lib//libStanServices.a

installing to /usr/local/lib/R/site-library/00LOCK-rstan/00new/rstan/libs
*% R

*% inst

#% byte-compile and prepare package for lazy loading

#% help

#%% installing help indices

#x% copying figures

#%* building package indices

installing vignettes

testing if installed package can be loaded from temporary location
checking absolute paths in shared objects and dynamic libraries
testing if installed package can be loaded from final location

testing if installed package keeps a record of temporary installation path
* DONE (rstan)

*

*

*

*

*

*

*

*

*

*

*

The downloaded source packages are in
‘/tmp/Rtmp1NGFGf/downloaded_packages’

Rocker @ DSSV 2020 34/66

RSTAN INTERACTIVELY

We ask R to install rstan (continued)

> library(rstan)

library(rstan)

Loading required package: StanHeaders

Loading required package: ggplot2

rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)

For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).

To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)

>

Now we run rstan in this interactive R session. Can we persist it?

Rocker @ DSSV 2020 35/66

RSTAN INTERACTIVELY

We are in a docker container. Let's ask docker ps:

eddarob:~$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

b236f06518b5 r-base "R" 19 minutes ago Up 19 minutes loving_neumann

eddarob:~$

eddarob:~$ docker commit --author "<dirk@eddelbuettel.com>” --message "rstan demo container” \
b236f06518b5 local-rstan ## continer id here key, refers back to the running container

sha256:d72f105b396ff99400618b2d527332af2ab5fashs5ce88ea7aaa7a5e813a9¢87

eddarob:~$

eddarob:~$ docker images | grep stan

local-rstan latest d72f105b396f 19 seconds ago 1.58GB

eddarob:~$

So docker commit can create a new container image under a new
name - perfect for interactively modifying containers.

NB: Some whitespace removed, and lines reindented for display

Rocker @ DSSV 2020 36/66

RSTAN INTERACTIVELY

Run the new one

eddarob:~$ docker run --rm -ti local-rstan

R version 4.0.2 (2020-06-22) -- "Taking Off Again”
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

We containerized an

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTML browser interface to help.

Type 'q()' to quit R. appllcatIOI’]I

> library(rstan)

Loading required package: StanHeaders

Loading required package: ggplot2

rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)

For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).

To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)

>

Rocker @ DSSV 2020 37/66

ALTERNATIVE: USE A DOCKERFILE

Rocker @ DSSV 2020 38/66

RSTAN DOCKERFILE

A ‘Dockerfile’ is the standard way to build a container

Start from rocker's r-base or official r-base
FROM rocker/r-base:latest

Handle for maintainer; these days using LABEL is preferred
MAINTAINER "Dirk Eddelbuettel” dirk@eddelbuettel.com

Install rstan (downloads and builds all dependencies)
RUN Rscript -e 'install.packages(”rstan”)'

Make R the default
CMD [” Rn]

Rocker @ DSSV 2020 39/66

RSTAN DOCKERFILE

Building it

- Usually in a directory containing a Dockerfile
docker build --tag rocker-rstan

- Lots of other options
- Once built we can push to a repository

- Excellent alternative:

- Dockerfile at GitHub
- Build setup at cloud.docker.com (or hub.docker.com)
- Automatic build and provisioning by Docker

Rocker @ DSSV 2020 40/66

ALTERNATIVE:

USE A DOCKERFILE WITH BINARIES

Rocker @ DSSV 2020 41/66

RSTAN DOCKERFILE FROM BINARIES

Building it from .deb binaries — “Lego” again as we reuse binaries
- A useful (if little known) alternative is to lean on the binaries
- Cf. my blog (and videos) Dec 2017, June 2019 and June 2020

- Simpler, faster & more failsafe as binaries and deps pre-built

Start from Rocker container bsaed around Rutter PPAs
FROM rocker/r-ubuntu:18.04

Handle for maintainer; these days using LABEL is preferred
MAINTAINER "Dirk Eddelbuettel” dirkaeddelbuettel.com

Update and install rstan -- from binary
RUN apt-get update && apt-get install -y --no-install-recommends r-cran-rstan

Make R the default
CMD [an]

Rocker @ DSSV 2020 42/66

http://dirk.eddelbuettel.com/blog/2017/12/22#014_finding_binary_deb_packages
http://dirk.eddelbuettel.com/blog/2019/06/09#022_rocker_and_ppas
http://dirk.eddelbuettel.com/blog/2020/06/22#027_ubuntu_binaries

DOCKERFILE

More to know

- You can include multiple RUN commands:
- each produces a separate ‘layer’ cached during build
- layers are applied consecutively and can be reused

- Other arguments:

- COPY to transfer file from build area into container
- ENV to set environment variables
- PORT to provide network access to a given port
(great for ‘backend’ services like databases or other servers)
- ...and much much more

- More details at Best practices for writing Dockerfile

Rocker @ DSSV 2020 43/66

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

ROCKER

Rocker @ DSSV 2020 44,(66

ROCKER PROJECT

Rocker Project - Mozilla Firefox
Rocker Project

&« c @ 6] t rocker-project.org

Rocker Project A HOME 03 IMAGES

The Rocker Project

Docker/Containers for the R Environment

Source: https://www.rocker-project.org

Rocker @ DSSV 2020

€8 use v

https://www.rocker-project.org

EARLIER ROCKER FOR REPRODUCIBILITY PAPER

Makes (early, Jan 2015)
— case for Docker

Authors Aflstion: -

Operstng Sy e Vol 5, .1 > Aninraducion o Docke o rerodacile esarch

An introduction to Docker for reproducible research
ving f=

27 290 « = - EEEECEE

acmsicoes operaing | Abstract °
Systams Revew

s computational work becomes more and more integral o many aspects of scientific

h s become an Issue of increasing Importance to

. dd = " °
reproducibility seerns more straight forward than replicating physical experiments, the

complexand rap! computer ts makes being abl

reproduuce and extend such In this paper, T exp reasons

e RIS thatc

bsequent researchers. hes toth

de developed for one research project cannot be successfully executed or extended by

machines and workflow systems, and their limitations. I then examine how the popular

g technology Docker comb L areas from systems h- suchas

alization, dul

versioning, and a Devops' philosophy, to address these challenges. 1 illustrate this with

several examples of Docker use with a focus on the R statistical environment.

Source: https://dl.acm.org/doi/160.1145/2723872.2723882

Rocker @ DSSV 2020 46/66

https://dl.acm.org/doi/10.1145/2723872.2723882

EARLIER ROCKER FOR REPRODUCIBILITY PAPER

An introduction to Docker for reproducible research

Carl Boettiger

110 81

affer Rd, S

ebaoet

nter for Stock Assessment Research,
a Cruz, CA 95050, USA
giat)gmail com

research & reproducibility
earch has long concerned itself with the issues of

As computational work becomes more and more integral
to many aspeets of seientific research, cc I repro-
ducibility has become an issue of increasing importance to

comy like
Though computational reproducibility seems more straight
forward than replica

ter systems researchers and domain scientists »

cal experiments, the eomplex
and rapidly changing nature of computer environments makes
being able to reproduce and extend such work a serious chal-
In this paper, I explore common reasons that eode

be successfully
executed or extended by subsequent researchers. I review

developed for one research project can

current approaches to these issues, including virtual machines
and workflow systems, and their limitations. 1 then examine
hiow the popular emerging technology Docker combines sev-

eral areas from systems research - such as operating system
virtualization, eross-platform portability, modular re-usable
elements, versioning, and a ‘DevOps’ philosophy, to address
thes
Docker use with a focus on the R statistical environment

challenges. 1 illustrate this with several exa

and the technologies that can
facilitate those objectives [6]. Docker is a new but already
very popular open source tool that combines many of these

appraaches in a user friendly implementation, including: (1)
performing Linux container (LXC) based operating system
(08) level virtualization, (2) portable deployment of con-
tainers across platforms, (3) component reuse, (4) sharing,
(5) archiving, and (6) versioning of container images. While
largely focused on the needs of
businesses in deploying web applications and the potential for

Docker’s market success ha

a lightweight alternative to full virtualization, these features
have potentially important implications for systems rescarch
in the area of scientific reproducibility

In this paper, [seek to address two aud
the domain scientist, those conducting researe

nees.

bicinformaties, economies, psychology and so many other dis-
1
seek to help this audience become more aware of the concerns

ciplines in which computation plays an ever-increasing role

Source: https://dl.acm.org/doi/160.1145/2723872.2723882

Rocker @ DSSV 2020

47/66

https://dl.acm.org/doi/10.1145/2723872.2723882

ROCKER PAPER

® Anintroduction to Roc!

<« cC @

Navigation
Current Issue
Accepted articles
Archive

R News

News and Notes
Submissions
Reviews and
Proofreading
Editorial Board

Subscribe
RSS Feed &
ISSN: 2073-4859

An Introduction to Rocker... The R Journal - Mozilla Firefox

ournal.r-project.org/archive/201

The R Journal: article published in 2017, volume 9:2

An Introduction to Rocker: Docker Containers for R (g

Carl Boettiger and Dirk Eddelbuetel, The R Journal (2017) :2, pages 527-536.

Abstract We describe the Rocker project, which provides a widely-used suite of Docker images with
customized R environments for particular tasks. We discuss how this suite s organized, and how these
tools can Increase portability, scaling, reproducibility, and convenience of R users and developers.
Received: 2017-10-12; online 2017-11-27

CRAN packages: packrat, rhub, tidyverse
CRAN Task Views implied by cited CRAN packages: ReproducibleResearch

This article is licensed under a Creative Commons Attribution 4.0 International license.

Source: https://journal.r-project.org/archive/2017/RJ-2017-065/index.html

Rocker @ DSSV 2020

n @

48/66

https://journal.r-project.org/archive/2017/RJ-2017-065/index.html

ROCKER PAPER

CONTRIBUTED RESEARCH ARTICLE 527

An Introduction to Rocker: Docker

Containers for R
by Carl Boettiger, Dirk Eddelbucttel

Abstract We describe the Rocker project, which provides a widely-used suite of Docker images with
customized R environments for particular tasks. We discuss how this suite is organized, and how these
tools can increase portability, scaling, reproducibility, and convenience of R users and developers.

Introduction

The Rocker project was launched in October 2014 as a collaboration between the authors to provide
high-quality Docker images containing the R environment (Boettiger and Eddelbuettel, 2014). Since
that time, the project has seen both considerable uptake in the community and substantial development
and evolution. Here we seek to document the project’s objectives and uses.

What is Docker?

Docker is a popular open-source tool to create, distribute, deploy, and run software applications
using containers. Containers provide a virtual environment (see Clark et al. (2014) for an overview of
common virtual requiring all op sys p ppli needs to
run. Docker containers are lightweight as they share the operating system kernel, start instantly using
alayered filesystem which minimizes disk footprint and download time, are built on open standards
that run on all major platforms (Linux, Mac, Windows), and provide an added layer of security by
running an application in an isolated environment (Docker, 2015). Familiarity with a few key terms is
helpful in understanding this paper. The term “container” refers to an isolated software environment
on a computer. R users can think of running a container as analogous to loading an R package; a
container is an active instance of a static Docker image. A Docker “image” is a binary archive of that
software, analogous to an R binary package: a given version is downloaded only once, and can then
be “run” to create a container whenever it is needed. A “Dockerfile” is a recipe, the source-code, to
create a Docker image. Pre-built Docker images are publicly available through Docker Hub, which
plays a role for central distribution similar to CRAN in our analogy. Development and contributions
to the Rocker project focus on the and of these Dockerfiles.

Source: https://journal.r-project.org/archive/2017/R1-2017-065/index.html
Rocker @ DSSV 2020 49/66

https://journal.r-project.org/archive/2017/RJ-2017-065/index.html

UPCOMING ROCKERVERSE PAPER

[2001.10641] The Rockerverse: Packages and Applications for Containerization with R - Google Chrom:
I3 [2001.10641) The Rockerv x | + Ve r—y rece nt and

& C & anxiviorg/abs/2001.10641 % €D 4 ™= O »®

Sormell University LS o L i wide-ranging survey
arXiv.org > cs > arXiv:2001.10641 . of Rocker Contalner

Computer Science > Software Engineering

. lstrev v
The Rockerverse: Packages and Applications for
Containerization with R
Daniel Nist, Dirk Eddelbuettel, Dom Bennett, Robrecht Cannood, Dav Clark, Gergely
Daroczi, Mark Edmondson, Colin Fay, Ellis Hughes, Lars Kjeldgaard, Sean Lopp, Ben ";fﬁ:m“ , Jivoig

Marwick, Heather Nolis, Jacqueline Nolis, Hong Ooi, Karthik Ram, Noam Ross, Lori o ety S evera l as p ect Of

Shepherd, Péter Solymos, Tyson Lee Swetnam, Nitesh Turaga, Chariotte Van Petege,

use

Current browse context:
cs.SE

es0c
Jason Williams, Craig Wills, Nan Xiao

References & Citations d T b i lt th
v ockr et rovi iy s Ok I for R e afrntspltn enees reproducibility wi
scenarios. This article surveys downstream projects that build upon the Rocker Project images « Google Scholar
m = paciog o0 and contoing + Semantc Scholar
containers aiverse topics such reproducile Exportcitation Doc ke ran d Roc ke r
research, collaboraiive work, cloud-based data processing, and production deploymen of Bookmark
Services. The variety of ower of the GRS

v " “ROE

and o . we identfied common covere d

themes: reproducible environments, scalabilty and effciency, and portabily across clouds. We.

conclude that
impact, but see the need for consolidating the Rockerverse ecosystem of packages, developing

i~ T Forthcoming in the R

Vi e

i .

S o s Journal
P A

Source: https://arxiv.org/abs/2001.10641

Rocker @ DSSV 2020 50/66

https://arxiv.org/abs/2001.10641

UPCOMING ROCKERVERSE PAPER

PREPRINT 1

The Rockerverse: Packages and
Applications for Containerisation with R

by Daniel Niist, Dirk Eddelbuettel, Dom Bennett, Robrecht Cannoodt, Dav Clark, Gergely Daréczi,
Mark Edmondson, Colin Fay, Ellis Hughes, Lars Kjeldgaard, Sean Lopp, Ben Marwick, Heather
Nolis, Jacqueline Nolis, Hong Ooi, Karthik Ram, Noam Ross, Lori Shepherd, Péter Solymos, Tyson
Lee Swetnant, Nitesh Turaga, Charlotte Van Petegem, Jason Williams, Craig Willis, Nan Xiao

Abstract The Rocker Project provides widely used Docker images for R across different application
scenarios. This article surveys downstream projects that build upon the Rocker Project images and
presents the current state of R packages for managing Docker images and controlling containers. These
use cases cover diverse topics such as package development, reproducible research, collaborative work,
cloud-based data processing, and production deployment of services. The variety of applications
demonstrates the power of the Rocker Project specifically and containerisation in general. Across the
diverse ways to use containers, we identified common themes: reproducible environments, scalability
and efficiency, and portability across clouds. We conclude that the current growth and diversification
of use cases is likely to continue its positive impact, but see the need for consolidating the Rockerverse
ecosystem of packages, developing common practices for applications, and exploring alternative
containerisation software.

Source: https://arxiv.org/abs/2001.10641

Rocker @ DSSV 2020 51/66

https://arxiv.org/abs/2001.10641

ROCKER TEAM

The Rocker project was created by Carl Boettiger and Dirk Eddelbuettel, and is now maintained by
Carl, Dirk, and Noam Ross, with significant contributions from a broad community of users and
developers. Get in touch on GitHub issues with bug reports, feature requests, or other feedback.

We gratefully acknowledge funding from CZI to allow continued development of the Rocker Project.

Source: https://rocker-project.org

Rocker @ DSSV 2020 52/66

https://rocker-project.org

ROCKER PRODUCTS

Two Key Sets of Containers
- The Base Containers
- Key base layer: our rocker/r-base is the official r-base
- Containers r-devel, r-devel-san, r-rspm, .. built off these
- Versioned Stack

- Difficult / large containers: tidyverse, geospatial, ..

- Applications as for example RStudio Server or Shiny Server
- Frameworks for Machine Learning / Tensorflow are added

- A lot of this is in the (new, rewritten) ‘versioned?’ stack

Rocker @ DSSV 2020 53/66

REPRODUCIBILITY WITH ROCKER

Some Examples

- Rocker versioned containers used the snapshot ‘MRAN’
archive provided by Microsoft, now similar via RSPM

- Can ‘freeze’ container with software at given release point

Alternative / Derivations
- Reproducibility: ‘turn research study into container’
- For example containerit does just that

- Using mybinder.org is another possibily using holepunch

Rocker @ DSSV 2020 54/66

http://o2r.info/ctv-computational-environments
mybinder.org
https://karthik.github.io/holepunch/

REPRODUCIBILITY

Rocker @ DSSV 2020 55/66

SOME THOUGHTS

Where we are today

- The world has changed somewhat

- When | was a grad student data repositories were starting
- Later Journals began to experiment with code repositories
- ... but that was “here, have a Fortran, or Stata, or .." file

- Now many formal reproducibility efforts underway

- That is undeniably good progress

Rocker @ DSSV 2020 56/66

SOME THOUGHTS

How did we get here
- Open Source “winning” helped
- We have high-quality research software in multiple languages
- (But still too many ‘red vs blue hammer’ discussions)
- Fundamentally programming languages choice does irrelevant
- In practice it does of course matter
- as we sink human capital into knowledge

- and fields and disciplines focus on particular “stacks”
- leading to different resource for different “stacks”

Rocker @ DSSV 2020 57/66

SOME THOUGHTS

What may be a description of the status quo
- “Freezing” a local installation of a software stack common
- Python virtualenv, R renv (and packrat), Node/JS too ...
- There are likely many others | don't know about
- Docker makes it easy to operationalize this
- Plus Docker use offers somewhat “more”

- as it gets closer to behaving like a whole machine
- without requiring a whole machine

Rocker @ DSSV 2020 58/66

SOME THOUGHTS

Personal Views
- Freezing a software stack in a directory tree is a band aid
- It may stop the bleeding for a bit
- It is not a fundamental solution
- Deep down this is an engineering problem
- That could get fixed with better practice
- | just don't know if we can get there
- Other aspects (hardware, kernel, ...) affect reproducibility
- Still ... while we made good progress there is lots more to do

Rocker @ DSSV 2020 59/66

RELATED WORK

Software development practices that create an Independently-verifisble path from source to binary code - Google Chrome — ©

° QT > 0606560 Originally started
with Debian

¢*2_ Reproducible
%,¢* Builds

Now several key

builds are a set of practices that create an independently- . . .
el pth o souee t by ot distributions
mmums] ‘ u::umemmn] Tools. ‘ ‘ Projects. ‘ [News & reports. ‘ ‘ Events] ‘ Talks. ‘ ‘ Continuous tests

involved

with no method t

Extends the set of

blackmail or

reproducibly

made

components

first place as

expliting o

Rocker @ DSSV 2020 60/66

MORE INFO

Rocker @ DSSV 2020 61/66

LEARN MORE ABOUT DOCKER

Some Pointers
- A Docker 101 course
- Several usage samples
- R on Docker tutorial from rOpenSci
- My (maybe dated in parts) three hour tutorial from useR! 2015
- For Rocker: Boettiger and Eddelbuettel, 2017, Rjournal

- Rockerverse: Nuest, Eddelbuettel et al, 2020, arXiv, accepted
RJournal

Rocker @ DSSV 2020 62/66

https://github.com/docker/labs/tree/master/beginner/
https://docs.docker.com/samples/
http://ropenscilabs.github.io/r-docker-tutorial/
http://dirk.eddelbuettel.com/papers/useR2015_docker.pdf
https://journal.r-project.org/archive/2017/RJ-2017-065/index.html
https://arxiv.org/abs/2001.10641
https://arxiv.org/abs/2001.10641

JULIA EVANS

New zine: How Containers Work!

On Friday I published a new zine: “How Containers Work!”". I also launched a Zi n e by J u li a Eva n s

fun redesign of wizardzines.com.

You can get it for $12 at hittps://wizardzines.com/zines /containers. If you buy it,
you'll get a PDF that you can either print out or read on your computer. Or you

mgetapackof] oo $12 likely well-spent

Here’s the cover and table of contents:

HOW CONTAINERS WORK have not seen zine
), GpibBEm | /

but have enjoyed several posts

See https://jvns.ca/blog/
Jcob\eo‘f:on+en‘\'$ 2020/04/27/new—21ne-h0w—

whg CorfanersTececcs§ cgrovps. . B
the big idea Include. namespaces_________14 3 k
EVERY dependency 5w to make o namespace 15 containers-wor
containers ocen’t magic 6 PO namespaces. 1%

containers =processes__ 7 user namespaces. 1%

contamer Kernel features. 8 nefunrk namespaces 13

pivet-_roat. - 9 confainer TP addresses 19

lagers. 10 capabilities. 20
overlay filesystems. 10 seccomp-BPF. .21
container registries.___12 configuratien options. -

Rocker @ DSSV 2020 63/66

https://jvns.ca/blog/2020/04/27/new-zine-how-containers-work/
https://jvns.ca/blog/2020/04/27/new-zine-how-containers-work/
https://jvns.ca/blog/2020/04/27/new-zine-how-containers-work/

MORE DOCKER

Things we did not cover

- Composition: Orchestrating multiple containers has become a
big topic, Kubernetes is a key application here (c.f next talk)

- Docker variants and spin-offs: containerd is part of the
Docker backend and has been spun off; there is a fair amount
going on but Docker has first-mover advantage and
mind-share

- Docker for science: a somewhat simpler approach called
singularity has made inroads

- And much much more...

Rocker @ DSSV 2020 64/66

THANK YOU!

slides http://dirk.eddelbuettel.com/presentations/
web http://dirk.eddelbuettel.com/
mail dirka@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

Rocker @ DSSV 2020 65/66

http://dirk.eddelbuettel.com/presentations/
http://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

TILEDB IS HIRING: APPLY AT TILEDB.WORKABLE.COM !

TileDB | TileDB - Google Chrome

1¢] TileDB [TleDB. x| +
€ 5 ¢ tiedban TR
[tile]DB Products~ Applications ~ Blog Updates Documentation Github, Login m

The Universal
Data Engine

Beyond
to

Signup | Docs

What is a Universal Data Engine?

A database focused on universal storage and data management
enabling compute with any API or tool

Rocker @ DSSV 2020 66/66

	Outline
	So what are Docker and Rocker?
	Docker
	Use Cases and Illustrations
	Detailed Example: rstan interactively
	Alternative: Use a Dockerfile
	Alternative: Use a Dockerfile with binaries
	Rocker
	Reproducibility
	More Info

