
RELIABLE REPRODUCIBLE
RESEARCH VIA CONTAINERS
FROM THE ROCKER PROJECT

Dirk Eddelbuettel

Data Science, Statistics & Visualization 2020

29 July 2020

https://dirk.eddelbuettel.com/papers/dssv2020_rocker.pdf

https://dirk.eddelbuettel.com/papers/dssv2020_rocker.pdf

OUTLINE

Rocker @ DSSV 2020 2/66

TODAY’S TALK

• Brief Bio

• What is Docker? How can I use it?

• What does Rocker do? What does it offer?

• Some general thoughs on Reproducibility

Rocker @ DSSV 2020 3/66

MY BACKGROUND

Now

• At TileDB creating Universal Data Engine (esp. the R parts)
• Adj. Clinical Professor at Illinois: Data Science Progr. Methods

Previously

• 20+ years in quantitative research, development, trading

But Also

• Rather involved with Open Source for 25+ years
• i.e. as a Debian Developer building a Linux distribution
• And R packages, Rocker, R Foundation Board, JSS, …

Rocker @ DSSV 2020 4/66

https://tiledb.com
https://stat430.com

BRIEF DETOUR

Key Points of Debian Experience

• Centered around package management that simply works
• No dependency hell whatsoever

• components can be added
• or removed fluidly

• Constructing “state”: reliable, repeatable, reproducible
• Interesting other sub-parts: reproducible builds
• This has spread to many other distributions

Rocker @ DSSV 2020 5/66

DOCKER

My Journey

• The Debian experience of (then nearly 20 years) left a mark
• We had something that was technically excellent
• … yet not widely used (on desktops/laptops)
• Virtual machines were an alternative, but clunky
• Enters Docker (in late 2013 / early 2014)

Rocker @ DSSV 2020 6/66

DOCKER

My useR! 2014 keynote

• Carved out 10 at the end of a talk (mostly on Rcpp)
• Predicted ”will change how we build / test / deploy”
• At that prediction held up well as these decays

• Continuous Integration / Cloud Deployments pervasive
• Just about every service is (primarily) Linux based

• So we
• still “lost” the desktop
• but “won” compute infrastructure (“cloud”)
• and this has reproducibility implications

Rocker @ DSSV 2020 7/66

SO WHAT ARE DOCKER AND ROCKER?

Rocker @ DSSV 2020 8/66

MOTIVATION

Source: https://lemire.me/blog/2020/05/22/programming-inside-a-container/
Rocker @ DSSV 2020 9/66

https://lemire.me/blog/2020/05/22/programming-inside-a-container/

MOTIVATION

Excellent discussion by Daniel Lemire

The idea of a container approach is to always start from
a pristine state. So you define the configuration that your
database server needs to have, and you launch it, in this
precise state each time. This makes your infrastructure
predictable.

We can of course substitute “predictable” with “reproducible” …

Rocker @ DSSV 2020 10/66

ON IN SIMPLER TERMS:

Source: https://commons.wikimedia.org/wiki/File:3_D-Box.jpg

Rocker @ DSSV 2020 11/66

https://commons.wikimedia.org/wiki/File:3_D-Box.jpg

ON IN SIMPLER TERMS:

Source: https://commons.wikimedia.org/wiki/File:3_D-Box.jpg
Rocker @ DSSV 2020 11/66

https://commons.wikimedia.org/wiki/File:3_D-Box.jpg

ON IN SIMPLER TERMS:

Docker is “a box”

• Standardized shape and form, identical for everyone
• “Take it anywhere, useable by everyone”
• Genius of “if someone can run a box they can run your box”
• Examples of running

• RStudio Server on OS that RStudio does not provide it for (!!)
• Shiny Server on an OS that RStudio does not provide it for (!!)
• standardized setups for colleagues, PIs, students, …

Rocker @ DSSV 2020 12/66

DOCKER

Rocker @ DSSV 2020 13/66

DOCKER: SO WHAT IS IT?

• Think of its ‘containers’ as something portable like a zipfile
• A ‘container’ allows you to execute code based on what is in it
• Portable: same container used on Linux, Window, macOS

• However this really shines on Linux:
• it requires only a very thin layer above the operating system
• macOS & Windows need intermediating layer via VM
• hence very heavy Linux usage in cloud deployments

• What is phenomenal are the
• portability
• encapsulation
• security
• reproducibility

Rocker @ DSSV 2020 14/66

DOCKER: SO WHAT IS IT?

• Think of its ‘containers’ as something portable like a zipfile
• A ‘container’ allows you to execute code based on what is in it
• Portable: same container used on Linux, Window, macOS

• However this really shines on Linux:
• it requires only a very thin layer above the operating system
• macOS & Windows need intermediating layer via VM
• hence very heavy Linux usage in cloud deployments

• What is phenomenal are the
• portability
• encapsulation
• security
• reproducibility

Rocker @ DSSV 2020 14/66

DOCKER: SO WHAT IS IT?

• Think of its ‘containers’ as something portable like a zipfile
• A ‘container’ allows you to execute code based on what is in it
• Portable: same container used on Linux, Window, macOS

• However this really shines on Linux:
• it requires only a very thin layer above the operating system
• macOS & Windows need intermediating layer via VM
• hence very heavy Linux usage in cloud deployments

• What is phenomenal are the
• portability
• encapsulation
• security
• reproducibility

Rocker @ DSSV 2020 14/66

DOCKER: SO WHAT IS IT?

• Think of its ‘containers’ as something portable like a zipfile
• A ‘container’ allows you to execute code based on what is in it
• Portable: same container used on Linux, Window, macOS

• However this really shines on Linux:
• it requires only a very thin layer above the operating system
• macOS & Windows need intermediating layer via VM
• hence very heavy Linux usage in cloud deployments

• What is phenomenal are the
• portability
• encapsulation
• security
• reproducibility

Rocker @ DSSV 2020 14/66

DOCKER INTRO

Source: https://www.docker.com/resources/what-container

Rocker @ DSSV 2020 15/66

https://www.docker.com/resources/what-container

DOCKER INTRO

Source: https://www.docker.com/resources/what-container

Rocker @ DSSV 2020 16/66

https://www.docker.com/resources/what-container

DOCKER INTRO

Source: https://www.docker.com/resources/what-container

Rocker @ DSSV 2020 17/66

https://www.docker.com/resources/what-container

DOCKER INTRO

Source: https://www.docker.com/resources/what-container

Rocker @ DSSV 2020 18/66

https://www.docker.com/resources/what-container

DOCKER IN SIMPLEST TERMS

Simplifying Somewhat:

• A container can run a single process
• not a virtual machine which is more like a whole computer

• So it helps to think of Docker encapsulating a single command
• though that first command may spawn more commands

• Docker containers can be orchestrated and combined
• each container can provide its services on a network port
• common pattern may be one each for database, webserver, …

Rocker @ DSSV 2020 19/66

DOCKER ‘TERMINOLOGY’

Some Informal Definitions

• Image is a provided Docker run-time
• can be built locally or downloaded

• Container is (possibly) stateful instance of a container
• either running or suspended

• We will be sloppy and use container and image
interchangeably

• On the other hand, a virtual machine tends to be
• a heavier software layer providing a full virtual system
• VMware and VirtualBox are two well-known systems.

Rocker @ DSSV 2020 20/66

DOCKER COMMANDS

Basic commands

• docker help lists the available commands

• docker images lists installed images

• docker run runs a container (with extra args, see below)

• docker ps shows currently running containers

• docker pull someuser/somecontainer:version
imports container (version optional; latest is default)

• docker build to create a new container

• docker rm container removes a container

• docker rmi imageid removes an image

Rocker @ DSSV 2020 21/66

DOCKER COMMANDS

docker images
• list installed containers, versions, sizes

• very helpful for quick overview

• can also list sub-sets per repository and/or tag

Rocker @ DSSV 2020 22/66

DOCKER COMMANDS

docker run
• Bread and butter command to use Docker

• Common arguments
• --rm to remove artifacts after run (“clean up”)
• -ti to add terminal and interactive use
• -v LocalDir:MountedDir to make local dir available
• -w WorkDir to switch to workdir
• -p 8787:8787 provides container port 8787 as host port 8787
• container/tag:version
• cmdline arguments for container application
• plus many more options so see documentation
• often use a shell alias dkrr to ‘fix’ some of these

• When named container is not locally installed it is pulled
Rocker @ DSSV 2020 23/66

DOCKER COMMANDS

docker pull (and docker commit)
• Main command to obtain images from repository / registry

• By default uses hub.docker.com / cloud.docker.com registries

• Note that pulled containers can be altered and saved via
docker commit

Rocker @ DSSV 2020 24/66

DOCKER COMMANDS

docker build
• Principal command to create new images

• Containers are ‘layered’:
• easy to start from existing container making small change
• creating new augmented or adapted container

• Input is a text file Dockerfile

• Many tutorials available to get started

Rocker @ DSSV 2020 25/66

USE CASES AND ILLUSTRATIONS

Rocker @ DSSV 2020 26/66

SIMPLE DOCKER EXAMPLES

Use multiple R versions

• E.g. test an R package against multiple R releases
• test code against current and development versions of tools

• access to different R versions via different r-base containers
• just specify different tags for different R versions
• Rocker also has another stack for explicitly versioned images

• more advanced use use of different R builds is also possible

Rocker @ DSSV 2020 27/66

SIMPLE DOCKER EXAMPLES

Use multiple R versions (and an alias dkrr)

$ dkrr r-base:latest R --version | head -1
R version 4.0.2 (2020-06-22) -- ”Taking Off Again”
$ dkrr r-base:3.6.3 R --version | head -1
R version 3.6.3 (2020-02-29) -- ”Holding the Windsock”
$ dkrr r-base:3.5.3 R --version | head -1
R version 3.5.3 (2019-03-11) -- ”Great Truth”
$ dkrr r-base:3.4.2 R --version | head -1
R version 3.4.2 (2017-09-28) -- ”Short Summer”
$

which generalizes to the the triplet:

dockerCommand dockerContainer args

Rocker @ DSSV 2020 28/66

SIMPLE DOCKER EXAMPLES

Test against development versions

• Sometimes we want to test against new development versions

• These versions may still be unfinished and undergo changes

• Containers provide ideal use via a ‘sandbox’

edd@rob:~$ docker run --rm -ti rocker/drd:latest RD --version | head -4
R Under development (unstable) (2020-07-18 r78872) -- ”Unsuffered Consequences”
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

edd@rob:~$

(This shows the July 18 sources of R-devel. So with very little effort we get access to recent
development versions—as the container builds are triggered weekly by a a crontab entry invoking a
web trigger at hub.docker.com.)

Rocker @ DSSV 2020 29/66

https://hub.docker.com

CREATING A CUSTOMIZED CONTAINER

A worked example

• Installing a complex package, say, rstan can be challenging
• Proving it in a container is a good to offer it
• We show several ways and illustrate Docker use along the way

Rocker @ DSSV 2020 30/66

DETAILED EXAMPLE:
RSTAN INTERACTIVELY

Rocker @ DSSV 2020 31/66

RSTAN INTERACTIVELY

We fire up our r-base container for a working basic R installation:
edd@rob:~$ docker run --rm -ti r-base

R version 4.0.2 (2020-06-22) -- ”Taking Off Again”
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>

Rocker @ DSSV 2020 32/66

RSTAN INTERACTIVELY

Interactively, we ask R to install rstan
> install.packages(”rstan”)
install.packages(”rstan”)
Installing package into ‘/usr/local/lib/R/site-library’
(as ‘lib’ is unspecified)
also installing the dependencies ‘rstudioapi’, ‘evaluate’, ‘pkgload’, ‘praise’, ‘colorspace’,
‘utf8’, ‘ps’, ‘testthat’, ‘farver’, ‘labeling’, ‘lifecycle’, ‘munsell’, ‘RColorBrewer’,
‘viridisLite’, ‘ellipsis’, ‘fansi’, ‘magrittr’, ‘pillar’, ‘pkgconfig’, ‘vctrs’, ‘backports’,
‘processx’, ‘assertthat’, ‘digest’, ‘glue’, ‘gtable’, ‘isoband’, ‘rlang’, ‘scales’, ‘tibble’,
‘checkmate’, ‘matrixStats’, ‘callr’, ‘cli’, ‘crayon’, ‘desc’, ‘prettyunits’, ‘R6’, ‘rprojroot’,
‘jsonlite’, ‘curl’, ‘StanHeaders’, ‘ggplot2’, ‘inline’, ‘gridExtra’, ‘Rcpp’, ‘RcppParallel’,
‘loo’, ‘pkgbuild’, ‘withr’, ‘V8’, ‘RcppEigen’, ‘BH’

trying URL 'https://cloud.r-project.org/src/contrib/rstudioapi_0.11.tar.gz'
Content type 'application/x-gzip' length 98082 bytes (95 KB)
==
downloaded 95 KB

trying URL 'https://cloud.r-project.org/src/contrib/evaluate_0.14.tar.gz'
Content type 'application/x-gzip' length 24206 bytes (23 KB)
==
downloaded 23 KB

[... many more downloads omitted ...]

Rocker @ DSSV 2020 33/66

RSTAN INTERACTIVELY

We ask R to install rstan (continued)
[... quite a bit of compilation, and build help to curl and v8, later ...]

ar -rs ../inst/lib//libStanServices.a stan_fit.o stan_fit_base.o
ar: creating ../inst/lib//libStanServices.a
installing to /usr/local/lib/R/site-library/00LOCK-rstan/00new/rstan/libs
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
*** copying figures
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (rstan)

The downloaded source packages are in
‘/tmp/Rtmp1NGFGf/downloaded_packages’

>

Rocker @ DSSV 2020 34/66

RSTAN INTERACTIVELY

We ask R to install rstan (continued)
> library(rstan)
library(rstan)
Loading required package: StanHeaders
Loading required package: ggplot2
rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)
For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).
To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)
>

Now we run rstan in this interactive R session. Can we persist it?

Rocker @ DSSV 2020 35/66

RSTAN INTERACTIVELY

We are in a docker container. Let’s ask docker ps:

edd@rob:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b236f06518b5 r-base ”R” 19 minutes ago Up 19 minutes loving_neumann
edd@rob:~$
edd@rob:~$ docker commit --author ”<dirk@eddelbuettel.com>” --message ”rstan demo container” \

b236f06518b5 local-rstan ## continer id here key, refers back to the running container
sha256:d72f105b396ff99400618b2d527332af2ab5fa4b45ce88ea7aaa7a5e813a9c87
edd@rob:~$
edd@rob:~$ docker images | grep stan
local-rstan latest d72f105b396f 19 seconds ago 1.58GB
edd@rob:~$

So docker commit can create a new container image under a new
name – perfect for interactively modifying containers.

NB: Some whitespace removed, and lines reindented for display

Rocker @ DSSV 2020 36/66

RSTAN INTERACTIVELY

edd@rob:~$ docker run --rm -ti local-rstan

R version 4.0.2 (2020-06-22) -- ”Taking Off Again”
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

[...]

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(rstan)
Loading required package: StanHeaders
Loading required package: ggplot2
rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)
For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).
To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)
>

Run the new one

We containerized an
application!

Rocker @ DSSV 2020 37/66

ALTERNATIVE: USE A DOCKERFILE

Rocker @ DSSV 2020 38/66

RSTAN DOCKERFILE

A ‘Dockerfile’ is the standard way to build a container

Start from rocker's r-base or official r-base
FROM rocker/r-base:latest

Handle for maintainer; these days using LABEL is preferred
MAINTAINER ”Dirk Eddelbuettel” dirk@eddelbuettel.com

Install rstan (downloads and builds all dependencies)
RUN Rscript -e 'install.packages(”rstan”)'

Make R the default
CMD [”R”]

Rocker @ DSSV 2020 39/66

RSTAN DOCKERFILE

Building it

• Usually in a directory containing a Dockerfile

docker build --tag rocker-rstan .

• Lots of other options

• Once built we can push to a repository

• Excellent alternative:
• Dockerfile at GitHub
• Build setup at cloud.docker.com (or hub.docker.com)
• Automatic build and provisioning by Docker

Rocker @ DSSV 2020 40/66

ALTERNATIVE:
USE A DOCKERFILE WITH BINARIES

Rocker @ DSSV 2020 41/66

RSTAN DOCKERFILE FROM BINARIES

Building it from .deb binaries – “Lego” again as we reuse binaries

• A useful (if little known) alternative is to lean on the binaries

• C.f. my blog (and videos) Dec 2017, June 2019 and June 2020

• Simpler, faster & more failsafe as binaries and deps pre-built

Start from Rocker container bsaed around Rutter PPAs
FROM rocker/r-ubuntu:18.04

Handle for maintainer; these days using LABEL is preferred
MAINTAINER ”Dirk Eddelbuettel” dirk@eddelbuettel.com

Update and install rstan -- from binary
RUN apt-get update && apt-get install -y --no-install-recommends r-cran-rstan

Make R the default
CMD [”R”]

Rocker @ DSSV 2020 42/66

http://dirk.eddelbuettel.com/blog/2017/12/22#014_finding_binary_deb_packages
http://dirk.eddelbuettel.com/blog/2019/06/09#022_rocker_and_ppas
http://dirk.eddelbuettel.com/blog/2020/06/22#027_ubuntu_binaries

DOCKERFILE

More to know

• You can include multiple RUN commands:
• each produces a separate ‘layer’ cached during build
• layers are applied consecutively and can be reused

• Other arguments:
• COPY to transfer file from build area into container
• ENV to set environment variables
• PORT to provide network access to a given port
(great for ‘backend’ services like databases or other servers)

• … and much much more

• More details at Best practices for writing Dockerfile

Rocker @ DSSV 2020 43/66

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

ROCKER

Rocker @ DSSV 2020 44/66

ROCKER PROJECT

Source: https://www.rocker-project.org
Rocker @ DSSV 2020 45/66

https://www.rocker-project.org

EARLIER ROCKER FOR REPRODUCIBILITY PAPER

Makes (early, Jan 2015)
case for Docker

Source: https://dl.acm.org/doi/10.1145/2723872.2723882

Rocker @ DSSV 2020 46/66

https://dl.acm.org/doi/10.1145/2723872.2723882

EARLIER ROCKER FOR REPRODUCIBILITY PAPER

Source: https://dl.acm.org/doi/10.1145/2723872.2723882

Rocker @ DSSV 2020 47/66

https://dl.acm.org/doi/10.1145/2723872.2723882

ROCKER PAPER

Source: https://journal.r-project.org/archive/2017/RJ-2017-065/index.html

Rocker @ DSSV 2020 48/66

https://journal.r-project.org/archive/2017/RJ-2017-065/index.html

ROCKER PAPER

Source: https://journal.r-project.org/archive/2017/RJ-2017-065/index.html
Rocker @ DSSV 2020 49/66

https://journal.r-project.org/archive/2017/RJ-2017-065/index.html

UPCOMING ROCKERVERSE PAPER

Very recent and
wide-ranging survey
of Rocker container
use

Several aspect of
reproducibility with
Docker and Rocker
covered

Forthcoming in the R
Journal

Source: https://arxiv.org/abs/2001.10641

Rocker @ DSSV 2020 50/66

https://arxiv.org/abs/2001.10641

UPCOMING ROCKERVERSE PAPER

Source: https://arxiv.org/abs/2001.10641

Rocker @ DSSV 2020 51/66

https://arxiv.org/abs/2001.10641

ROCKER TEAM

We gratefully acknowledge funding from CZI to allow continued development of the Rocker Project.

Source: https://rocker-project.org

Rocker @ DSSV 2020 52/66

https://rocker-project.org

ROCKER PRODUCTS

Two Key Sets of Containers

• The Base Containers
• Key base layer: our rocker/r-base is the official r-base
• Containers r-devel, r-devel-san, r-rspm, … built off these

• Versioned Stack
• Difficult / large containers: tidyverse, geospatial, …
• Applications as for example RStudio Server or Shiny Server
• Frameworks for Machine Learning / Tensorflow are added
• A lot of this is in the (new, rewritten) ‘versioned2’ stack

Rocker @ DSSV 2020 53/66

REPRODUCIBILITY WITH ROCKER

Some Examples

• Rocker versioned containers used the snapshot ‘MRAN’
archive provided by Microsoft, now similar via RSPM

• Can ‘freeze’ container with software at given release point

Alternative / Derivations

• Reproducibility: ‘turn research study into container’

• For example containerit does just that

• Using mybinder.org is another possibily using holepunch

Rocker @ DSSV 2020 54/66

http://o2r.info/ctv-computational-environments
mybinder.org
https://karthik.github.io/holepunch/

REPRODUCIBILITY

Rocker @ DSSV 2020 55/66

SOME THOUGHTS

Where we are today

• The world has changed somewhat
• When I was a grad student data repositories were starting
• Later Journals began to experiment with code repositories
• … but that was “here, have a Fortran, or Stata, or …” file
• Now many formal reproducibility efforts underway
• That is undeniably good progress

Rocker @ DSSV 2020 56/66

SOME THOUGHTS

How did we get here

• Open Source “winning” helped
• We have high-quality research software in multiple languages
• (But still too many ‘red vs blue hammer’ discussions)
• Fundamentally programming languages choice does irrelevant
• In practice it does of course matter

• as we sink human capital into knowledge
• and fields and disciplines focus on particular “stacks”
• leading to different resource for different “stacks”

Rocker @ DSSV 2020 57/66

SOME THOUGHTS

What may be a description of the status quo

• “Freezing” a local installation of a software stack common
• Python virtualenv, R renv (and packrat), Node/JS too …
• There are likely many others I don’t know about
• Docker makes it easy to operationalize this
• Plus Docker use offers somewhat “more”

• as it gets closer to behaving like a whole machine
• without requiring a whole machine

Rocker @ DSSV 2020 58/66

SOME THOUGHTS

Personal Views

• Freezing a software stack in a directory tree is a band aid
• It may stop the bleeding for a bit
• It is not a fundamental solution
• Deep down this is an engineering problem

• That could get fixed with better practice
• I just don’t know if we can get there

• Other aspects (hardware, kernel, …) affect reproducibility
• Still … while we made good progress there is lots more to do

Rocker @ DSSV 2020 59/66

RELATED WORK

Originally started
with Debian

Now several key
distributions
involved

Extends the set of
reproducibly
made
components

Rocker @ DSSV 2020 60/66

MORE INFO

Rocker @ DSSV 2020 61/66

LEARN MORE ABOUT DOCKER

Some Pointers

• A Docker 101 course

• Several usage samples

• R on Docker tutorial from rOpenSci

• My (maybe dated in parts) three hour tutorial from useR! 2015

• For Rocker: Boettiger and Eddelbuettel, 2017, RJournal

• Rockerverse: Nuest, Eddelbuettel et al, 2020, arXiv, accepted
RJournal

Rocker @ DSSV 2020 62/66

https://github.com/docker/labs/tree/master/beginner/
https://docs.docker.com/samples/
http://ropenscilabs.github.io/r-docker-tutorial/
http://dirk.eddelbuettel.com/papers/useR2015_docker.pdf
https://journal.r-project.org/archive/2017/RJ-2017-065/index.html
https://arxiv.org/abs/2001.10641
https://arxiv.org/abs/2001.10641

JULIA EVANS

Zine by Julia Evans

$12 likely well-spent

have not seen zine

but have enjoyed several posts

See https://jvns.ca/blog/
2020/04/27/new-zine-how-
containers-work/

Rocker @ DSSV 2020 63/66

https://jvns.ca/blog/2020/04/27/new-zine-how-containers-work/
https://jvns.ca/blog/2020/04/27/new-zine-how-containers-work/
https://jvns.ca/blog/2020/04/27/new-zine-how-containers-work/

MORE DOCKER

Things we did not cover

• Composition: Orchestrating multiple containers has become a
big topic, Kubernetes is a key application here (c.f. next talk)

• Docker variants and spin-offs: containerd is part of the
Docker backend and has been spun off; there is a fair amount
going on but Docker has first-mover advantage and
mind-share

• Docker for science: a somewhat simpler approach called
singularity has made inroads

• And much much more…

Rocker @ DSSV 2020 64/66

THANK YOU!

slides http://dirk.eddelbuettel.com/presentations/

web http://dirk.eddelbuettel.com/

mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

Rocker @ DSSV 2020 65/66

http://dirk.eddelbuettel.com/presentations/
http://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

TILEDB IS HIRING: APPLY AT TILEDB.WORKABLE.COM !

Rocker @ DSSV 2020 66/66

	Outline
	So what are Docker and Rocker?
	Docker
	Use Cases and Illustrations
	Detailed Example: rstan interactively
	Alternative: Use a Dockerfile
	Alternative: Use a Dockerfile with binaries
	Rocker
	Reproducibility
	More Info

