A Brief Introduction to Rcpp

Dr Dirk Eddelbuettel
edd@debian.org
dirk.eddelbuettel@R-Project.org

Chicago R Users Group
Chicago, IL
8 August 2013
Outline

1. Vision
2. Introduction
3. Usage
4. Sugar
5. MCMC
6. More
A “vision” from Bell Labs from 1976

Source: John Chambers’ talk at Stanford in October 2010; personal correspondence.
Outline

1. Vision
2. Introduction
3. Usage
4. Sugar
5. MCMC
6. More
Uses only standard R tools to build packages

Depending on the platform, one needs

Windows the Rtools kit for Windows, properly installed – see CRAN, the Installation manual and many tutorials; the `installr` package may help

OS X the Xcode *command-line tools* (plus possibly the Fortran compiler) – see Simon’s pages

Linux generally just work out of the box

Several environments can be used to work with Rcpp – RStudio is very popular.

No additional requirements for Rcpp beyond *being able to compile R packages.*
Easy to test:

```r
library(Rcpp)
## evaluate a C++ expression, retrieve result
evalCpp("2 + 2")

## [1] 4

## a little fancier
evalCpp("std::numeric_limits<double>::max()")

## [1] 1.798e+308

## create ad-hoc R function 'square'
cppFunction('int square(int x) { return x*x;}')
square(7L)

## [1] 49
```
What are some of the key features of Rcpp?

Easy to use it really does not have to be that complicated – we will look at a few examples

Expressive it allows you to write *vectorised* C++ using *Rcpp Sugar*

Seamless it gives access to all R objects: vector, matrix, list, S3/S4/RefClass, Environment, Function, ...

Speed gains for a variety of tasks Rcpp can excel precisely where R struggles: loops, function calls, ...

Extensions greatly facilitates access to external libraries using eg *Rcpp modules* (but we will not have time for a walkthrough)
Consider a function defined as

\[
f(n) \quad \text{such that} \quad \begin{cases}
 n & \text{when } n < 2 \\
 f(n - 1) + f(n - 2) & \text{when } n \geq 2
 \end{cases}
\]
R implementation and use:

```r
f <- function(n) {
  if (n < 2) return(n)
  return(f(n-1) + f(n-2))
}
## Using it on first 11 arguments
sapply(0:10, f)
## [1] 0 1 1 2 3 5 8 13 21 34 55
```

An Introductory Example: Simple R Implementation
Timing:

```r
library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]
```

<table>
<thead>
<tr>
<th></th>
<th>test</th>
<th>replications</th>
<th>elapsed</th>
<th>relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f(10)</td>
<td>100</td>
<td>0.030</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>f(15)</td>
<td>100</td>
<td>0.332</td>
<td>11.07</td>
</tr>
<tr>
<td>3</td>
<td>f(20)</td>
<td>100</td>
<td>3.679</td>
<td>122.63</td>
</tr>
</tbody>
</table>
An Introductory Example: C++ Implementation

```c++
int g(int n) {
    if (n < 2) return (n);
    return (g(n-1) + g(n-2));
}
```

Deployed as:

```r
library(Rcpp)
cppFunction("
    int g(int n) {
        if (n < 2) return (n);
        return (g(n-1) + g(n-2));
    }"
)
## Using it on first 11 arguments
sapply(0:10, g)
```
An Introductory Example: Comparing timing

Timing:

```r
library(rbenchmark)
benchmark(f(20), g(20))[,1:4]
```

```
##    test replic  elapsed relative
## 1: f(20)     100  3.769     538.4
## 2: g(20)     100  0.007      1.0
```

Usually around a nice 600-fold gain.
Type mapping

Standard R types (integer, numeric, list, function, ... and compound objects) are mapped to corresponding C++ types using extensive template meta-programming – it just works:

```r
library(Rcpp)
cppFunction("
  NumericVector logabs(NumericVector x) {
    return log(abs(x));
  }
"
) logabs(seq(-5, 5, by=2))
```

Also note: vectorized C++!
Type mapping also with C++ STL types

Use of `std::vector<double>` and STL algorithms:

```cpp
#include <Rcpp.h>
using namespace Rcpp;

inline double f(double x) { return ::log(::fabs(x)); }

// [[Rcpp::export]]
std::vector<double> logabs2(std::vector<double> x) {
    std::transform(x.begin(), x.end(), x.begin(), f);
    return x;
}
```
Used via

```r
library(Rcpp)
sourceCpp("code/logabs2.cpp")
logabs2(seq(-5, 5, by=2))
```

```r
## [1] 1.609 1.099 0.000 0.000 1.099 1.609
```
Simple outer product of a column vector (using RcppArmadillo):

```r
cppFunction("arma::mat v(arma::vec a) {
    return a*a.t();
}", depends="RcppArmadillo")

v(1:4)
```

```
## [1,] 1 2 3 4
## [2,] 2 4 6 8
## [3,] 3 6 9 12
## [4,] 4 8 12 16
```

This uses implicit conversion via `as<>` and `wrap` – cf package vignette Rcpp-extending.
Well-known packages using Rcpp

Amelia by Gary King et al: Multiple Imputation from cross-section, time-series or both; uses Rcpp and RcppArmadillo

forecast by Rob Hyndman et al: Time-series forecasting including state space and automated ARIMA modeling; uses Rcpp and RcppArmadillo

RStan by Andrew Gelman et al: Rcpp helps with automatic model parsing / generation for MCMC / Bayesian modeling

rugarch by Alexios Ghalanos: Sophisticated financial time series models using Rcpp and RcppArmadillo

bigviz by Hadley Wickham: High-performance visualization of datasets in the 10-100 million observations range
Basic Usage: `evalCpp`

`evalCpp()` evaluates a single C++ expression. Includes and dependencies can be declared.

This allows us to quickly check C++ constructs.

```r
evalCpp( "2 * M_PI" )
```

```r
## [1] 6.283
```
Basic Usage: `cppFunction()` creates, compiles and links a C++ file, and creates an R function to access it.

```r
cppFunction("
    int useCpp11() {
        auto x = 10;
        return x;
    }", plugins=c("cpp11"))
useCpp11()  # same identifier as C++ function
```

```
# [1] 10
```
Basic Usage: **sourceCpp()**

`sourceCpp()` is the actual workhorse behind `evalCpp()` and `cppFunction()`. It is described in more detail in the package vignette Rcpp-attributes.

`sourceCpp()` builds on and extends `cxxfunction()` from package inline, but provides even more ease-of-use, control and helpers – freeing us from boilerplate scaffolding.

A key feature are the plugins and dependency options: other packages can provide a plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen, RcppGSL).

We are also starting to provide other compiler features via plugins. A first plugin to enable C++11 support was added in Rcpp 0.10.3.
Packages are *the* standard unit of R code organization.

Creating packages with Rcpp is easy; an minimal one to extend from can be created by calling `Rcpp.package.skeleton()`.

The vignette `Rcpp-package` has fuller details.

As of August 2013, there are 130 packages on CRAN which use Rcpp, and a further 13 on BioConductor — all with working, tested, and reviewed examples.
Outline

1. Vision
2. Introduction
3. Usage
4. Sugar
5. MCMC
6. More
Syntactic 'sugar': Simulating π in R

Basic idea: for point (x, y), compute distance to origin. Do so repeatedly, and the ratio of points below one to number N of simulations will approach $\pi/4$ as we fill the area of one quarter of the unit circle.

```r
piR <- function(N) {
  x <- runif(N)
  y <- runif(N)
  d <- sqrt(x^2 + y^2)
  return(4 * sum(d <= 1.0) / N)
}

set.seed(5)
sapply(10^(3:6), piR)
```

```
```
The neat thing about Rcpp sugar is that it enables us to write C++ code that looks almost as compact.

```cpp
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {
    RNGScope scope;  // ensure RNG gets set/reset
    NumericVector x = runif(N);
    NumericVector y = runif(N);
    NumericVector d = sqrt(x*x + y*y);
    return 4.0 * sum(d <= 1.0) / N;
}
```

Apart from RNG set/reset, the code is essentially identical.
And by using the same RNG, so are the results.

```r
sourceCpp("code/piSugar.cpp")
set.seed(42); a <- piR(1.0e7)
set.seed(42); b <- piSugar(1.0e7)
identical(a, b)

## [1] TRUE

print(c(a, b), digits=7)

## [1] 3.140899 3.140899
```
Here, the performance gain is less dramatic as the R code is already vectorised:

```r
library(rbenchmark)
benchmark(piR(1.0e6), piSugar(1.0e6))[,1:4]
```

```r
## test  replications elapsed  relative
## 1 piR(1e+06)  100  11.731  2.184
## 2 piSugar(1e+06) 100  5.372  1.000
```

More about Sugar is in the package vignette Rcpp-sugar.
Markov chain Monte Carlo, and the Gibbs sampler in particular are popular to simulate posterior densities.

A set of posts by Darren Wilkinson spawned a cottage industry of comparisons among languages, dialects, variants, ...

We will briefly revisit it here too.
The example by Darren shows a simple MCMC Gibbs sampler of this bivariate density:

\[f(x, y) = kx^2 \exp(-xy^2 - y^2 + 2y - 4x) \]

with conditional distributions

\[f(x|y) \sim \text{Gamma}(3, y^2 + 4) \]
\[f(y|x) \sim N \left(\frac{1}{1 + x}, \frac{1}{2(1 + x)} \right) \]

i.e. we need repeated RNG draws from both a Gamma and a Gaussian distribution.
The actual Gibbs Sampler

```r
gibbs <- function(N,thin) {
  mat <- matrix(0, ncol=2, nrow=N)
  x <- 0
  y <- 0
  for (i in 1:N) {
    for (j in 1:thin) {
      x <- rgamma(1, 3, y*y+4)
      y <- rnorm(1, 1/(x+1), 1/sqrt(2*(x+1)))
    }
    mat[i,] <- c(x, y)
  }
  mat
}
library(compiler)  ## to byte-compile
RCgibbs <- cmpfun(gibbs)
```
#include <Rcpp.h> // load Rcpp
using namespace Rcpp; // shorthand
// [[Rcpp::export]]
NumericMatrix RcppGibbs(int n, int thn) {
 int i,j;
 NumericMatrix mat(n, 2);
 // The rest of the code follows the R version
 double x=0, y=0;
 for (i=0; i<n; i++) {
 for (j=0; j<thn; j++) {
 x = R::rgamma(3.0,1.0/(y*y+4));
 y = R::rnorm(1.0/(x+1),1.0/sqrt(2*x+2));
 }
 mat(i,0) = x;
 mat(i,1) = y;
 }
 return mat; // Return to R
}
source("code/gibbs.R")
sourceCpp("code/gibbs.cpp")
library(rbenchmark)
benchmark(Rgibbs(1000,100),
 RCGibbs(1000,100),
 RcppGibbs(1000,100),
 replications=10,
 order="relative")[,c(1,3:4)]

test elapsed relative
3 RcppGibbs(1000, 100) 0.288 1.00
2 RCgibbs(1000, 100) 10.769 37.39
1 Rgibbs(1000, 100) 14.320 49.72
The package comes with eight pdf vignettes, and numerous help pages.

The introductory vignettes are now published (Rcpp and RcppEigen in *J Stat Software*, RcppArmadillo in *Comp. Stat. & Data Anal.*).

The *rcpp-devel* list is *the* recommended resource, generally very helpful, and fairly low volume.

By now *StackOverflow* has a fair number of posts too.

And a number of blog posts introduce/discuss features.
Featured Articles

Quick conversion of a list of lists into a data frame — John Merrill
This post shows one method for creating a data frame quickly

Passing user-supplied C++ functions — Dirk Eddelbuettel
This example shows how to select user-supplied C++ functions

Using Rcpp to access the C API of xts — Dirk Eddelbuettel
This post shows how to use the exported API functions of xts

Timing normal RNGs — Dirk Eddelbuettel
This post compares drawing N(0,1) vectors from R, Boost and C++

A first lambda function with C++11 and Rcpp — Dirk Eddelbuettel
This post shows how to play with lambda functions in C++11

First steps in using C++11 with Rcpp — Dirk Eddelbuettel
This post shows how to experiment with C++11 features

Using Rcout for output synchronised with R — Dirk Eddelbuettel
This post shows how to use Rcout (and Rcerr) for output

Using the Rcpp sugar function clamp — Dirk Eddelbuettel
This post illustrates the sugar function clamp

Using the Rcpp Timer — Dirk Eddelbuettel
This post shows how to use the Timer class in Rcpp

Calling R Functions from C++ — Dirk Eddelbuettel
This post discusses calling R functions from C++

More »

Recently Published

Apr 12, 2013 » Using the RcppArmadillo-based implementation of R's sample() — Christian Gunning and Jonathan Ooms

Apr 8, 2013 » Dynamic Wrapping and Recursion with Rcpp — Kevin Ushey

Mar 14, 2013 » Using bigmemory with Rcpp — Michael Kane

Mar 12, 2013 » Generating a multivariate gaussian distribution using RcppArmadillo — Ahmadou Dicko

Mar 4, 2013 » Using Rcpp with Boost/Regex for regular expression — Dirk Eddelbuettel

Feb 27, 2013 » Fast factor generation with Rcpp — Kevin Ushey