EXTENDING R WITH C++

MOTIVATION, EXAMPLES, AND CONTEXT

Dirk Eddelbuettel

Invited Keynote, ICORS-LACSC 2019
Escuela Superior Politécnica del Litoral (ESPOL)
Guayaquil, Ecuador
May 30, 2019
Brief Bio

- Finance Quantitative Research Professional for 20+ years
- (Adjunct) Clinical Professor at U of Illinois for 2 years
- Open Source for around 25 years
 - Debian developer (~ 170 packages)
 - R package author (~ 50 packages)
 - Rcpp, Rocker, ...
- R and Statistics
 - JSS Associate Editor
 - R Foundation Board member
- PhD, MA Econometrics; MSc Ind.Eng. (Comp.Sci./OR)
OVERVIEW
Extending R with C++

- Why R ?
- Why Extending R ?
- Why C++ and Rcpp ?
- (Briefly) How ?
- Context
- Outlook
WHY R: VIEW FROM ACADEMIA
Almost all topics in twenty-first-century statistics are now computer-dependent [...] Here and in all our examples we are employing the language R, itself one of the key developments in computer-based statistical methodology.

Efron and Hastie, 2016 pages xv and 6 (footnote 3)
Computational Statistics in Practice

- Statistics is now computational (Efron & Hastie, 2016)
- Within (computational) statistics, reigning tool is R
- Given R, Rcpp key for two angles:
 - *Performance* always matters, ease of use a sweetspot
 - “*Extending R*” (Chambers, 2016)
Why R: View from Practitioners
Why R? Pat Burn’s View

Why use the R Language?
A brief outline of why you might want to make the effort to learn R.

Translations

What is R, and S?
This used to be called “An Introduction to the S Language”. R is a dialect of the S language, and has come to be — by far — the dominant dialect.

S started as a research project at Bell Labs a few decades ago, it is a language that was developed for data analysis, statistical modelling, simulation and graphics. However, it is a general purpose language with some powerful features — it could (and does) have uses far removed from data analysis.

It should be used for many of the tasks that spreadsheets are currently used for. If a task is non-trivial to do in a spreadsheet, then almost always it would more productively (and safely) be done with R. "Spreadsheet Addiction" talks about problems with spreadsheets and how R is often a better tool.

Why the R Language?
- R is not just a statistics package, it's a language.
- R is designed to operate the way that problems are thought about.
- R is both flexible and powerful.

Why the R Language?
Screen shot on the left part of short essay at Burns-Stat

His site has more truly excellent (and free) writings.

The (much longer) R Inferno (free pdf, also paperback) is highly recommended.
Why the R Language?

- R is not just a statistics package, it’s a language.
- R is designed to operate the way that problems are thought about.
- R is both flexible and powerful.

Why R for data analysis?

R is not the only language that can be used for data analysis. Why R rather than another? Here is a list:

- interactive language
- data structures
- graphics
- missing values
- functions as first class objects
- packages
- community

Why R: Programming with Data
Why R? R as Middle Man

R as an Extensible Environment

• As R users we know that R can
 • ingest data in many formats from many sources
 • aggregate, slice, dice, summarize, ...
 • visualize in many forms, ...
 • model in just about any way
 • report in many useful and scriptable forms

• It has become central for programming with data
• Sometimes we want to extend it further than R code goes
R as central point
R as central point

From any one of

- csv
- txt
- xlsx
- xml, json, ...
- web scraping, ...
- hdf5, netcdf, ...
- sas, stata, spss, ...
- various SQL + NOSQL DBs
- various binary protocols

via

into any one of

- txt
- html
- latex and pdf
- html and js
- word
- shiny
- most graphics formats
- other dashboards
- web frontends
Why R: Historical Perspective
R as 'The Interface'

A design sketch called ‘The Interface’

AT&T Research lab meeting notes

Describes an outer ‘user interface’ layer to core Fortran algorithms

Key idea of abstracting away inner details giving higher-level more accessible view for user / analyst

Lead to “The Interface”

Which became S which lead to R

Source: John Chambers, personal communication
Why R? : Programming with Data from 1977 to 2016

Chambers (2008)

Software For Data Analysis

Chapters 10 and 11 devoted to Interfaces I: C and Fortran and Interfaces II: Other Systems.
Extending R

Object: Everything that exists in R is an object

Function: Everything happens in R is a function call

Interface: Interfaces to other software are part of R
The fundamental lesson about programming in the large is that requires a correspondingly broad and flexible response. In particular, no single language or software system is likely to be ideal for all aspects. Interfacing multiple systems is the essence. Part IV explores the design of interfaces from R.
Why C++ and Rcpp
A good fit, it turns out

- A good part of R is written in C (besides R and Fortran code)
- The principle interface to external code is a function `.Call()`
- It takes one or more of the high-level data structures R uses
- ... and returns one. Formally:

```r
SEXP .Call(SEXP a, SEXP b, ...)
```
A good fit, it turns out (cont.)

- An SEXP (or S-Expression Pointer) is used for everything
- (An older C trick approximating object-oriented programming)
- We can ignore the details but retain that
 - everything in R is a SEXP
 - the SEXP is self-describing
 - can matrix, vector, list, function, ...
 - 27 types in total

- The key thing for Rcpp is that via C++ features we can map
 - each of the (limited number of) SEXP types
 - to a specific C++ class representing that type
 - and the conversion is automated back and forth
Other good reasons

• It is fast – compiled C++ is hard to beat in other languages

 • (That said, you can of course write bad and slow code....)

• It is very general and widely used

 • many libraries

 • many tools

• It is fairly universal:

 • just about anything will have C interface so C++ can play

 • just about any platform / OS will have it
Key Features

- *(Fairly) Easy to learn* as it really does not have to be that complicated – there are numerous examples
- **Easy to use** as it avoids build and OS system complexities thanks to the R infrastructure
- **Expressive** as it allows for *vectorised C++* using *Rcpp Sugar*
- **Seamless** access to all R objects: vector, matrix, list, S3/S4/RefClass, Environment, Function, …
- **Speed gains** for a variety of tasks Rcpp excels precisely where R struggles: loops, function calls, …
- **Extensions** greatly facilitates access to external libraries directly or via eg *Rcpp modules*
Benchmark on Fibonacci(20) between C++ and R – note the log scale!
Growth of Rcpp usage on CRAN

Data current as of May 12, 2019.
Rcpp is currently used by

- 1655 CRAN packages
- 176 BioConductor packages (with 38 added since last year)
- an unknown (but “large”) number of GitHub projects
suppressMessages(library(utils))
library(pagerank) # cf github.com/andrie/pagerank

cran <- "http://cloud.r-project.org"
pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Rcpp ggplot2 MASS dplyr Matrix
2.744 1.370 1.356 0.935 0.768
Top 30 of Page Rank as of May 2019
Percentage of Compiled Packages

```
db <- tools::CRAN_package_db()  # added in R 3.4.0
## rows: number of pkgs, cols: different attributes
nTot <- nrow(db)
## all direct Rcpp reverse depends, ie packages using Rcpp
nRcpp <- length(tools::dependsOnPkgs("Rcpp", recursive=FALSE,
                                       installed=db))

nCompiled <- table(db[, "NeedsCompilation"])[["yes"]]
propRcpp <- nRcpp / nCompiled * 100

data.frame(tot=nTot, totRcpp = nRcpp, totCompiled = nCompiled,
            RcppPctOfCompiled = propRcpp)
```

```
##    tot totRcpp totCompiled RcppPctOfCompiled
## 1 14312   1655      3591         46.08744
```
HOW: BRIEF RCPP INTRO
First Steps: evalCpp()

This function can validate your installation. It takes the supplied expression, wraps enough code around it to make a compilable function, compiles, links and loads it – to evaluate the C++ expression.

Here we skip all details about Rcpp installations. It just works e.g. on the (free) RStudio Cloud and in most normal system – see the documentation for more. As always, Windows may be hardest as you may have to install another R toolchain: `Rtools`.

```r
library(Rcpp)
evalCpp("2 + 2")
## [1] 4
```

ICORS-LACSC
library(Rcpp)
cppFunction("double fib(double n) {
 if (n < 2) return(n);
 return(fib(n-1) + fib(n-2));
}")
fib(30)

[1] 832040

Creates R-callable function from a C++ function.
Finds function identifier in supplied string, creates R function of same name.
Useful for quick tests.
Can use additional headers and library (see documentation).
sourceCpp()

- ‘sources’ a file and compiles, links, loads
- file can contain multiple functions
- functions that are ‘tagged’ with // [[Rcpp::export]] become callable
- can contain non-exported helper functions
- use:

```
sourceCpp("someFile.cpp")  # with or without path
```
First Steps: sourceCpp()

```cpp
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {
  return x * 2;
}

/*** R
 timesTwo(42)
 */
```

This is a shortened (comments-removed) version of the file currently included when you say ‘File -> New File -> C++’ in RStudio.
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {
 return x * 2;
}

/*** R
timesTwo(42)
*/
Quick Demo

Rcpp::sourceCpp("code/timestwo.cpp") # runs demo too

##
> timesTwo(42)
[1] 84

\texttt{timesTwo(c(5,10,20))} # vectorized like R

##
[1] 10 20 40
```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector colSums(Rcpp::NumericMatrix mat) {
  size_t cols = mat.cols();
  Rcpp::NumericVector res(cols);
  for (size_t i = 0; i < cols; i++) {
    res[i] = sum(mat.column(i));
  }
  return(res);
}
```
Key Elements

- **NumericMatrix** and **NumericVector** go-to types for matrix and vector operations on floating point variables.
- We prefix with **Rcpp::** to make the namespace explicit.
- Accessor functions `.rows()` and `.cols()` for dimensions.
- Result vector allocated based on number of columns column.
- Function `column(i)` extracts a column, gets a vector, and `sum()` operates on it.
- That last `sum()` was internally vectorised, no need to loop over all elements.
Rcpp::sourceCpp("code/colSums.cpp")

test it
colSums(matrix(1:16, 4, 4))

[1] 10 26 42 58

base R for comparison
apply(matrix(1:16, 4, 4), 2, sum)

[1] 10 26 42 58
Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can be created by `Rcpp.package.skeleton()`.

The vignette `Rcpp-packages` has fuller details.

As of May 2019, there are 1655 CRAN and 176 BioConductor packages which use Rcpp all offering working, tested, and reviewed examples.
Best way to organize R code with Rcpp is via a package:
Rcpp.package.skeleton() and its derivatives. e.g. RcppArmadillo.package.skeleton() create working packages.

// another simple example: outer product of a vector, returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {
 arma::mat m = x * x.t();
 return m;
}

// and the inner product returns a scalar
//
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {
 double v = arma::as_scalar(x.t() * x);
 return v;
}
Two (or three) ways to link to external libraries

- **Full copies**: Do what several packages (e.g. RcppMLPACK (v1), RVowpalWabbit) do and embed a full copy; larger build time, harder to update, self-contained
- **With linking of libraries**: Do what RcppGSL or RcppMLPACK (v2) do and use hooks in the package startup to store compiler and linker flags which are passed to environment variables
- **With C++ template headers only**: Do what RcppArmadillo and other do and just point to the headers
- More details in extra vignettes.
Key Extension Package RcppArmadillo

Armadillo

C++ library for linear algebra & scientific computing

- Armadillo is a high quality linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use
- Provides high-level syntax and functionality deliberately similar to Matlab
- Useful for algorithm development directly in C++, or quick conversion of research code into production environments (e.g. software & hardware products)
- Provides efficient classes for vectors, matrices and cubes (1st, 2nd and 3rd order tensors); dense and sparse matrices are supported
- Integer, floating point and complex numbers are supported
- Various matrix decompositions are provided through integration with LAPACK, or one of its high performance drop-in replacements (e.g. multi-threaded Intel MKL or OpenBLAS)
- A sophisticated expression evaluator (based on template meta-programming) automatically combines several operations to increase speed and efficiency
- Can automatically use OpenMP multi-threading (parallelisation) to speed up computationally expensive operations
- Available under a permissive license, useful for both open-source and proprietary (closed-source) software
- Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc

- download latest version | GitLab repo | browse documentation

Source: http://arma.sf.net
What is Armadillo?

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.
- The syntax is deliberately similar to Matlab.
- Integer, floating point and complex numbers are supported.
- A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries.
- Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.

Source: http://arma.sf.net
Key Points

- Provides integer, floating point and complex vectors, matrices, cubes and fields with all the common operations.
- Very good documentation and examples
 - website,
 - technical report (Sanderson, 2010),
 - CSDA paper (Sanderson and Eddelbuettel, 2014),
 - JOSS paper (Sanderson and Curtin, 2016),
 - ICMS paper (Sanderson and Curtin, 2018).
- Modern code, extending from earlier matrix libraries.
- Responsive and active maintainer, frequent updates.
- Used eg by MLPACK, see Curtin et al (JMLR 2013, JOSS 2018).
RcppArmadillo Highlights

Key Points

- Template-only builds—no linking, and available whereever R and a compiler work (but Rcpp is needed)
- Easy to use, just add LinkingTo: RcppArmadillo, Rcpp to DESCRIPTION (i.e. no added cost beyond Rcpp)
- Really easy from R via Rcpp and automatic converters
- Frequently updated, widely used – now over 600 CRAN packages
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::rowvec colSums(arma::mat mat) {
 size_t cols = mat.n_cols;
 arma::rowvec res(cols);

 for (size_t i=0; i<cols; i++) {
 res[i] = sum(mat.col(i));
 }

 return(res);
}
Example: Column Sums

Key Features

• The [[Rcpp::depends(RcppArmadillo)]] tag tells R to tell g++ about the need for Armadillo headers – needed for compilation
• Dimension accessor via member variables n_rows and n_cols; not function calls
• We return a rowvec; default vec is alias for colvec
• Column accessor is just col(i) here
• This is a normal example of how similar features may have slightly different names across libraries
CONTEXT / EXAMPLES
Background

- The `wordcloud` package by Ian Fellows computes wordclouds
- Initial release(s) had (only) an R version
- Basic algorithm:
 - ‘trial and error’ of placing words in a grid on page
 - constraint is to not overlap …
- Loops and trial and error are not fast
 - so an Rcpp version was added
- One of few packages that does ‘before’ and ‘after’
Using Moby Dick with `min.freq=5` is a large enough task:

```r
suppressMessages({library(wordcloud); library(tm)})
moby <- readLines("http://www.gutenberg.org/files/2701/2701-0.txt")

system.time(wordcloud(moby, min.freq = 5, random.order=FALSE,
                       use.r.layout = TRUE))

##  user  system elapsed
## 393.352 0.214 393.876

system.time(wordcloud(moby, min.freq = 5, random.order=FALSE,
                       use.r.layout = FALSE))

##  user  system elapsed
## 87.377 0.004  87.396

Decent speedup – but not as dramatic as Fibonacci above.
Example: Wordcloud

```r
wordcloud(moby, min.freq = 250, colors=brewer.pal(6,"Blues"),
random.order=FALSE)
```
Background

- Excellent CRAN package `robustHD` by Andreas Alfons
  - Offers a variety of routines ...
  - but also pulls in a number of dependencies
- For a small (private) project I needed a subset of `robustHD`
- So we created `winsorize` (GitHub-only)
- (Partial) code examples follow showing
  - simple and clean C++
  - taking advantage of (Rcpp)Armadillo
double corPearson(const vec& x, const vec& y) {
    // arma function cor() always returns matrix
    return as_scalar(cor(x, y));
}

double winsorize(const double& x, const double& cm, const double& cp) {
    if(x < cm) {
        return cm;
    } else if(x > cp) {
        return cp;
    } else return x;
}
double corHuberUni(const vec& x, const vec& y, const double& c) {
    // negative winsorization constant
    const double cm = -c;
    const uword n = x.n_elem;
    vec wx(n), wy(n);
    for(uword i = 0; i < n; i++) {
        wx(i) = winsorize(x(i), cm, c);
        wy(i) = winsorize(y(i), cm, c);
    }
    // call barebones function for Pearson correlation
    // with winsorized data
    return corPearson(wx, wy);
}
A Related Approach
R Interface to Python

The `reticulate` package provides a comprehensive set of tools for interoperability between Python and R. The package includes facilities for:

- Translation between R and Python objects (for example, between R and Pandas data frames, or between R matrices and NumPy arrays).
- Calling Python from R in a variety of ways including R Markdown, sourcing Python scripts, importing Python modules, and using Python interactively within an R session.
- Flexible binding to different versions of Python including virtual environments and Conda environments.

Reticulate embeds a Python session within your R session, enabling seamless, high-performance interoperability. If you are an R developer that uses Python for some of your work or a member of a data science team that uses both languages, reticulate can dramatically streamline your workflow!

Source: https://rstudio.github.io/reticulate/
Generic Python wrapping

**reticulate**

- Written to support `tensorflow` and `keras`
- Already used by several packages including
  - `greta`: think stan or bugs, but on tensorflow
  - `spacyr`: accesses the `spaCy` NLP engine
  - `h2o4gpu`: access to `h2o.ai` GPU-based ML solvers
- Also used by `XRPython`
- Uses Rcpp
The **RcppCNPy** package lets us load and save NumPy files (by wrapping the C library **cnpy**).

```r
library(RcppCNPy)
mat <- npyLoad("fmat.npy")
vec <- npyLoad("fvec.npy")

mat2 <- npyLoad("fmat.npy.gz")
```
But **reticulate** lets us load and save NumPy files directly!

```r
library(reticulate)
np <- import("numpy")
mat <- np$load("fmat.npy")
vec <- np$load("fvec.npy")

compressed data: import gzip
gz <- import("gzip")
use it to create handle to uncompressed file
mat2 <- np$load(gz$GzipFile("fmat.npy.gz","r"))
```

See the vignettes in the RcppCNPy package for more.
**Other Approaches**
Simple service definition
Define your service using Protocol Buffers, a powerful binary serialization toolset and language.

Source: https://grpc.io

Works across languages and platforms
Automatically generate idiomatic client and server stubs for your service in a variety of languages and platforms.

Source: https://grpc.io
Different Approach

- define an *interface* (as Protocol Buffer)
- have code generated for both *server* and *client* side
- across OSs: Linux, Windows, Android, iOS, ...
- across languages: C++, Python, Go, Javascript, Ruby, C#, PHP, ...
Apache Arrow
A cross-language development platform for in-memory data

Source: https://arrow.apache.org/
xtensor

Multi-dimensional arrays with broadcasting and lazy computing - all open-source.

Introduction

xtensor is a C++ library meant for numerical analysis with multi-dimensional array expressions.

xtensor provides

- an extensible expression system enabling lazy broadcasting
- an API following the idioms of the C++ standard library.
- tools to manipulate array expressions and build upon xtensor.

Source: http://quantstack.net/xtensor
SUMMARY
Key Points

- Statistics is now a computational discipline
- Within Statistics, the R language is the *lingua franca*
- Rcpp permits *extending* R in (relatively) easy ways
- Other approaches exist, some build upon Rcpp
- *Interfaces to other software are part of R.*
Appendix: More on Rcpp
Documentation and Examples

- The package comes with nine pdf vignettes, and help pages.
- The introductory vignettes are now published (Rcpp and RcppEigen in *J Stat Software*, RcppArmadillo in *Comp Stat & Data Anlys*, Rcpp again in *TAS*)
- The rcpp-devel list is *the* recommended resource, generally very helpful, and fairly low volume.
- StackOverflow has a fair number of posts too.
- And a number of blog posts introduce/discuss features.
### Rcpp Gallery

**Featured Articles**
- Quick conversion of a list of lists into a data frame — John Mellin
- This post shows one method for creating a data frame quickly
- Passing user-supplied C++ functions — Dirk Eddelbuettel
- This example shows how to select user-supplied C++ functions
- Using Rcpp to access the C API of Rcpp — Dirk Eddelbuettel
- This post shows how to use the exported API functions of Rcpp
- Timing normal RNGs — Dirk Eddelbuettel
- This post compares drawing N(0,1) vectors from R, Boost and C++11
- A first lambda function with C++11 and Rcpp — Dirk Eddelbuettel
- This post shows how to play with lambda functions in C++11
- First steps in using C++11 with Rcpp — Dirk Eddelbuettel
- This post shows how to experiment with C++11 features
- Using Rcout for output synchronised with R — Dirk Eddelbuettel
- This post shows how to use Rcout (and Reen) for output
- Using the Rcpp sugar function clamp — Dirk Eddelbuettel
- This post illustrates the sugar function clamp
- Using the Rcpp Timer — Dirk Eddelbuettel
- This post shows how to use the Timer class in Rcpp
- Calling R Functions from C++ — Dirk Eddelbuettel
- This post discusses calling R functions from C++

**Recently Published**
- Apr 12, 2013 » Using the RcppArmadillo based implementation of R's sample() — Christian Gunning and Jonathan Dursley
- Apr 3, 2013 » Dynamic Wrapping and Recursion with Rcpp — Kevin Ushey
- Mar 14, 2013 » Using Bigmemory with Rcpp — Michael Kane
- Mar 12, 2013 » Generating a multivariate gaussian distribution using RcppArmadillo — Ahmadou Dicko
- Feb 27, 2013 » Fast factor generation with Rcpp — Kevin Ushey
On sale since June 2013.
Thank you!

slides http://dirk.eddelbuettel.com/presentations/
web http://dirk.eddelbuettel.com/
mail dirk@eddelbuettel.com
github @eddelbuettel
twitter @eddelbuettel