A HANDS-ON INTRODUCTION TO RCPP

Dirk Eddelbuettel

31 July 2016

ASA Professional Development Continuing Education Course
Joint Statistical Meetings (JSM)
Chicago, IL
Overview

Outline

- Motivation
- (Very Brief) C++ Basics
- Getting Started
- Rcpp and the R API
- Applications
- Examples
- Packaging
Motivation
Thanks to John Chambers for sending me high-resolution scans of the covers of his books.
A Simple Example

```r
xx <- faithful[, "eruptions"]
fit <- density(xx)
plot(fit)
```
A Simple Example

density.default(x = xx)

N = 272 Bandwidth = 0.3348

Rcpp Course @ JSM 2016
xx <- faithful[, "eruptions"]
fit1 <- density(xx)
fit2 <- replicate(10000, {
 x <- sample(xx, replace=TRUE);
 density(x, from=min(fit1$x), to=max(fit1$x))$y
})
fit3 <- apply(fit2, 1, quantile, c(0.025, 0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x, rev(fit1$x)), c(fit3[1], rev(fit3[2])),
 col = 'grey', border=FALSE)
lines(fit1)
A Simple Example - Refined

density.default(x = xx)

N = 272 Bandwidth = 0.3348

Density

N = 272 Bandwidth = 0.3348
R enables us to

- work interactively
- explore and visualize data
- access, retrieve and/or generate data
- summarize and report into pdf, html, ...

making it the key language for statistical computing, and a preferred environment for many data analysts.
So Why R?

R has always been extensible via

- C via a bare-bones interface described in *Writing R Extensions*
- Fortran which is also used internally by R
- Java via `rJava` by Simon Urbanek
- C++ but essentially at the bare-bones level of C

So while *in theory* this always worked – it was tedious *in practice*
Chambers (2008), opens Chapter 11 *Interfaces I: Using C and Fortran*:

Since the core of R is in fact a program written in the C language, it’s not surprising that the most direct interface to non-R software is for code written in C, or directly callable from C. All the same, including additional C code is a serious step, with some added dangers and often a substantial amount of programming and debugging required. You should have a good reason.
Chambers (2008), opens Chapter 11 *Interfaces I: Using C and Fortran:*

Since the core of R is in fact a program written in the C language, it’s not surprising that the most direct interface to non-R software is for code written in C, or directly callable from C. All the same, including additional C code is a serious step, with some added dangers and often a substantial amount of programming and debugging required. You should have a good reason.
Chambers proceeds with this rough map of the road ahead:

Against:
- It’s more work
- Bugs will bite
- Potential platform dependency
- Less readable software

In Favor:
- New and trusted computations
- Speed
- Object references
The Why? boils down to:

- **speed**: Often a good enough reason for us ... and a focus for us in this workshop.
- **new things**: We can bind to libraries and tools that would otherwise be unavailable in R
- **references**: Chambers quote from 2008 foreshadowed the work on *Reference Classes* now in R and built upon via Rcpp Modules, Rcpp Classes (and also RcppR6)
And Why C++?

- Asking Google leads to tens of million of hits.
- Wikipedia: C++ is a statically typed, free-form, multi-paradigm, compiled, general-purpose, powerful programming language.
- C++ is industrial-strength, vendor-independent, widely-used, and still evolving.
- In science & research, one of the most frequently-used languages: If there is something you want to use / connect to, it probably has a C/C++ API.
- As a widely used language it also has good tool support (debuggers, profilers, code analysis).
Why C++?

Scott Meyers: *View C++ as a federation of languages*

- C provides a rich inheritance and interoperability as Unix, Windows, ... are all build on C.
- *Object-Oriented C++* (maybe just to provide endless discussions about exactly what OO is or should be)
- *Templated C++* which is mighty powerful; template meta programming unequalled in other languages.
- *The Standard Template Library (STL)* is a specific template library which is powerful but has its own conventions.
- C++11 and C++14 (and beyond) add enough to be called a fifth language.

NB: Meyers original list of four languages appeared years before C++11.
Why C++?

- Mature yet current
- Strong performance focus:
 - *You don’t pay for what you don’t use*
 - *Leave no room for another language between the machine level and C++*
- Yet also powerfully abstract and high-level
- C++11 is a big deal giving us new language features
- While there are complexities, Rcpp users are mostly shielded
Thanks to John Chambers for a scanned copy of this sketch.

Rcpp Course @ JSM 2016
R offers us the best of both worlds:

- **Compiled** code with
 - Access to proven libraries and algorithms in C/C++/Fortran
 - Extremely high performance (in both serial and parallel modes)

- **Interpreted** code with
 - An accessible high-level language made for *Programming with Data*
 - An interactive workflow for data analysis
 - Support for rapid prototyping, research, and experimentation
Why Rcpp?

- Easy to learn as it really does not have to be that complicated
- Easy to use as it avoids build and OS system complexities thanks to the R infrastructure
- Expressive as it allows for vectorised C++ using Rcpp Sugar
- Seamless access to all R objects: vector, matrix, list, S3/S4/RefClass, Environment, Function, ...
- Speed gains for a variety of tasks Rcpp excels precisely where R struggles: loops, function calls, ...
- Extensions greatly facilitates access to external libraries using eg Rcpp modules
Consider a function defined as

\[f(n) \quad \text{such that} \quad \begin{cases}
 n & \text{when } n < 2 \\
 f(n - 1) + f(n - 2) & \text{when } n \geq 2
\end{cases} \]
R implementation and use:

```r
f <- function(n) {
  if (n < 2) return(n)
  return(f(n-1) + f(n-2))
}

## Using it on first 11 arguments
sapply(0:10, f)

## [1]  0  1  1  2  3  5  8 13 21 34 55
```
Timing:

```r
library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]
```

<table>
<thead>
<tr>
<th></th>
<th>test</th>
<th>replications</th>
<th>elapsed</th>
<th>relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f(10)</td>
<td>100</td>
<td>0.020</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>f(15)</td>
<td>100</td>
<td>0.222</td>
<td>11.1</td>
</tr>
<tr>
<td>3</td>
<td>f(20)</td>
<td>100</td>
<td>2.490</td>
<td>124.5</td>
</tr>
</tbody>
</table>
A C or C++ solution can be equally simple

```c
int g(int n) {
    if (n < 2) return n;
    return g(n-1) + g(n-2);
}
```

But how do we call it from R?
But Rcpp makes this much easier:

```cpp
Rcpp::cppFunction("int g(int n) {
    if (n < 2) return(n);
    return(g(n-1) + g(n-2)); }")
sapply(0:10, g)
```

[1] 0 1 1 2 3 5 8 13 21 34 55
Speed Example Comparing R and C++

Timing:

```r
Rcpp::cppFunction("int g(int n) {
    if (n < 2) return(n);
    return(g(n-1) + g(n-2)); }")

library(rbenchmark)
benchmark(f(25), g(25), order="relative")[,1:4]
```

```r
## test replications elapsed relative
## 2 g(25) 100 0.066 1.000
## 1 f(25) 100 28.379 429.985
```

A nice gain of a few orders of magnitude.
Another Angle on Speed

Run-time performance is just one example.

Time to code is another metric.

We feel quite strongly that helps you code more succinctly, leading to fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++ development quite nicely (e.g., the compiler error message parsing is very helpful) and also helps with package building.
(Very Brief) C++ Basics
Programming with C++

- C++ Basics
- Debugging
- Best Practices

and then on to Rcpp itself
Compiled not Interpreted
Need to compile and link

```c++
#include <cstdio>

int main(void) {
    printf("Hello, world!\n");
    return 0;
}
```
Or streams output rather than `printf`

```cpp
#include <iostream>

int main(void) {
    std::cout << "Hello, world!" << std::endl;
    return 0;
}
```

Compiled not Interpreted
g++ -o will compile and link

We will now look at an examples with explicit linking.
#include <cstdio>
#define MATHLIB_STANDALONE
#include <Rmath.h>

int main(void) {
 printf("N(0,1) 95th percentile %9.8f\n", qnorm(0.95, 0.0, 1.0, 1, 0));
}

We may need to supply:

- header location via `-I`,
- library location via `-L`,
- library via `-llibraryname`

```bash

g++ -I/usr/include -c qnorm_rmath.cpp
g++ -o qnorm_rmath qnorm_rmath.o -L/usr/lib -lRmath
```
R is dynamically typed: `x <- 3.14; x <- "foo"` is valid.

In C++, each variable must be declared before first use.

Common types are `int` and `long` (possibly with `unsigned`), `float` and `double`, `bool`, as well as `char`.

No standard string type, though `std::string` is close.

All these variables types are scalars which is fundamentally different from R where everything is a vector.

`class` (and `struct`) allow creation of composite types; classes add behaviour to data to form `objects`.

Variables need to be declared, cannot change
C++ is a Better C

- control structures similar to what R offers: `for`, `while`, `if`, `switch`
- functions are similar too but note the difference in positional-only matching, also same function name but different arguments allowed in C++
- pointers and memory management: very different, but lots of issues people had with C can be avoided via STL (which is something Rcpp promotes too)
- sometimes still useful to know what a pointer is ...
This is a second key feature of C++, and it does it differently from S3 and S4.

```cpp
struct Date {
    unsigned int year;
    unsigned int month;
    unsigned int day;
};

struct Person {
    char firstname[20];
    char lastname[20];
    struct Date birthday;
    unsigned long id;
};
```
Object-orientation in the C++ sense matches data with code operating on it:

```cpp
class Date {
private:
    unsigned int year;
    unsigned int month;
    unsigned int date;
public:
    void setDate(int y, int m, int d);
    int getDay();
    int getMonth();
    int getYear();
}
```
The STL promotes *generic* programming.

For example, the sequence container types *vector*, *deque*, and *list* all support

- `push_back()` to insert at the end;
- `pop_back()` to remove from the front;
- `begin()` returning an iterator to the first element;
- `end()` returning an iterator to just after the last element;
- `size()` for the number of elements;

but only *list* has `push_front()` and `pop_front()`.

Other useful containers: *set*, *multiset*, *map* and *multimap*.
Traversal of containers can be achieved via *iterators* which require suitable member functions `begin()` and `end()`:

```cpp
std::vector<double>::const_iterator si;
for (si=s.begin(); si != s.end(); si++)
    std::cout << *si << std::endl;
```
Another key STL part are *algorithms*:

```cpp
double sum = accumulate(s.begin(), s.end(), 0);
```

Some other STL algorithms are

- **find** finds the first element equal to the supplied value
- **count** counts the number of matching elements
- **transform** applies a supplied function to each element
- **for_each** sweeps over all elements, does not alter
- **inner_product** inner product of two vectors
Template programming provides a ‘language within C++’: code gets evaluated during compilation.

One of the simplest template examples is

```cpp
template <typename T>
const T& min(const T& x, const T& y) {
    return y < x ? y : x;
}
```

This can now be used to compute the minimum between two `int` variables, or `double`, or in fact any `admissible type` providing an `operator<()` for less-than comparison.
Another template example is a class squaring its argument:

```cpp
template <typename T>
class square : public std::unary_function<T, T> {
public:
    T operator()(T t) const {
        return t * t;
    }
};
```

which can be used along with STL algorithms:

```cpp
transform(x.begin(), x.end(), square);
```
Books by Meyers are excellent

I also like the (free) C++ Annotations

C++ FAQ

Resources on StackOverflow such as

- general info and its links, eg
- booklist
Some tips:

- Generally painful, old-school `printf()` still pervasive
- Debuggers go along with compilers: `gdb` for `gcc` and `g++`; `lldb` for the clang / llvm family
- Extra tools such as `valgrind` helpful for memory debugging
- “Sanitizer” (ASAN/UBSAN) in newer versions of `g++` and `clang++`
Some Tips

- Version control: highly recommended to become familiar with `git` or `svn`
- Editor: *in the long-run*, recommended to learn productivity tricks for one editor: emacs, vi, eclipse, RStudio, ...
Getting Started with Rcpp
Basic Usage: evalCpp()

`evalCpp()` evaluates a single C++ expression. Includes and dependencies can be declared.

This allows us to quickly check C++ constructs.

```r
library(Rcpp)
evalCpp("2 + 2")  # simple test

## [1] 4
```

```r
evalCpp("std::numeric_limits<double>::max()")

## [1] 1.797693e+308
```
cppFunction() creates, compiles and links a C++ file, and creates an R function to access it.

```r
cppFunction(
  "
  int exampleCpp11() {
    auto x = 10;
    return x;
  }",
  plugins=c("cpp11"))
exampleCpp11()  # same identifier as C++ function
```
sourceCpp() is the actual workhorse behind evalCpp() and cppFunction(). It is described in more detail in the package vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package inline, but provides even more ease-of-use, control and helpers – freeing us from boilerplate scaffolding.

A key feature are the plugins and dependency options: other packages can provide a plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen, RcppGSL).
Basic Usage: RStudio

- R Script
- R Markdown
- Text File
- C++ File
- R Sweave
- R HTML
- R Presentation
- R Documentation
The following file gets created:

```cpp
#include <Rcpp.h>

using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar). ...

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {
    return x * 2;
}

// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.

/*** R
timesTwo(42)
*/
```
So what just happened?

- We defined a simple C++ function
- It operates on a numeric vector argument
- We asked Rcpp to ‘source it’ for us
- Behind the scenes Rcpp creates a wrapper
- Rcpp then compiles, links, and loads the wrapper
- The function is available in R under its C++ name
Basic Usage: Packages

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can be created by `Rcpp.package.skeleton()`.

The vignette Rcpp-packages has fuller details.

As of July 2016, there are almost 700 packages on CRAN which use Rcpp, and a further 72 on BioConductor — with working, tested, and reviewed examples.
Best way to organize R code with Rcpp is via a package:
Rcpp.package.skeleton() and its derivatives. e.g. RcppArmadillo.package.skeleton() create working packages.

// another simple example: outer product of a vector, returning a matrix

// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {
 arma::mat m = x * x.t();
 return m;
}

// and the inner product returns a scalar

// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {
 double v = arma::as_scalar(x.t() * x);
 return v;
}
Two ways to link to external libraries

- *With linking of libraries:* Do what RcppGSL does and use hooks in the package startup to store compiler and linker flags, pass to environment variables

- *With C++ template headers only:* Do what RcppArmadillo and other do and just point to the headers

More details in extra vignettes.
Rcpp: A Better C API for R
The R API

In a nutshell:

- R is a C program, and C programs can be extended
- R exposes an API with C functions and MACROS
- R also supports C++ out of the box with `.cpp` extension
- R provides several calling conventions:
 - `.C()` provides the first interface, is fairly limited, and discouraged
 - `.Call()` provides access to R objects at the C level
 - `.External()` and `.Fortran()` exist but can be ignored
- We will use `.Call()` exclusively
At the C level, everything is a SEXP, and every .Call() access uses this interface pattern:

```c
SEXP foo(SEXP x1, SEXP x2){
    ...
}
```

which can be called from R via

```r
.Call("foo", var1, var2)
```

Note that we need to compile, and link, and load, this manually in wasy which are OS-dependent.
#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b) {
 int na, nb, nab;
 double *xa, *xb, *xab;
 SEXP ab;

 a = PROTECT(coerceVector(a, REALSXP));
 b = PROTECT(coerceVector(b, REALSXP));
 na = length(a);
 nb = length(b);
 nab = na + nb - 1;
 ab = PROTECT(allocVector(REALSXP, nab));
 xa = REAL(a);
 xb = REAL(b);
 xab = REAL(ab);
 for (int i = 0; i < nab; i++)
 xab[i] = 0.0;
 for (int i = 0; i < na; i++)
 for (int j = 0; j < nb; j++)
 xab[i + j] += xa[i] * xb[j];
 UNPROTECT(3);
 return ab;
}
Example: Convolution

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector convolve2cpp(Rcpp::NumericVector a, Rcpp::NumericVector b) {
    int na = a.length(), nb = b.length();
    Rcpp::NumericVector ab(na + nb - 1);
    for (int i = 0; i < na; i++)
        for (int j = 0; j < nb; j++)
            ab[i + j] += a[i] * b[j];
    return(ab);
}
```
The **RObject** can be thought of as a basic class behind many of the key classes in the **Rcpp** API.

- **RObject** (and our core classes) provide a thin wrapper around SEXP objects.
- This is sometimes called a *proxy object* as we do not copy the R object.
- **RObject** manages the life cycle, the object is protected from garbage collection while in scope—so we do not have to do memory management.
- Core classes define several member common functions common to all objects (e.g. `isS4()`, `attributeNames`, ...); classes then add their specific member functions.
Overview of Classes: Comparison

<table>
<thead>
<tr>
<th>Rcpp class</th>
<th>R typeof</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Integer(Vector</td>
<td>Matrix)**</td>
</tr>
<tr>
<td>**Numeric(Vector</td>
<td>Matrix)**</td>
</tr>
<tr>
<td>**Logical(Vector</td>
<td>Matrix)**</td>
</tr>
<tr>
<td>**Character(Vector</td>
<td>Matrix)**</td>
</tr>
<tr>
<td>**Raw(Vector</td>
<td>Matrix)**</td>
</tr>
<tr>
<td>**Complex(Vector</td>
<td>Matrix)**</td>
</tr>
<tr>
<td>List</td>
<td>list (aka generic vectors) ...</td>
</tr>
<tr>
<td>**Expression(Vector</td>
<td>Matrix)**</td>
</tr>
<tr>
<td>Environment</td>
<td>environment</td>
</tr>
<tr>
<td>Function</td>
<td>function</td>
</tr>
<tr>
<td>XPtr</td>
<td>externalptr</td>
</tr>
<tr>
<td>Language</td>
<td>language</td>
</tr>
<tr>
<td>S4</td>
<td>S4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Overview of key vector / matrix classes

- **IntegerVector** vectors of type `integer`
- **NumericVector** vectors of type `numeric`
- **RawVector** vectors of type `raw`
- **LogicalVector** vectors of type `logical`
- **CharacterVector** vectors of type `character`
- **GenericVector** generic vectors implementing `list` types
Key operations for all vectors, styled after STL operations:

- `operator()` access elements via `()`
- `operator[]` access elements via `[]`
- `length()` also aliased to `size()`
- `fill(u)` fills vector with value of `u`
- `begin()` pointer to beginning of vector, for iterators
- `end()` pointer to one past end of vector
- `push_back(x)` insert `x` at end, grows vector
- `push_front(x)` insert `x` at beginning, grows vector
- `insert(i, x)` insert `x` at position `i`, grows vector
- `erase(i)` remove element at position `i`, shrinks vector
A simpler version of \texttt{prod()} for integer vectors:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
int intVec1a(Rcpp::IntegerVector vec) {
    int prod = 1;
    for (int i=0; i<vec.size(); i++) {
        prod *= vec[i];
    }
    return prod;
}
```
We can also do this for STL vector types:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
int intVec1b(std::vector<int> vec) {
    int prod = 1;
    for (unsigned int i=0; i<vec.size(); i++) {
        prod *= vec[i];
    }
    return prod;
}
```
Loopless for `Rcpp::IntegerVector`:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
int intVec2a(Rcpp::IntegerVector vec) {
    int prod =
    std::accumulate(vec.begin(),
                    vec.end(), 1,
                    std::multiplies<int>());

    return prod;
}
```
Loopless for STL’s `std::vector<int>`:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
int intVec2b(std::vector<int> vec) {
    int prod =
        std::accumulate(vec.begin(),
                        vec.end(), 1,
                        std::multiplies<int>());

    return prod;
}
```
This example generalizes sum of squares by supplying an exponentiation argument:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
double numVecEx1(Rcpp::NumericVector vec,
                 double p = 2.0) {
    double sum = 0.0;
    for (int i=0; i<vec.size(); i++) {
        sum += pow(vec[i], p);
    }
    return sum;
}
```
A second example alters a numeric vector:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
NumericVector f(NumericVector m) {
    m(0) = 0;
    return m;
}
```
Calling the last example with an integer vector:

```
Rcpp::sourceCpp("code/numVecEx3.cpp")

x <- 1:3          # same as c(1L, 2L, 3L)
print(data.frame(x=x, fx=f(x)), row.names=FALSE)
```

```r
## x fx
## 1 0
## 2 2
## 3 3
```
Calling the last example with a numeric vector:

```
x <- c(1.0, 2.0, 3.0)
print(data.frame(x=x, fx=f(x)), row.names=FALSE)
```

```
## x fx
## 0 0
## 2 2
## 3 3
```

We pass `x` as a SEXP which is a pointer.

Use `Rcpp::clone()` for deep copy.
CONSTRUCTORS

SEXP x;
NumericVector y(x); // from a SEXP

// cloning (deep copy)
NumericVector z = clone(y);

// of a given size (all elements set to 0.0)
NumericVector y(10);

// ... specifying the value
NumericVector y(10, 2.0);

// with given elements
NumericVector y = NumericVector::create(1.0, 2.0);
NumericMatrix

NumericMatrix is a specialisation of NumericVector with a dimension attribute:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericMatrix takeRoot(Rcpp::NumericMatrix mm) {
    Rcpp::NumericMatrix m = Rcpp::clone<Rcpp::NumericMatrix>(mm);
    std::transform(m.begin(), m.end(),
                   m.begin(), ::sqrt);

    return m;
}
```
Rcpp::sourceCpp("code/numMatEx1.cpp")

takeRoot(matrix((1:9)*1.0, 3, 3);)

[,1] [,2] [,3]
[1,] 1.000000 2.000000 2.645751
[2,] 1.414214 2.236068 2.828427
[3,] 1.732051 2.449490 3.000000
We prefer Armadillo for math though – more later.

```cpp
// [[Rcpp::depends(RcppArmadillo)]]

#include <RcppArmadillo.h>

// [[Rcpp::export]]
Rcpp::List armafun(arma::mat m1) {
    arma::mat m2 = m1 + m1;
    arma::mat m3 = m1 * 2;
    return Rcpp::List::create(m1, m2);
}
```
Quick List:

- **LogicalVector** very similar to **IntegerVector**: two possible values of a logical, or boolean, type – plus **NA**.

- **CharacterVector** can be used for vectors of character vectors (“strings”).

- **RawVector** can be used for vectors of raw strings (used eg in serialization).

- **Named** can be used to assign named elements in a vector, similar to R construct `a <- c(foo=3.14, bar=42)`.

- **List** (aka **GenericVector**) is the catch-all, different-types-allowed container, more below.
List types can be used to receive (named) values to R. As lists can be nested, each element type is allowed.

```cpp
double someFunction(Rcpp::List params) {
    std::string method =
        Rcpp::as<std::string>(params["method"]);
    double tolerance =
        Rcpp::as<double>(params["tolerance"]);
    Rcpp::NumericVector startvalues =
        params["startvalues"];

    // ... more code here ...
```
Similarly, **List** types can return multiple values to R.

```cpp
return Rcpp::List::create(Rcpp::Named("method", method),
                          Rcpp::Named("tolerance", tolerance),
                          Rcpp::Named("iterations", iterations),
                          Rcpp::Named("parameters", parameters));
```
DataFrame can receive and return values.

```cpp
Rcpp::IntegerVector v =
    Rcpp::IntegerVector::create(1, 2, 3);
std::vector<std::string> s =
    { "a", "b", "c" }; // C++11
return Rcpp::DataFrame::create(Rcpp::Named("a") = v,
                                Rcpp::Named("b") = s);
```

But because a `data.frame` is a (internally) a list of vectors, not as easy to subset by rows as in R.
The Function class can access R functions we pass in:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]

SEXP fun(Rcpp::Function f, SEXP x) {
    return f(x);
}
```
sourceCpp("code/functionEx1.cpp")
fun(sort, sample(1:5, 10, TRUE))

[1] 1 1 2 3 4 5 5 5 5 5

fun(sort, sample(LETTERS[1:5], 10, TRUE))

[1] "A" "A" "B" "C" "C" "D" "D" "E" "E" "E"
We can also instantiate functions directly:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector fun() {
  Rcpp::Function rt("rt");
  return rt(3, 4);
}
```
sourceCpp("code/functionEx2.cpp")
set.seed(42)
fun()

[1] 2.057339 0.100706 -0.075780

set.seed(42)
rt(3, 4)

[1] 2.057339 0.100706 -0.075780
```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector fun() {
    Rcpp::Environment stats("package:stats");
    Rcpp::Function rt = stats["rt"];
    return rt(3, Rcpp::Named("df", 4));
}
```
sourceCpp("code/environmentEx1.cpp")
set.seed(42)
fun()

[1] 2.057339 0.100706 -0.075780

set.seed(42)
rt(3, 4)

[1] 2.057339 0.100706 -0.075780
S4 objects can be accessed as well as created.

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::S4 fun(Rcpp::S4 x) {
 x.slot("x") = 42;
 return x;
}
library(methods); sourceCpp("code/s4ex1.cpp")

setClass("S4ex", contains="character",
 representation(x="numeric"))

x <- new("S4ex", "bla", x=10); x

An object of class "S4ex"
[1] "bla"
Slot "x":
[1] 10

fun(x)

An object of class "S4ex"
[1] "bla"
Slot "x":
[1] 42
APPLICATIONS
As of July 2016, almost 700 packages on CRAN use Rcpp

Single biggest “application” is RcppArmadillo for linear algebra
Armadillo

C++ linear algebra library

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.
- The syntax (API) is deliberately similar to Matlab.
- Integer, floating point and complex numbers are supported, as well as a subset of trigonometric and statistics functions.
- Various matrix decompositions are provided through optional integration with LAPACK, or one of its high performance drop-in replacements (such as the multi-threaded Intel MKL, or AMD ACML, or OpenBLAS libraries).
- A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries; this is automatically accomplished through template meta-programming.
- Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.
- The library is open-source software, and is distributed under a license that is useful in both open-source and commercial/proprietary contexts.
- Primarily developed at NICTA (Australia) by Conrad Sanderson, with contributions from around the world.
- Download latest version.
What is Armadillo?

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.
- The syntax is deliberately similar to Matlab.
- Integer, floating point and complex numbers are supported.
- A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries.
- Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.
• Provides integer, floating point and complex vectors, matrices and fields (3d) with all the common operations.
• Very good documentation and examples
 • website,
 • technical report (Sanderson, 2010)
 • CSDA paper (Sanderson and Eddelbuettel, 2014)
 • JOSS paper (Sanderson and Curtin, 2016).
• Modern code, building on / extending earlier matrix libraries.
• Responsive and active maintainer, frequent updates.
• Used eg by MLPACK, see Curtin et al (JMLR, 2013).
RcppArmadillo Highlights

- Template-only builds—no linking, and available whereever R and a compiler work (but Rcpp is needed)
- Easy to use, just add `LinkingTo: RcppArmadillo, Rcpp` to `DESCRIPTION` (i.e. no added cost beyond Rcpp)
- Really easy from R via Rcpp and automatic converters
- Frequently updated, widely used
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::vec getEigenValues(arma::mat M) {
 return arma::eig_sym(M);
}

Example: Eigen values
Example: Eigen values

```r
Rcpp::sourceCpp("code/arma_eigenvalues.cpp")
M <- cbind(c(1,-1), c(-1,1))
getEigenValues(M)

## [,1]
## [1,] 0
## [2,] 2

eigen(M)$values

## [1] 2 0
```
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// another simple example: outer product of a vector, returning a matrix
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {
 arma::mat m = x * x.t();
 return m;
}

// and the inner product returns a scalar
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {
 double v = arma::as_scalar(x.t() * x);
 return v;
}
Faster Linear Model with FastLm

- Implementations of `fastLm()` have been a staple during development of Rcpp
- First version was in response to a question by Ivo Welch on r-help.
- Request was for a fast function to estimate parameters – and their standard errors – from a linear model,
- It used GSL functions to estimate $\hat{\beta}$ as well as its standard errors $\hat{\sigma}$ – as `lm.fit()` in R only returns the former.
- It has since been reimplemented for RcppArmadillo and RcppEigen
#include <Rcpp.h>

extern "C" SEXP fastLm(SEXP xs, SEXP ys) {

 try {
 Rcpp::NumericVector yr(ys); // creates Rcpp vector from SEXP
 Rcpp::NumericMatrix Xr(xs); // creates Rcpp matrix from SEXP
 int n = Xr.nrow(), k = Xr.ncol();
 arma::mat X(Xr.begin(), n, k, false); // reuses memory, avoids extra copy
 arma::colvec y(yr.begin(), yr.size(), false);

 arma::colvec coeff = arma::solve(X, y); // fit model y ~ X
 arma::colvec res = y - X*coeff; // residuals
 double s2 = std::inner_product(res.begin(), res.end(), res.begin(), 0.0)/(n - k);
 arma::colvec std_err = arma::sqrt(s2*arma::diagvec(arma::pinv(arma::trans(X)*X)));

 return Rcpp::List::create(Rcpp::Named("coefficients") = coeff,
 Rcpp::Named("stderr") = std_err,
 Rcpp::Named("df.residual") = n - k);
 }
 catch (std::exception &ex) {
 forward_exception_to_r(ex);
 }
 catch(...) {
 ::Rf_error("c++ exception (unknown reason)");
 }

 return R_NilValue; // -Wall
}
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp;
using namespace arma;

// [[Rcpp::export]]
List fastLm(NumericVector yr, NumericMatrix Xr) {
 int n = Xr.nrow(), k = Xr.ncol();
 mat X(Xr.begin(), n, k, false);
 colvec y(yr.begin(), yr.size(), false);

 colvec coef = solve(X, y);
 colvec resid = y - X*coef;

 double sig2 = as_scalar(trans(resid)*resid/(n-k));
 colvec stderrest = sqrt(sig2 * diagvec(inv(trans(X)*X)));

 return List::create(Named("coefficients") = coef,
 Named("stderr") = stderrest,
 Named("df.residual") = n - k);
}
```cpp
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp;
using namespace arma;

// [[Rcpp::export]]
List fastLm(const arma::mat& X, const arma::colvec& y) {
  int n = X.n_rows, k = X.n_cols;

  colvec coef = solve(X, y);
  colvec resid = y - X*coef;

  double sig2 = as_scalar(trans(resid)*resid/(n-k));
  colvec stderrest = sqrt(sig2 * diagvec( inv(trans(X)*X)));

  return List::create(Named("coefficients") = coef,
                       Named("stderr") = stderrest,
                       Named("df.residual") = n - k);
}
```
arma::colvec y = Rcpp::as<arma::colvec>(ys);
arma::mat X = Rcpp::as<arma::mat>(Xs);

Convenient, yet incurs an additional copy. Next variant uses two steps, but only a pointer to objects is copied:

Rcpp::NumericVector yr(ys);
Rcpp::NumericMatrix Xr(Xs);
int n = Xr.nrow(), k = Xr.ncol();
arma::mat X(Xr.begin(), n, k, false);
arma::colvec y(yr.begin(), yr.size(), false);

Better if performance is a concern. But now RcppArmadillo has efficient const references too.
```r
edd@don:~$ Rscript ~/git/rcpparmadillo/inst/examples/fastLm.r

<table>
<thead>
<tr>
<th>test</th>
<th>replications</th>
<th>relative</th>
<th>elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>fLmConstRef(X, y)</td>
<td>5000</td>
<td>1.000</td>
<td>0.245</td>
</tr>
<tr>
<td>fLmTwoCasts(X, y)</td>
<td>5000</td>
<td>1.045</td>
<td>0.256</td>
</tr>
<tr>
<td>fLmSEXP(X, y)</td>
<td>5000</td>
<td>1.094</td>
<td>0.268</td>
</tr>
<tr>
<td>fLmOneCast(X, y)</td>
<td>5000</td>
<td>1.098</td>
<td>0.269</td>
</tr>
<tr>
<td>fastLmPureDotCall(X, y)</td>
<td>5000</td>
<td>1.118</td>
<td>0.274</td>
</tr>
<tr>
<td>lm.fit(X, y)</td>
<td>5000</td>
<td>1.673</td>
<td>0.410</td>
</tr>
<tr>
<td>fastLmPure(X, y)</td>
<td>5000</td>
<td>1.763</td>
<td>0.432</td>
</tr>
<tr>
<td>fastLm(frm, data = trees)</td>
<td>5000</td>
<td>30.612</td>
<td>7.500</td>
</tr>
<tr>
<td>lm(frm, data = trees)</td>
<td>5000</td>
<td>30.796</td>
<td>7.545</td>
</tr>
</tbody>
</table>

## continued below
```
continued from above

<table>
<thead>
<tr>
<th>Test</th>
<th>Replications</th>
<th>Relative</th>
<th>Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>fLmTwoCasts(X, y)</td>
<td>50000</td>
<td>1.000</td>
<td>2.327</td>
</tr>
<tr>
<td>fLmSEXP(X, y)</td>
<td>50000</td>
<td>1.049</td>
<td>2.442</td>
</tr>
<tr>
<td>fLmConstRef(X, y)</td>
<td>50000</td>
<td>1.050</td>
<td>2.444</td>
</tr>
<tr>
<td>fLmOneCast(X, y)</td>
<td>50000</td>
<td>1.150</td>
<td>2.677</td>
</tr>
<tr>
<td>fastLmPureDotCall(X, y)</td>
<td>50000</td>
<td>1.342</td>
<td>3.123</td>
</tr>
<tr>
<td>fastLmPure(X, y)</td>
<td>50000</td>
<td>1.988</td>
<td>4.627</td>
</tr>
<tr>
<td>lm.fit(X, y)</td>
<td>50000</td>
<td>2.141</td>
<td>4.982</td>
</tr>
</tbody>
</table>
Simulating a VAR(1) system of k variables:

$$X_t = X_{t-1}B + E_t$$

where X_t is a row vector of length k, B is a k by k matrix and E_t is a row of the error matrix of k columns.

We use $k = 2$ for this example.
VAR(1) in R

parameter and error terms used throughout
a <- matrix(c(0.5, 0.1, 0.1, 0.5), nrow=2)
e <- matrix(rnorm(10000), ncol=2)

Let's start with the R version
rSim <- function(coeff, errors) {
 simdata <- matrix(0, nrow(errors), ncol(errors))
 for (row in 2:nrow(errors)) {
 simdata[row,] = coeff %*% simdata[(row-1),] + errors[row,]
 }
 return(simdata)
}

rData <- rSim(a, e) # generated by R
```cpp
arma::mat rcppSim(const arma::mat& coeff,
                 const arma::mat& errors) {
    int m = errors.n_rows;
    int n = errors.n_cols;
    arma::mat simdata(m,n);
    simdata.row(0) = arma::zeros<arma::mat>(1,n);
    for (int row=1; row<m; row++) {
        simdata.row(row) = simdata.row(row-1) * coeff +
                           errors.row(row);
    }
    return simdata;
}
```
library(rbenchmark)
Rcpp::sourceCpp("code/arma_var1.cpp")

##
R> a <- matrix(c(0.5, 0.1, 0.1, 0.5), 2, 2)
##
R> e <- matrix(rnorm(10000), ncol = 2)
##
R> head(rcppSim(a, e))
[,1] [,2]
[1,] 0.0000000 0.0000000
[2,] 0.8915759 1.1792437
[3,] 0.3858789 1.0815238
[4,] 2.0054965 1.0828000
[5,] -0.1754779 0.9469223
[6,] -0.4886083 1.0468917

benchmark(rSim(a,e), rcppSim(a, e))[,1:4]

##
test replications elapsed relative
2 rcppSim(a, e) 100 0.019 1.000
1 rSim(a, e) 100 2.624 138.105
The position of an object is estimated based on past values of 6×1 state vectors X and Y for position, V_X and V_Y for speed, and A_X and A_Y for acceleration.

Position updates as a function of the speed

\[
X = X_0 + V_X dt \quad \text{and} \quad Y = Y_0 + V_Y dt,
\]

which is updated as a function of the (unobserved) acceleration:

\[
V_x = V_{x,0} + A_X dt \quad \text{and} \quad V_y = V_{y,0} + A_Y dt.
\]
% Copyright 2010 The MathWorks, Inc.
function y = kalmanfilter(z)
 dt=1;
 % Initialize state transition matrix
 A=[1 0 dt 0 0 0; 0 1 0 dt 0 0;... % [x], [y]
 0 0 1 0 dt 0; 0 0 0 1 0 dt;... % [Vx], [Vy]
 0 0 0 0 1 0 ; 0 0 0 0 0 1]; % [Ax], [Ay]
 H = [1 0 0 0 0 0; 0 1 0 0 0 0]; % Init. measurement mat
 Q = eye(6);
 R = 1000 * eye(2);
 persistent x_est p_est
 if isempty(x_est)
 x_est = zeros(6, 1);
 p_est = zeros(6, 6);
 end

 x_prd = A * x_est; % Predicted state and covariance
 p_prd = A * p_est * A' + Q;
 S = H * p_prd' * H' + R; % Estimation
 B = H * p_prd';
 klm_gain = (S \ B)';

 % Estimated state and covariance
 x_est = x_prd + klm_gain * (z - H * x_prd);
 p_est = p_prd - klm_gain * H * p_prd;
 y = H * x_est; % Compute the estimated measurements
end
function Y = kalmanM(pos)

dt=1;

%% Initialize state transition matrix
A=[1 0 dt 0 0 0;... % [x]
 0 1 dt 0 0 0;... % [y]
 0 0 1 dt 0 0;... % [Vx]
 0 0 0 1 dt;... % [Vy]
 0 0 0 0 1;... % [Ax]
 0 0 0 0 0]; % [Ay]
H = [1 0 0 0 0 0; 0 1 0 0 0 0]; % Initialize measurement matrix
Q = eye(6);
R = 1000 * eye(2);
x_est = zeros(6, 1); % x_est=[x,y,Vx,Vy,Ax,Ay]

for idx = 1:numPts
 z = pos(idx, :);
 x_prd = A * x_est; % Predicted state and covariance
 p_prd = A * p_est * A' + Q;
 S = H * p_prd' * H' + R; % Estimation
 B = H * p_prd';
 klm_gain = (S \ B)';
 x_est = x_prd + klm_gain * (z - H * x_prd); % Estimated state and covariance
 p_est = p_prd - klm_gain * H * p_prd;
 Y(idx, :) = H * x_est; % Compute the estimated measurements
end
end % of the function
FirstKalmanR <- function(pos) {
 kalmanfilter <- function(z) {
 dt <- 1
 A <- matrix(c(1, 0, dt, 0, 0, 0, 0, 1, 0, dt, 0, 0, 0, 1, 0, dt, 0, 0, 0, 0, 0, 1), 6, 6, byrow=TRUE)
 H <- matrix(c(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1), 2, 6, byrow=TRUE)
 Q <- diag(6)
 R <- 1000 * diag(2)
 xprd <- A %*% xest # predicted state and covariance
 pprd <- A %*% pest %*% t(A) + Q
 S <- H %*% t(pprd) %*% t(H) + R # estimation
 B <- H %*% t(pprd)
 kalmangain <- t(solve(S, B))
 ## estimated state and covariance, assign to vars in parent env
 xest <- xprd + kalmangain %*% (z - H %*% xprd)
 pest <- pprd - kalmangain %*% H %*% pprd
 y <- H %*% xest # compute the estimated measurements
 }
 xest <- matrix(0, 6, 1)
 pest <- matrix(0, 6, 6)
 N <- nrow(pos)
 y <- matrix(NA, N, 2)
 for (i in 1:N) y[i,] <- kalmanfilter(t(pos[i,, drop=FALSE]))
 invisible(y)
Improved in R

KalmanR <- function(pos) {
 kalmanfilter <- function(z) {
 xprd <- A %*% xest # predicted state and covariance
 pprd <- A %*% pest %*% t(A) + Q
 S <- H %*% t(pprd) %*% t(H) + R # estimation
 B <- H %*% t(pprd)
 kalmangain <- t(solve(S, B))
 xest <- xprd + kalmangain %*% (z - H %*% xprd) # est. state and covariance
 pest <- pprd - kalmangain %*% H %*% pprd # ass. to vars in parent env
 y <- H %*% xest # compute the estimated measurements
 }
 dt <- 1
 A <- matrix(c(1, 0, dt, 0, 0, 0, # x
 0, 1, 0, dt, 0, 0, # y
 0, 0, 1, 0, dt, 0, # Vx
 0, 0, 0, 1, 0, dt, # Vy
 0, 0, 0, 0, 1, 0, # Ax
 0, 0, 0, 0, 0, 1), # Ay
 6, 6, byrow = TRUE)
 H <- matrix(c(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), 2, 6, byrow = TRUE)
 Q <- diag(6)
 R <- 1000 * diag(2)
 N <- nrow(pos)
 Y <- matrix(NA, N, 2)
 xest <- matrix(0, 6, 1)
 pest <- matrix(0, 6, 6)
 for (i in 1:N) Y[i,] <- kalmanfilter(t(pos[i, drop = FALSE]))
 invisible(Y)
}
AND NOW IN C++

```cpp
// [[Rcpp::depends(RcppArmadillo)]]

#include <RcppArmadillo.h>

using namespace arma;

class Kalman {
private:
    mat A, H, Q, R, xest, pest;
    double dt;

public:
    // constructor, sets up data structures
    Kalman() : dt(1.0) {
        A.eye(6,6);
        A(0,2) = A(1,3) = A(2,4) = A(3,5) = dt;
        H.zeros(2,6);
        H(0,0) = H(1,1) = 1.0;
        Q.eye(6,6);
        R = 1000 * eye(2,2);
        xest.zeros(6,1);
        pest.zeros(6,6);
    }

    // cont. below

```
// continued

// sole member function: estimate model
mat estimate(const mat & Z) {
 unsigned int n = Z.n_rows, k = Z.n_cols;
 mat Y = zeros(n, k);
 mat xprd, pprd, S, B, kalmangain;
 colvec z, y;

 for (unsigned int i = 0; i < n; i++) {
 z = Z.row(i).t();
 // predicted state and covariance
 xprd = A * xest;
 pprd = A * pest * A.t() + Q;
 // estimation
 S = H * pprd.t() * H.t() + R;
 B = H * pprd.t();
 kalmangain = (solve(S, B)).t();
 // estimated state and covariance
 xest = xprd + kalmangain * (z - H * xprd);
 pest = pprd - kalmangain * H * pprd;
 // compute the estimated measurements
 y = H * xest;
 Y.row(i) = y.t();
 }

 return Y;
}
And now in C++

And the call:

```cpp
// [[Rcpp::export]]
mat KalmanCpp(mat Z) {
    Kalman K;
    mat Y = K.estimate(Z);
    return Y;
}
```
library(rbenchmark)
Rcpp::sourceCpp("code/kalman.cpp")
source("code/kalman.R")
p <- as.matrix(read.table("code/pos.txt",
 header=FALSE,
 col.names=c("x","y")))
benchmark(KalmanR(p), FirstKalmanR(p), KalmanCpp(p),
 order="relative", replications=500)[,1:4]

test replicationss elapsed relative
3 KalmanCpp(p) 500 11.445 1.000
1 KalmanR(p) 500 23.513 2.054
2 FirstKalmanR(p) 500 30.627 2.676
• RcppGSL is a convenience wrapper for accessing the GNU GSL, particularly for vector and matrix functions.

• Given that the GSL is a C library, we need to
 • do memory management and free objects (or let C++ do it for us as in recent versions of RcppGSL)
 • arrange for the GSL libraries to be found

• RcppGSL may still be a convenient tool for programmers more familiar with C than C++ wanting to deploy GSL algorithms.
#include <RcppGSL.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

// [[Rcpp::depends(RcppGSL)]]

// [[Rcpp::export]]
Rcpp::NumericVector colNorm_old(Rcpp::NumericMatrix NM) {
 // this conversion involves an allocation
 RcppGSL::matrix<double> M = Rcpp::as< RcppGSL::matrix<double> >(NM);
 int k = M.ncol();
 Rcpp::NumericVector n(k); // to store results
 for (int j = 0; j < k; j++) {
 RcppGSL::vector_view<double> colview = gsl_matrix_column (M, j);
 n[j] = gsl_blas_dnrm2(colview);
 }
 M.free();
 return n; // return vector
}
```c++
#include <RcppGSL.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

// [[Rcpp::depends(RcppGSL)]]

// newest version using typedefs and const &

// [[Rcpp::export]]
Rcpp::NumericVector colNorm(const RcppGSL::Matrix & G) {
    int k = G.ncol();
    Rcpp::NumericVector n(k);  // to store results
    for (int j = 0; j < k; j++) {
        RcppGSL::VectorView colview = gsl_matrix_const_column (G, j);
        n[j] = gsl_blas_dnrm2(colview);
    }
    return n;  // return vector
}
```
Rcpp::sourceCpp("code/gslNorm.cpp")

set.seed(42)

M <- matrix(rnorm(25), 5, 5)

colNorm(M) # via GSL

[1] 1.701241 2.526438 2.992635 3.903917 2.892030

apply(M, 2, function(x) sqrt(sum(x^2))) # via R

[1] 1.701241 2.526438 2.992635 3.903917 2.892030
The example comes from Section 39.7 of the GSL Reference manual, and constructs a data set from the curve $y(x) = \cos(x) \exp(-x/10)$ on the interval $[0, 15]$ with added Gaussian noise — which is then fit via linear least squares using a cubic B-spline basis functions with uniform breakpoints.

Obviously all this could be done in R too as R can both generate data, and fit models including (B-)splines. But the point to be made here is that we can very easily translate a given GSL program (thanks to RcppGSL), and get it into R with ease thanks to Rcpp and Rcpp attributes.
```cpp
// [[Rcpp::depends(RcppGSL)]]
#include <RcppGSL.h>

#include <gsl/gsl_bspline.h>
#include <gsl/gsl_multifit.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_statistics.h>

const int N = 200; // number of data points to fit
const int NCOEFFS = 12; // number of fit coefficients
const int NBREAK = (NCOEFFS - 2); // ncoeffs + 2 - k = ncoeffs - 2 as k = 4

// [[Rcpp::export]]
Rcpp::List genData() {
    const size_t n = N;
    size_t i;
    RcppGSL::Vector w(n), x(n), y(n);

    gsl_rng_env_setup();
    gsl_rng *r = gsl_rng_alloc(gsl_rng_default);

    // ...
```
for (i = 0; i < n; ++i) { // this is the data to be fitted
 double xi = (15.0 / (N - 1)) * i;
 double yi = cos(xi) * exp(-0.1 * xi);

 double sigma = 0.1 * yi;
 double dy = gsl_ran_gaussian(r, sigma);
 yi += dy;

 x[i] = xi;
 y[i] = yi;
 w[i] = 1.0 / (sigma * sigma);
}

gsl_rng_free(r);
return Rcpp::DataFrame::create(Rcpp::Named("x") = x,
 Rcpp::Named("y") = y,
 Rcpp::Named("w") = w);
```cpp
// [[Rcpp::export]]
Rcpp::List fitData(Rcpp::DataFrame D) {
    const size_t ncoeffs = NCOEFFS;
    const size_t nbbreak = NBREAK;
    const size_t n = N;
    size_t i, j;

    RcppGSL::Vector y = D["y"];       // access columns by name,
    RcppGSL::Vector x = D["x"];       // assigning to GSL vectors
    RcppGSL::Vector w = D["w"];

    gsl_bspline_workspace *bw;
    RcppGSL::Vector B(ncoeffs);
    RcppGSL::Vector c(ncoeffs);
    RcppGSL::Matrix X(n, ncoeffs);
    RcppGSL::Matrix cov(ncoeffs, ncoeffs);
    gsl_multifit_linear_workspace *mw;
    double chisq, Rsq, dof, tss;

    bw = gsl_bspline_alloc(4, nbbreak);  // allocate a cubic bspline workspace (k = 4)
    mw = gsl_multifit_linear_alloc(n, ncoeffs);

    gsl_bspline_knots_uniform(0.0, 15.0, bw);  // use uniform breakpoints on [0, 15]
```
for (i = 0; i < n; ++i) { // construct the fit matrix X
 double xi = x[i];

 gsl_bspline_eval(xi, B, bw); // compute B_j(xi) for all j

 for (j = 0; j < ncoeffs; ++j) { // fill in row i of X
 double Bj = B[j];
 X(i,j) = Bj;
 }
}

gsl_multifit_wlinear(X, w, y, c, cov, &chisq, mw); // do the fit

dof = n - ncoeffs;
tss = gsl_stats_wtss(w->data, 1, y->data, 1, y->size);
Rsq = 1.0 - chisq / tss;
Rcpp::NumericVector FX(151), FY(151); // output the smoothed curve

double xi, yi, yerr;
for (xi = 0.0, i=0; xi < 15.0; xi += 0.1, i++) {
 gsl_bspline_eval(xi, B, bw);
 gsl_multifit_linear_est(B, c, cov, &yi, &yerr);
 FX[i] = xi;
 FY[i] = yi;
}

gsl_bspline_free(bw);

gsl_multifit_linear_free(mw);

return Rcpp::List::create(Rcpp::Named("X") = FX,
 Rcpp::Named("Y") = FY,
 Rcpp::Named("chisqdof") = Rcpp::wrap(chisq/dof),
 Rcpp::Named("rsq") = Rcpp::wrap(Rsq));
Rcpp::sourceCpp("bSpline.cpp")

dat <- genData() # generate the data
fit <- fitData(dat) # fit the model

X <- fit[["X"]]
Y <- fit[["Y"]]

par(mar=c(3,3,1,1))
plot(dat[,"x"], dat[,"y"], pch=19, col="#00000044")
lines(X, Y, col="orange", lwd=2)
GSL bSpline Example
EXAMPLES FROM THE RCPP GALLERY
The Rcpp Gallery at http://gallery.rcpp.org provides over one hundred ready-to-run and documented examples. It is built on a blog-alike backend in a repository hosted at GitHub. You can clone the repository, or just download examples one-by-one.
A basic looped version:

```cpp
#include <Rcpp.h>
#include <numeric> // for std::partial_sum
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector cumsum1(NumericVector x) {
    double acc = 0; // init an accumulator var
    NumericVector res(x.size()); // init result vector
    for (int i = 0; i < x.size(); i++) {
        acc += x[i];
        res[i] = acc;
    }
    return res;
}
```
An STL variant:

```cpp
#include <Rcpp.h>
#include <numeric>    // for std::partial_sum
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector cumsum2(NumericVector x) {
    // initialize the result vector
    NumericVector res(x.size());
    std::partial_sum(x.begin(), x.end(),
                     res.begin());

    return res;
}
```
Sugar:

```cpp
// [[Rcpp::export]]
NumericVector cumsum3(NumericVector x) {
    return cumsum(x); // compute + return result
}
```
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector callFunction(NumericVector x, Function f) {
 NumericVector res = f(x);
 return res;
}
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector positives(NumericVector x) {
 return x[x > 0];
}

// [[Rcpp::export]]
List first_three(List x) {
 IntegerVector idx = IntegerVector::create(0, 1, 2);
 return x[idx];
}

// [[Rcpp::export]]
List with_names(List x, CharacterVector y) {
 return x[y];
}
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::mat matrixSubset(arma::mat M) {
 // logical conditionL where is transpose larger?
 arma::umat a = trans(M) > M;
 arma::mat N = arma::conv_to<arma::mat>::from(a);
 return N;
}

// [[Rcpp::export]]
arma::vec matrixSubset2(arma::mat M) {
 arma::mat Z = M * M.t();
 arma::vec v = Z.elem(arma::find(Z >= 100));
 return v;
}
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>
#include <boost/math/common_factor.hpp>

// [[Rcpp::export]]
int computeGCD(int a, int b) {
 return boost::math::gcd(a, b);
}

// [[Rcpp::export]]
int computeLCM(int a, int b) {
 return boost::math::lcm(a, b);
}
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>
#include <boost/lexical_cast.hpp>
using boost::lexical_cast;
using boost::bad_lexical_cast;

// [[Rcpp::export]]
std::vector<double> lexicalCast(std::vector<std::string> v) {
 std::vector<double> res(v.size());
 for (int i=0; i<v.size(); i++) {
 try {
 res[i] = lexical_cast<double>(v[i]);
 } catch(bad_lexical_cast &) {
 res[i] = NA_REAL;
 }
 }
 return res;
}

// R> lexicalCast(c("1.23", ".4", "1000", "foo", "42", "pi/4")
// [1] 1.23 0.40 1000.00 NA 42.00 NA
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>

// One include file from Boost
#include <boost/date_time/gregorian/gregorian_types.hpp>

using namespace boost::gregorian;

// [[Rcpp::export]]
Rcpp::Date getIMMDate(int mon, int year) {
 // compute third Wednesday of given month / year
 date d = nth_day_of_the_week_in_month(
 nth_day_of_the_week_in_month::third,
 Wednesday, mon).get_date(year);
 date::ymd_type ymd = d.year_month_day();
 return Rcpp::Date(ymd.year, ymd.month, ymd.day);
}
NB: Use `Sys.setenv("PKG_LIBS"="-lboost_regex")`
Plugin support in Rcpp

```r
# setup plugins environment
.plugins <- new.env()

# built-in C++11 plugin
.plugins[["cpp11"]]
function() {
  if (getRversion() >= "3.1")
    list(env = list(USE_CXX1X = "yes"))
  else if (.Platform$OS.type == "windows")
    list(env = list(PKG_CXXFLAGS = "-std=c++0x"))
  else
    list(env = list(PKG_CXXFLAGS = "-std=c++11"))
}

# built-in OpenMP++11 plugin
.plugins[["openmp"]]
function() {
  list(env = list(PKG_CXXFLAGS="-fopenmp", PKG_LIBS="-fopenmp"))
}

# register a plugin
registerPlugin <- function(name, plugin) {
  .plugins[[name]] <- plugin
}
```

Rcpp Course @ JSM 2016
#include <Rcpp.h>

// Enable C++11 via this plugin
// [[Rcpp::plugins("cpp11")]]

// [[Rcpp::export]]
int useAuto() {
 auto val = 42; // val will be of type int
 return val;
}

#include <Rcpp.h>

// [[Rcpp::plugins("cpp11")]]

// [[Rcpp::export]]
std::vector<std::string> useInitLists() {
 std::vector<std::string> vec = {
 "larry", "curly", "moe"};
 return vec;
}
```cpp
#include <Rcpp.h>

// [[Rcpp::plugins("cpp11")]]

// [[Rcpp::export]]
int simpleProd(std::vector<int> vec) {
    int prod = 1;
    for (int &x : vec) {
        prod *= x; // access each elem., comp. prod
    }
    return prod;
}
```
```cpp
#include <Rcpp.h>

// [[Rcpp::plugins("cpp11")]]

// [[Rcpp::export]]
std::vector<double>
transformEx(const std::vector<double>& x) {
    std::vector<double> y(x.size());
    std::transform(x.begin(), x.end(), y.begin(),
                   [](double x) { return x*x; } );

    return y;
}
```
We start with (somewhat boring/made-up) slow double-loop:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
double long_computation(int nb) {
    double sum = 0;
    for (int i = 0; i < nb; ++i) {
        for (int j = 0; j < nb; ++j) {
            sum += R::dlnorm(i+j, 0.0, 1.0, 0);
        }
    }
    return sum + nb;
}
```
// [[Rcpp::plugins("openmp")]]
#include <Rcpp.h>

// [[Rcpp::export]]
double long_computation_omp(int nb, int threads=1) {
 #ifdef _OPENMP
 if (threads > 0) omp_set_num_threads(threads);
 REprintf("Number of threads=%i\n", omp_get_max_threads());
 #endif

double sum = 0;
#pragma omp parallel for schedule(dynamic)
 for (int i = 0; i < nb; ++i) {
 double thread_sum = 0;
 for (int j = 0; j < nb; ++j) {
 thread_sum += R::dlnorm(i+j, 0.0, 1.0, 0);
 }
 sum += thread_sum;
 }
 return sum + nb;
Even on my laptop gains can be seen:

```r
R> sourceCpp("code/openmpEx.cpp")
R> system.time(long_computation(1e4))
  user  system elapsed
22.436   0.000  22.432
R> system.time(long_computation_omp(1e4,4))
Number of threads=4
  user  system elapsed
25.432   0.076   7.046
R>
```
PACKAGING
R Packages

- This is an important topic in R programming
- Organising code in packages maybe *the* single most helpful step
- Core topic in R Programming / Advanced R courses
- Penn 2014 workshop had 90 minutes on this
- `package.skeleton()` helpful as it creates a stanza
- `package.skeleton()` not helpful as it creates a stanza that does not pass `R CMD check` cleanly
- I wrote `pkgKitten` to provide `kitten()` which creates `packages that purr`
- Rcpp (and RcppArmadillo, RcppEigen) all have their own versions of `package.skeleton()`
- They can use `kitten()` if `pkgKitten` is installed
- Alternative: `devtools::create()` if you don’t mind Hadleyverse dependency
- Also: RStudio File -> New Project -> New Directory -> R Package; and toggle ‘R Package’ to ‘R Package w/ Rcpp’
Case Study: RcppAnnoy

- Uses only one C++ header (one plus header for Windows)

```bash
edd@don:~/git/rcppannoy$ tree inst/include/
inst/include/
  ├── annoylib.h
  └── mman.h

0 directories, 2 files
```

```bash
edd@don:~/git/rcppannoy$ tree src/
src/
  ├── annoy.cpp
  └── Makevars

0 directories, 2 files
```

- One include indirection to the header file

```cpp
## We want C++11 as it gets us 'long long' as well
CXX_STD = CXX11

PKG_CPPFLAGS = -I../inst/include/
```
RcppAnnoy: src/annoy.cpp

- Implemented as Rcpp Modules (not discussed today)
- Wraps around templated C++ class for either
 - Angular distance, or
 - Euclidian distance
- Package interesting as upstream C++ core used with Python by upstream
RcppAnnoy

Plus a few additional files for tests and documentation.
Case Study: RcppCNPy

- Uses one C++ header and one C++ source file from CNPy

edd@don:~/git/rcppcnpy$ tree src/
src/
 ├── cnpy.cpp # from CNPy
 └── cnpy.h # from CNPy
 ├── cnpyMod.cpp # our wrapper
 └── Makevars # add -lz (from R) and C++11
 └── Makevars.win # ditto

0 directories, 5 files
• For this package no other customization is needed
• Simply add the two source files
• Code integration done via Rcpp Modules (which we won’t cover today)
• Here we just need one linker flag (supplied by R)
One linker flag (and a compiler option for long long)

```c
## We need the compression library
PKG_LIBS = -lz

## We want C++11 as it gets us 'long long' as well
CXX_STD = CXX11
```
More test files, more documentation files make this look more "busy" – but still a simple package.
RcppAPT

- A somewhat experimental package which only builds on Ubuntu or Debian
- Interface a system library we can assume to be present on those systems – but not on OS X, Windows or even other Linux systems
RcppAPT: src/Makevars

- Very simple

PKG_LIBS = -lapt-pkg
Very simple: a few functions wrapping code from ‘libapt’ library.
Case Study: RcppFaddeeva

- Recent package by Baptiste Auguie with some help from me
- Wrapper around some complex-valued error functions by Steven Johnson
- Upstream ships a single header and a single C++ file → just place in src/
- Usage pretty easy: loop over elements of argument vector and call respective function to build return vector
RcppFaddeeva

//' @title Faddeeva family of error functions of the complex variable
//' @description the Faddeeva function
//' @param z complex vector
//' @param relerr double, requested error
//' @return complex vector
//' @describeIn wrap compute \(w(z) = \exp(-z^2) \text{erfc}(-iz) \)
//' @family wrapper
//' @examples
//' Faddeeva_w(1:10 + 1i)
//' @export
// [[Rcpp::export]]

std::vector< std::complex<double> >
 Faddeeva_w(const std::vector< std::complex<double> >& z, double relerr=0) {
 int N = z.size();
 std::vector< std::complex<double> > result(N);
 for(int i=0; i<N; i++) result[i] = Faddeeva::w(z[i], relerr);
 return result;
}
RcppGSLEExample

- This package is included in the RcppGSL package and part of the test environment
- It implements the same column norm example we looked at earlier.
Simple package against library which we test for (configure) and set environment variable for (src/Makevars.win)
Change ‘R-only’ package to ‘R and Rcpp’ package

- No full example here

- Fairly easy to do manually:
 - Add `LinkingTo: Rcpp` to `DESCRIPTION`
 - Also add `Imports: Rcpp` to `DESCRIPTION`
 - Add `importFrom(Rcpp, "evalCpp")` to `NAMESPACE`
 - Add `useDynLib(yourPackageName)` to `NAMESPACE`

- Add some C++ code in `src/`

- Remember to run `compileAttributes()` each time you add (or change!) a C++ interface
The End
• The package comes with nine pdf vignettes, and numerous help pages.
• The introductory vignettes are now published (for Rcpp and RcppEigen in *J Stat Software*, for RcppArmadillo in *Comp Stat & Data Anlyys*)
• The rcpp-devel list is *the* recommended resource, generally very helpful, and fairly low volume.
• StackOverflow has over 1100 posts on Rcpp too.
• And a number of blog posts introduce/discuss features.
Featured Articles
Quick conversion of a list of lists into a data frame — John M ornill
This post shows one method for creating a data frame quickly
Passing user-supplied C++ functions — Dirk Eddelbuettel
This example shows how to select user-supplied C++ functions
Using Rcpp to access the C API of xts — Dirk Eddelbuettel
This post shows how to use the exported API functions of xts
Timing normal RNGs — Dirk Eddelbuettel
This post compares drawing N(0,1) vectors from R, Boost and C++
A first lambda function with C++11 and Rcpp — Dirk Eddelbuettel
This post shows how to play with lambda functions in C++
First steps in using C++11 with Rcpp — Dirk Eddelbuettel
This post shows how to experiment with C++11 features
Using Rcpp for output synchronised with R — Dirk Eddelbuettel
This post shows how to use Rcpp (and Rcpp) for output
Using the Rcpp sugar function clamp — Dirk Eddelbuettel
This post illustrates the sugar function clamp
Using the Rcpp Timer — Dirk Eddelbuettel
This post shows how to use the Timer class in Rcpp
Calling R Functions from C++ — Dirk Eddelbuettel
This post discusses calling R functions from C++
More >

Recently Published
Apr 12, 2013 ▸ Using the RcppArmadillo-based Implementation of R's sample() — Christian Gunning and Jonathan Claes
d Apr 8, 2013 ▸ Dynamic Wrapping and Recursion with Rcpp — Kevin Ushey
Mar 14, 2013 ▸ Using bigmemory with Rcpp — Michael Kane
Mar 12, 2013 ▸ Generating a multivariate gaussian distribution using RcppArmadillo — Ahmadou Dicko
Mar 1, 2013 ▸ Using Rcpp with Boost.Regex for regular expression — Dirk Eddelbuettel
Feb 27, 2013 ▸ Fast factor generation with Rcpp — Kevin Ushey
Thank You!

http://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel