An Introduction to Rcpp

Dirk Eddelbuettel
dirk.eddelbuettel@R-Project.org
edd@debian.org
@eddelbuettel

Genentech
Bioinformatics / Computational Biology
Invited Presentation
28 January 2015
Outline

1. Why
 - R
 - C++
 - Vision
 - Features
Why R?
Programming with Data

Thanks to John Chambers for sending me high-resolution scans of the covers of his books.
Why R?
Succinct and expressive

```r
xx <- faithful[, "eruptions"]
fit <- density(xx)
plot(fit)
```
Why R?
Succinct and expressive

```r
xx <- faithful[, "eruptions"]
fit1 <- density(xx)
fit2 <- replicate(10000, {
  x <- sample(xx, replace=TRUE);
  density(x, from=min(fit1$x),
          to=max(fit1$x))$y
})
fit3 <- apply(fit2, 1, quantile, c(0.025, 0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x, rev(fit1$x)),
        c(fit3[1,], rev(fit3[2,])),
        col='grey', border=F)
lines(fit1)
```

The example was posted by Greg Snow on r-help a few years ago.
Why R?
Interactive

R enables us to

- work interactively
- explore and visualize data
- access, retrieve and/or generate data
- summarize and report into pdf, html, ...

making it a preferred environment for many data analysts.
Why R?
Extensible

R has always been extensible via

- C via a bare-bones interface described in *Writing R Extensions*
- Fortran which is also used internally by R
- Java via rJava by S Urbanek
- C++ but essentially at the bare-bones level of C

So ’in theory’ this worked – yet tedious ’in practice’.
Why C++?

- Asking Google [currently] leads to about 42 million hits.
- **Wikipedia**: C++ is a statically typed, free-form, multi-paradigm, compiled, general-purpose, powerful programming language.
- C++ is industrial-strength, vendor-independent, widely-used, and still evolving.
- In science & research, one of the most frequently-used languages: If there is something you want to use / connect to, it probably has a C/C++ API.
- As a widely used language it also has good tool support (debuggers, profilers, code analysis).
Why C++?
Scott Meyers: “View C++ as a federation of languages”

C provides a rich inheritance and interoperability as Unix, Windows, ... are all build on C.

Object-Oriented C++ just to provide endless discussions about exactly what OO is or should be.

Templated C++ which is mighty powerful; template meta programming unequalled in other languages.

The STL which is a specific template library which is powerful but has its own conventions.

C++11 adds enough to be called a fifth language.

NB: Meyers original list of four language appeared years before C++11.
Why C++?

- Mature yet current
- Strong performance focus:
 - “You don’t pay for what you don’t use”
 - “Leave no room for a language between the machine level and C++”
- Yet also powerfully abstract and high-level
- C++11 and beyond are a big deal giving us new language features
- While there are complexities, Rcpp users are mostly shielded
Source: John Chambers, personal communication.
Interface Vision

- Use trusted numerical libraries (mostly/exclusively written in Fortran)
- Provide environment which statistician could use more easily
- Enable interactive and iterative data exploration
- Make it extensibility for research into statistical methods
R offers us the best of both worlds:

Compiled code with

- Access to proven libraries and algorithms in C/C++/Fortran
- Extremely high performance (in both serial and parallel modes)

Interpreted code with

- An accessible high-level language made for *Programming with Data*
- An interactive workflow for data analysis
- Support for rapid prototyping, research, and experimentation
Easy to learn it really does not have to be that complicated – we will look at a few examples

Easy to use as it avoids build and OS system complexities thanks to the R infrastructure

Expressive it allows for vectorised C++ using Rcpp Sugar

Seamless access to all R objects: vector, matrix, list, S3/S4/RefClass, Environment, Function, ...

Speed gains for a variety of tasks Rcpp excels precisely where R struggles: loops, function calls, ...

Extensions greatly facilitates access to external libraries using eg Rcpp modules
Outline

2. What
 - R API
 - C++
What can Rcpp do?

Everything evolves around `.Call`

At the C++ level:

```
SEXP foo(SEXP a, SEXP b, SEXP C, ...)
```

and at the R level:

```
res <- .Call("foo", a, b, c, ..., PACKAGE="mypkg")
```
What can Rcpp do?
Seamless interchange of R objects: C API of R

```c
#include <R.h>
#include <Rdefines.h>
SEXP convolve2(SEXP a, SEXP b) {
    int i, j, na, nb, nab;
    double *xa, *xb, *xab;
    SEXP ab;

    PROTECT(a = AS_NUMERIC(a));
    PROTECT(b = AS_NUMERIC(b));
    na = LENGTH(a); nb = LENGTH(b); nab = na + nb - 1;
    PROTECT(ab = NEW_NUMERIC(nab));
    xa = NUMERIC_POINTER(a); xb = NUMERIC_POINTER(b);
    xab = NUMERIC_POINTER(ab);
    for (i = 0; i < nab; i++) xab[i] = 0.0;
    for (i = 0; i < na; i++)
        for (j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];
    UNPROTECT(3);
    return(ab);
}
```
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector convolveCpp(NumericVector a, NumericVector b) {
 int na = a.size(), nb = b.size();
 int nab = na + nb - 1;
 NumericVector xab(nab);

 for (int i = 0; i < na; i++)
 for (int j = 0; j < nb; j++)
 xab[i + j] += a[i] * b[j];

 return xab;
}
What can Rcpp do?
Seamless interchange of R objects

- Any R object can be passed down to C++ code: vectors, matrices, list, ...
- But also functions, environments and more.
- This includes S3 and S4 objects as well as Reference Classes.
- Object attributes can be accessed directly.
- Objects can be created at the C++ level, and the R garbage collector does the right thing as if were an R-created object.
What can Rcpp do?
Seamless use of RNGs

```r
set.seed(42); runif(5)

## [1] 0.9148060 0.9370754 0.2861395 0.8304476 0.6417455

cppFunction('NumericVector r1(int n) {
    NumericVector x(n);
    for (int i=0; i<n; i++) x[i] = R::runif(0,1);
    return(x);
}

set.seed(42); r1(5)

## [1] 0.9148060 0.9370754 0.2861395 0.8304476 0.6417455

cppFunction('NumericVector r2(int n) { return runif(n,0,1); }')

set.seed(42); r2(5)

## [1] 0.9148060 0.9370754 0.2861395 0.8304476 0.6417455
```
What can Rcpp do?

Sugar: R version

\[
\begin{align*}
\text{piR} & \leftarrow \text{function}(N) \{ \\
 & x \leftarrow \text{runif}(N) \\
 & y \leftarrow \text{runif}(N) \\
 & d \leftarrow \text{sqrt}(x^2 + y^2) \\
 & \text{return}(4 \times \text{sum}(d \leq 1.0) / N)
\}
\end{align*}
\]
What can Rcpp do?
Sugar: C++ version

```cpp
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {
    NumericVector x = runif(N);
    NumericVector y = runif(N);
    NumericVector d = sqrt(x*x + y*y);
    return 4.0 * sum(d <= 1.0) / N;
}
```
Outline

When
- A First Example
- A Second Example
Consider a function defined as

\[f(n) \quad \text{such that} \quad \begin{cases}
 n & \text{when } n < 2 \\
 f(n - 1) + f(n - 2) & \text{when } n \geq 2
\end{cases} \]
When do we use Rcpp?
Easy speedup: Simple R Implementation

```r
fibR <- function(n) {
  if (n < 2) return(n)
  return(fibR(n-1) + fibR(n-2))
}
## Using it on first 11 arguments
sapply(0:10, fibR)

## [1]  0  1  1  2  3  5  8 13 21 34 55
```
When do we use Rcpp?

Easy speedup: Timing R Implementation

```
benchmark(fibR(10), fibR(15), fibR(20)) [,1:4]

## test replications elapsed relative
## 1 fibR(10) 100 0.023 1.000
## 2 fibR(15) 100 0.225 9.783
## 3 fibR(20) 100 2.427 105.522
```

Dirk Eddelbuettel
When do we use Rcpp?
Easy speedup: C++ Implementation

```r
cppFunction("    int fibCpp(int n) {
        if (n < 2) return(n);
        return(fibCpp(n-1) + fibCpp(n-2));
    }")

## Using it on first 11 arguments
sapply(0:10, fibCpp)

## [1]  0  1  1  2  3  5  8 13 21 34 55
```
When do we use Rcpp?

Easy speedup: Putting it all together

```r
fibR <- function(n) {
  if (n<2) return(n)
  return(fibR(n-1) + fibR(n-2))
}

cppFunction('int fibCpp(int n) {
  if (n<2) return n;
  return fibCpp(n-2) + fibCpp(n-1);
}

benchmark(fibR(25), fibCpp(25), order="relative")[,1:4]

## test replications elapsed relative
## 2 fibCpp(25) 100 0.074 1.000
## 1 fibR(25) 100 28.264 381.946
```
When do we use Rcpp?

Easy speedup:: VAR(1) Simulation

Let’s consider a simple possible VAR(1) system of \(k \) variables.

For \(k = 2 \):

\[
X_t = X_{t-1}B + E_t
\]

where \(X_t \) is a row vector of length 2, \(B \) is a 2 by 2 matrix and \(E_t \) is a row of the error matrix of 2 columns.
When do we use Rcpp?

Easy speedup:: VAR(1) Simulation

In R code, given both the coefficient and error matrices (revealing k and n):

```r
rSim <- function(B, E) {
  X <- matrix(0, nrow(E), ncol(E))
  for (r in 2:nrow(E)) {
    X[r,] = X[r-1,] * B + E[r,]
  }
  return(X)
}
```
When do we use Rcpp?

Easy speedup: VAR(1) Simulation

```r
cppFunction('arma::mat cppSim(arma::mat B, arma::mat E) {
    int m = E.n_rows; int n = E.n_cols;
    arma::mat X(m,n);
    X.row(0) = arma::zeros<arma::mat>(1,n);
    for (int r=1; r<m; r++) {
        X.row(r) = X.row(r-1) * B + E.row(r);
    }
    return X; }
', depends="RcppArmadillo")
a <- matrix(c(0.5,0.1,0.1,0.5),nrow=2)
e <- matrix(rnorm(10000),ncol=2)
benchmark(cppSim(a,e), rSim(a,e),
          order="relative")[,1:4]
```

<table>
<thead>
<tr>
<th></th>
<th>test</th>
<th>replications</th>
<th>elapsed</th>
<th>relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cppSim(a, e)</td>
<td>100</td>
<td>0.044</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>rSim(a, e)</td>
<td>100</td>
<td>2.587</td>
<td>58.795</td>
</tr>
</tbody>
</table>
When do we use Rcpp?

New things: Easy access to C/C++ libraries

- Sometimes speed is not the only reason
- C and C++ provide a enormous amount of libraries and APIs we may want to use
- Easy to provide access to as **Rcpp** eases data transfer to/from R
- *Rcpp modules* can make it even easier
4 Where
Where is Rcpp being used?
Numbers as of Jan 2015

Rcpp is
- used by 323 packages on CRAN
- used by another 41 package on BioConductor
- cited over 180 times (Google Scholar count for 2011 JSS paper and 2013 Springer book)
Where is Rcpp being used?

Several well-known packages

Amelia Gary King et al: Multiple Imputation; uses **Rcpp** and **RcppArmadillo**

forecast Rob Hyndman et al: (Automated) Time-series forecasting; uses **Rcpp** and **RcppArmadillo**

RStan Andrew Gelman et al: Bayesian models / MCMC

rugarch Alexios Ghalanos: Sophisticated financial models; using **Rcpp** and **RcppArmadillo**

lme4 Doug Bates et al: Hierarchical/Mixed Linear Models; uses **Rcpp** and **RcppEigen**.

dplyr, bigviz, ... Hadley Wickham: Data munging; high-dim. visualization for 10-100 million obs.
Outline

5 How
- Setup
- evalCpp
- cppFunction
- sourceCpp
- skeleton
How do we use Rcpp?
Uses only standard R tools to build packages

Depending on the platform, one needs

Windows the Rtools kit for Windows, properly installed – see CRAN, the Installation manual and many tutorials; the `installr` package may help

OS X the Xcode *command-line tools* (plus possibly the Fortran compiler) – see Simon’s pages and/or r-sig-mac list

Linux generally just work out of the box

Several environments can be used to work with Rcpp – RStudio is very popular.

No additional requirements for Rcpp beyond *being able to compile R packages*.
How do we use Rcpp?

Easy to test

```r
## evaluate a C++ expression, retrieve result
evalCpp("2 + 2")

## [1] 4

## a little fancier
evalCpp("std::numeric_limits<double>::max()")

## [1] 1.797693e+308

## create ad-hoc R function 'square'
cppFunction('int square(int x) { return x*x;}')
square(7L)

## [1] 49
```
How do we use Rcpp?

Basic Usage: `evalCpp`

`evalCpp()` evaluates a single C++ expression. Includes and dependencies can be declared.

This allows us to quickly check C++ constructs.

```
 evalCpp("2 * M_PI")
```

````
## [1] 6.283185
```
How do we use Rcpp?

Basic Usage: `cppFunction()`

`cppFunction()` creates, compiles and links a C++ file, and creates an R function to access it.

```r
cppFunction("
    int useCpp11() {
        auto x = 10;
        return x;
    }", plugins=c("cpp11"))

useCpp11()  # same identifier as C++ function
```

```
## [1] 10
```
sourceCpp() is the actual workhorse behind evalCpp() and cppFunction(). It is described in more detail in the package vignette Rcpp-attributes.

A key feature are the plugins and dependency options: other packages can provide a plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen, RcppGSL).

We have also provided plugins for other compiler features. These allow to enable support for C++11 (and beyond), as well as for OpenMP.
How do we use Rcpp?

Basic Usage: \texttt{Rcpp.package.skeleton()}

- To create a complete and working package, the \texttt{Rcpp.package.skeleton()} function can be used.
- It extends the base R function \texttt{package.skeleton()} and supports the same set of options.
- If installed, \texttt{pkgKitten::kitten()} is used to clean results of \texttt{Rcpp.package.skeleton()}.
- For \texttt{Rcpp} use is also supports (via additional options) \textit{Rcpp Modules} and \textit{Rcpp Attributes} both of which can be included with working examples.
- The vignette \texttt{Rcpp-package} has complete details.
How do we use Rcpp?

RStudio makes it very easy: Single File
The following file gets created:

```cpp
#include <Rcpp.h>
using namespace Rcpp;

// Below is a simple example of exporting a C++ function to R.
// You can source this function into an R session using the
// Rcpp::sourceCpp function (or via the Source button on the
// editor toolbar)

// For more on using Rcpp click the Help button on the editor toolbar

// [[Rcpp::export]]
int timesTwo(int x) {
    return x * 2;
}
```
How do we use Rcpp?
RStudio makes it very easy: Package
Examples
- CumSum
- R Fun
- Boost
- Subset
- CtoC++
- xts
- XPtr
Cumulative Sum

http://gallery.rcpp.org/articles/vector-cumulative-sum/

A basic looped version:

```cpp
#include <Rcpp.h>
#include <numeric>    // for std::partial_sum
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector cumsum1(NumericVector x) {
    // initialize an accumulator variable
    double acc = 0;

    // initialize the result vector
    NumericVector res(x.size());

    for(int i = 0; i < x.size(); i++){
        acc += x[i];
        res[i] = acc;
    }

    return res;
}
```

Dirk Eddelbuettel
Intro to Rcpp
An STL variant:

```cpp
// [[Rcpp::export]]
NumericVector cumsum2(NumericVector x) {
    // initialize the result vector
    NumericVector res(x.size());
    std::partial_sum(x.begin(), x.end(),
                     res.begin());
    return res;
}
```
Cumulative Sum

http://gallery.rcpp.org/articles/vector-cumulative-sum/

Or just **Rcpp** sugar:

```cpp
// [[Rcpp::export]]
NumericVector cumsum3(NumericVector x) {
    return cumsum(x);  // compute + return result vector
}
```

Of course, all results are the same.

```r
cppFunction('NumericVector cumsum3(NumericVector x) {
    return cumsum(x); }
')
x <- 1:10
all.equal(cumsum(x), cumsum3(x))
```

```r
## [1] TRUE
```
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector callFunction(NumericVector x, Function f) {
 NumericVector res = f(x);
 return res;
}

/*** R
callFunction(x, fivenum)
*/
Using Boost via BH: Greatest Common Denominator
http://gallery.rcpp.org/articles/a-first-boost-example/

```cpp
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>
#include <boost/math/common_factor.hpp>

// [[Rcpp::export]]
int computeGCD(int a, int b) {
    return boost::math::gcd(a, b);
}

// [[Rcpp::export]]
int computeLCM(int a, int b) {
    return boost::math::lcm(a, b);
}
```

Dirk Eddelbuettel
Intro to Rcpp
Using Boost via BH: Lexical Cast

http://gallery.rcpp.org/articles/a-second-boost-example/

```cpp
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>
#include <boost/lexical_cast.hpp>
using boost::lexical_cast;
using boost::bad_lexical_cast;

// [[Rcpp::export]]
std::vector<double> lexicalCast(std::vector<std::string> v) {
  std::vector<double> res(v.size());
  for (int i=0; i< v.size(); i++) {
    try {
      res[i] = lexical_cast<double>(v[i]);
    } catch (bad_lexical_cast &){
      res[i] = NA_REAL;
    }
  }
  return res;
}

// R> lexicalCast(c("1.23", ".4", "1000", "foo", "42", "pi/4")

// [1] 1.23 0.40 1000.00 NA 42.00 NA
```
Using Boost via BH: Date Calculations

http://gallery.rcpp.org/articles/using-boost-with-bh/

```cpp
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>

// One include file from Boost
#include <boost/date_time/gregorian/gregorian_types.hpp>

using namespace boost::gregorian;

// [[Rcpp::export]]
Rcpp::Date getIMMDate(int mon, int year) {
  // compute third Wednesday of given month / year
  date d = nth_day_of_the_week_in_month::third,
           nth_day_of_the_week_in_month::third,
           Wednesday, mon).get_date(year);
  date::ymd_type ymd = d.year_month_day();
  return Rcpp::Date(ymd.year, ymd.month, ymd.day);
}
```
Using Boost via BH: FOREACH

http://gallery.rcpp.org/articles/boost-foreach/

```cpp
#include <Rcpp.h>
#include <boost/foreach.hpp>
using namespace Rcpp;
// [[Rcpp::depends(BH)]]

// the C-style upper-case macro name is a bit ugly
#define foreach BOOST_FOREACH

// [[Rcpp::export]]
NumericVector square( NumericVector x ) {

    // elem is a reference to each element in x
    // we can re-assign to these elements as well
    foreach( double& elem, x ) {
        elem = elem*elem;
    }
    return x;
}

C++11 now has something similar in a smarter for loop.
```
NB: Needs `Sys.setenv("PKG_LIBS"="-lboost_regex")` to link.

```cpp
// Boost.org/doc/libs/1_53_0/libs/regex/example/snippets/credit_card_example.cpp
#include <Rcpp.h>
#include <string>
#include <boost/regex.hpp>

bool validate_card_format(const std::string& s) {
  static const boost::regex e("([\d\{4\}[- ]){3}\d\{4\}");
  return boost::regex_match(s, e);
}

// [[Rcpp::export]]
std::vector<bool> regexDemo(std::vector<std::string> s) {
  int n = s.size();
  std::vector<bool> v(n);
  for (int i=0; i<n; i++)
    v[i] = validate_card_format(s[i]);
  return valid;
}
```
New / improved in Rcpp 0.11.1:

```cpp
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector positives(NumericVector x) {
    return x[x > 0];
}

// [[Rcpp::export]]
List first_three(List x) {
    IntegerVector idx = IntegerVector::create(0, 1, 2);
    return x[idx];
}

// [[Rcpp::export]]
List with_names(List x, CharacterVector y) {
    return x[y];
}
```
The job of `split_indices()` is simple: given a vector `x` of integers, it returns a list where the i-th element of the list is an integer vector containing the positions of `x` equal to `i`.

I will spare you the C API version.
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
std::vector<std::vector<int> >
split_indices(IntegerVector x, int n = 0) {
 if (n < 0) stop("n must be a pos. int.");

 std::vector<std::vector<int> > ids(n);

 int nx = x.size();
 for (int i = 0; i < nx; ++i) {
 if (x[i] > n) {
 ids.resize(x[i]);
 }
 ids[x[i] - 1].push_back(i + 1);
 }
 return ids;
}
Creating xts objects in C++

http://gallery.rcpp.org/articles/creating-xts-from-c++/

```cpp
#include <Rcpp.h>
using namespace Rcpp;

NumericVector createXts(int sv, int ev) {
  IntegerVector ind = seq(sv, ev); // values

  NumericVector dv(ind);
  dv = dv * 86400; // date(times) == reals
  dv.attr("tzone") = "UTC"; // scaled to days
  dv.attr("tclass") = "Date";

  NumericVector xv(ind); // data has same index
  xv.attr("dim") = IntegerVector::create(ev-sv+1,1);
  xv.attr("index") = dv;
  CharacterVector cls = CharacterVector::create("xts","zoo");
  xv.attr("class") = cls;
  xv.attr(".indexCLASS") = "Date";
// ... some more attributes ...

  return xv;
}
```

Dirk Eddelbuettel
Intro to Rcpp
Consider two simple functions modifying a given Armadillo vector:

```cpp
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

using namespace arma;
using namespace Rcpp;

vec fun1_cpp(const vec& x) {  // a first function
    vec y = x + x;
    return (y);
}

vec fun2_cpp(const vec& x) {  // and a second function
    vec y = 10*x;
    return (y);
}
```
Using a `typedef` to declare an interface to a function taking and returning a vector — and a function returning a function pointer given a string argument

```cpp
typedef vec (*funcPtr)(const vec& x);

// [[Rcpp::export]]
XPtr<funcPtr> putFunPtrInXPtr(std::string fstr) {
    if (fstr == "fun1")
        return (XPtr<funcPtr>(new funcPtr(&fun1_cpp)));
    else if (fstr == "fun2")
        return (XPtr<funcPtr>(new funcPtr(&fun2_cpp)));
    else
        // runtime err.: NULL no XPtr
        return XPtr<funcPtr>(R_NilValue);
}
```
We then create a function calling the supplied function on a given vector by 'unpacking' the function pointer:

```cpp
// [[Rcpp::export]]
vec callViaXPtr(const vec x, SEXP xpsexp) {
  XPtr<funcPtr> xpfun(xpsexp);
  funcPtr fun = *xpfun;
  vec y = fun(x);
  return (y);
}
```
Function Pointers

http://gallery.rcpp.org/articles/passing-cpp-function-pointers/

```r
## get us a function
fun <- putFunPtrInXPtr("fun1")
## and pass it down to C++ to
## have it applied on given vector
callViaXPtr(1:4, fun)
```

```r
# [,1]  
#[1,] 2  
#[2,] 4  
#[3,] 6  
#[4,] 8
```

Could use same mechanism for user-supplied functions, gradients, or samplers, ...
Outline

Armadillo
- Overview
- Users
- Examples
- Case Study: FastLM
- Case Study: Kalman Filter
Armadillo
C++ linear algebra library

• Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.

• The syntax (API) is deliberately similar to Matlab.

• Integer, floating point and complex numbers are supported, as well as a subset of trigonometric and statistics functions.

• Various matrix decompositions are provided through optional integration with LAPACK, or one of its high performance drop-in replacements (such as the multi-threaded Intel MKL, or AMD ACML, or OpenBLAS libraries).

• A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries, this is automatically accomplished through template meta-programming.

• Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.

• The library is open-source software, and is distributed under a license that is useful in both open-source and commercial/proprietary contexts.

• Primarily developed at NICTA (Australia) by Conrad Sanderson, with contributions from around the world.

• Download latest version.
What is Armadillo?

From arma.sf.net and slightly edited

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.
- The syntax is deliberately similar to Matlab.
- Integer, floating point and complex numbers are supported.
- A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries.
- Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.
Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between **speed and ease of use**.

The syntax is **deliberately similar to Matlab**.

Integer, floating point and complex numbers are supported.

A **delayed evaluation approach** is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries.

Useful for conversion of research code into **production environments**, or if C++ has been decided as the language of choice, due to **speed** and/or integration capabilities.
• Provides integer, floating point and complex vectors, matrices and fields (3d) with all the common operations.

• Very good documentation and examples at website http://arma.sf.net, a technical report (Sanderson, 2010)

• Modern code, building upon and extending from earlier matrix libraries.

• Responsive and active maintainer, frequent updates.

• Used by [MLPACK](http://arma.sf.net); cf Curtin et al (JMLR, 2013)
RcppArmadillo highlights

- Template-only builds—no linking, and available wherever R and a compiler work (but Rcpp is needed)!

- Easy with R packages: just add LinkingTo: RcppArmadillo, Rcpp to DESCRIPTION (i.e., no added cost beyond Rcpp)

- Data exchange really seamless from R via Rcpp

- Frequently updated; documentation includes Eddelbuettel and Sanderson (CSDA, 2014).
Well-know packages using RcppArmadillo

Amelia by Gary King et al: Multiple Imputation from cross-section, time-series or both;

forecast by Rob Hyndman et al: Time-series forecasting including state space and automated ARIMA modeling;

rugarch by Alexios Ghalanos: Sophisticated financial time series models;

gRbase by Søren Højsgaard: Graphical modeling
```cpp
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::vec getEigenValues(arma::mat M) {
    return arma::eig_sym(M);
}
```
set.seed(42); X <- matrix(rnorm(4*4), 4, 4)
Z <- X %*% t(X); getEigenValues(Z)

[,1]
[1,] 0.3318872
[2,] 1.6855884
[3,] 2.4099205
[4,] 14.2100108

R gets the same results (in reverse)
and also returns the eigenvectors.
```cpp
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::mat mvrnormArma(int n, arma::vec mu, arma::mat sigma) {
    arma::mat Y = arma::randn(n, sigma.n_cols);
    return arma::repmat(mu, 1, n).t() +
        Y * arma::chol(sigma);
}
```
Implementations of ‘fastLm()’ have been a staple all along the development of \texttt{Rcpp}.

The very first version was in response to a question by Ivo Welch on r-help.

The request was for a fast function to estimate parameters – and their standard errors – from a linear model,

It used GSL functions to estimate $\hat{\beta}$ as well as its standard errors $\hat{\sigma}$ as \texttt{lm.fit()} in R only returns the former.

It had since been reimplemented for \texttt{RcppArmadillo} and \texttt{RcppEigen}.
#include <RcppArmadillo.h>

eextern "C" SEXP fastLm(SEXP Xs, SEXP ys) {

 try {
 Rcpp::NumericVector yr(ys); // creates Rcpp vector from SEXP
 Rcpp::NumericMatrix Xr(Xs); // creates Rcpp matrix from SEXP
 int n = Xr.nrow(), k = Xr.ncol();
 arma::mat X(Xr.begin(), n, k, false); // reuses memory, avoids extra copy
 arma::colvec y(yr.begin(), yr.size(), false);

 arma::colvec coef = arma::solve(X, y); // fit model $y \sim X$
 arma::colvec res = y - X * coef; // residuals
 double s2 = std::inner_product(res.begin(), res.end(), res.begin(), 0.0)/(n - k);
 arma::colvec std_err = arma::sqrt(s2*arma::diagvec(arma::pinv(arma::trans(X)*X))); // std.errors of coefficients

 return Rcpp::List::create(Rcpp::Named("coefficients") = coef,
 Rcpp::Named("stderr") = std_err,
 Rcpp::Named("df.residual") = n - k);
 }
 catch(std::exception &ex) {
 forward_exception_to_r(ex);
 }
 catch(...) {
 ::Rf_error("c++ exception (unknown reason)");
 }
 return R_NilValue; // -Wall
}
Faster Linear Model with FastLm
Edited version of earlier RcppArmadillo's src/fastLm.cpp

```cpp
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp; using namespace arma;

// [[Rcpp::export]]
List fastLm(NumericVector yr, NumericMatrix Xr) {
  int n = Xr.nrow(), k = Xr.ncol();
  mat X(Xr.begin(), n, k, false);
  colvec y(yr.begin(), yr.size(), false);

  colvec coef = solve(X, y);
  colvec resid = y - X*coef;

  double sig2 = as_scalar(trans(resid)*resid/(n-k));
  colvec stderrest = sqrt(sig2 * diagvec( inv(trans(X)*X)) );

  return List::create(Named("coefficients") = coef,
                        Named("stderr") = stderrest,
                        Named("df.residual") = n - k );
}
```
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp;
using namespace arma;

// [[Rcpp::export]]
List fastLm(const arma::mat& X, const arma::colvec& y) {
 int n = X.n_rows, k = X.n_cols;

 colvec coef = solve(X, y);
 colvec resid = y - X*coef;

 double sig2 = as_scalar(trans(resid)*resid/(n-k));
 colvec stderrest = sqrt(sig2 * diagvec(inv(trans(X)*X)));

 return List::create(Named("coefficients") = coef,
 Named("stderr") = stderrest,
 Named("df.residual") = n - k);
}
Faster Linear Model with FastLm
Note on as<>() casting with Armadillo

```cpp
arma::colvec y = Rcpp::as<arma::colvec>(ys);
arma::mat X = Rcpp::as<arma::mat>(Xs);
```

Convenient, yet incurs an additional copy. Next variant uses two steps, but only a pointer to objects is copied:

```cpp
Rcpp::NumericVector yr(ys);
Rcpp::NumericMatrix Xr(Xs);
int n = Xr.nrow(), k = Xr.ncol();
arma::mat X(Xr.begin(), n, k, false);
arma::colvec y(yr.begin(), yr.size(), false);
```

Preferable if performance is a concern. Since last fall
RcppArmadillo has efficient **const references too.**
Faster Linear Model with FastLm
Performance comparison

Running the script included in the **RcppArmadillo** package:

```r
edd@max:~/svn/rcpp/pkg/RcppArmadillo/inst/examples$ r fastLm.r

Loading required package: Rcpp

test replications relative elapsed
2 fLmTwoCasts(X, y) 5000 1.000 0.188
3 fLmConstRef(X, y) 5000 1.000 0.188
1 fLmOneCast(X, y) 5000 1.005 0.189
5 fastLmPureDotCall(X, y) 5000 1.064 0.200
4 fastLmPure(X, y) 5000 2.000 0.376
7 lm.fit(X, y) 5000 2.691 0.506
6 fastLm(frm, data = trees) 5000 35.596 6.692
8 lm(frm, data = trees) 5000 44.883 8.438
edd@max:~/svn/rcpp/pkg/RcppArmadillo/inst/examples$
```
The position of an object is estimated based on past values of 6×1 state vectors X and Y for position, V_X and V_Y for speed, and A_X and A_Y for acceleration.

Position updates as a function of the speed

$$X = X_0 + V_X dt \quad \text{and} \quad Y = Y_0 + V_Y dt,$$

which is updated as a function of the (unobserved) acceleration:

$$V_x = V_{X,0} + A_X dt \quad \text{and} \quad V_y = V_{Y,0} + A_Y dt.$$
Kalman Filter
Basic Matlab Function

% Copyright 2010 The MathWorks, Inc.
function y = kalmanfilter(z)
% #codegen
 dt=1;
 % Initialize state transition matrix
 A=[1 0 dt 0 0 0; 0 1 0 dt 0 0; 0 0 1 0 dt 0; 0 0 0 1 0 dt; 0 0 0 0 1 0];
 H = [1 0 0 0 0 0; 0 1 0 0 0 0];
 Q = eye(6);
 R = 1000 * eye(2);
 persistent x_est p_est
 if isempty(x_est)
 x_est = zeros(6, 1);
 p_est = zeros(6, 6);
 end
 % Predicted state and covariance
 x_prd = A * x_est;
 p_prd = A * p_est * A' + Q;
 % Estimation
 S = H * p_prd' * H' + R;
 B = H * p_prd';
 klm_gain = (S \ B)';
 % Estimated state and covariance
 x_est = x_prd+klm_gain*(z-H*x_prd);
 p_est = p_prd-klm_gain*H*p_prd;
 % Compute the estimated measurements
 y = H * x_est;
end

Plus a simple wrapper function calling this function.
Kalman Filter: In R
Easy enough – first naive solution

FirstKalmanR <- function(pos) {
 kf <- function(z) {
 dt <- 1
 A <- matrix(c(1, 0, dt, 0, 0, 0),
 0, 1, 0, dt, 0, 0,
 0, 0, 1, 0, dt, 0,
 0, 0, 0, 1, 0, dt,
 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 1), byrow=TRUE)
 H <- matrix(c(1, 0, 0, 0, 0, 0),
 0, 1, 0, 0, 0, 0), byrow=TRUE)
 Q <- diag(6)
 R <- 1000 * diag(2)
 N <- nrow(pos)
 y <- matrix(NA, N, 2)

 ## predicted state and covariance
 xprd <- A %*% xest
 pprd <- A %*% pest %*% t(A) + Q

 ## estimation
 S <- H %*% t(pprd) %*% t(H) + R
 B <- H %*% t(pprd)
 kalmangain <- (S %*% B)'
 kg <- t(solve(S, B))

 ## est. state and cov, assign to vars in parent env
 xest <<- xprd + kg %*% (z-H%*%xprd)
 pest <<- pprd - kg %*% H %*% pprd

 ## compute the estimated measurements
 y <- H %*% xest

 }

 xest <- matrix(0, 6, 1)
 pest <- matrix(0, 6, 6)

 for (i in 1:N) {
 y[i,] <- kf(t(pos[i,drop=FALSE]))
 }

 invisible(y)
}

Dirk Eddelbuettel
Intro to Rcpp
Kalman Filter: In R
Easy enough – with some minor refactoring

KalmanR <- function(pos) {

 kf <- function(z) {
 ## predicted state and covariance
 xprd <- A %*% xest
 pprd <- A %*% pest %*% t(A) + Q

 ## estimation
 S <- H %*% t(pprd) %*% t(H) + R
 B <- H %*% t(pprd)
 kg <- (S %*% B)'
 kg <- t(solve(S, B))

 ## estimated state and covariance
 ## assigned to vars in parent env
 xest <<- xprd + kg %*% (z-H%*%xprd)
 pest <<- pprd - kg %*% H %*% pprd

 ## compute the estimated measurements
 y <<- H %*% xest
 }

 dt <- 1

 invisible(y)
}

A <- matrix(c(1, 0, dt, 0, 0, 0, # x
 0, 1, 0, dt, 0, 0, # y
 0, 0, 1, 0, dt, 0, # Vx
 0, 0, 0, 1, 0, dt, # Vy
 0, 0, 0, 0, 1, 0, # Ax
 0, 0, 0, 0, 0, 1), # Ay
 6, 6, byrow=TRUE)

H <- matrix(c(1, 0, 0, 0, 0, 0,
 0, 1, 0, 0, 0, 0),
 2, 6, byrow=TRUE)

Q <- diag(6)
R <- 1000 * diag(2)

N <- nrow(pos)
y <- matrix(NA, N, 2)

xest <- matrix(0, 6, 1)
pest <- matrix(0, 6, 6)

for (i in 1:N) {
 y[i,] <- kf(t(pos[i,,drop=FALSE]))
}
invisible(y)
Kalman Filter: In C++
Using a simple class

```cpp
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

using namespace arma;

class Kalman {
private:
    mat A, H, Q, R, xest, pest;
    double dt;

public:
    // constructor, sets up data structures
    Kalman() : dt(1.0) {
        A.eye(6,6);
        A(0,2) = A(1,3) = dt;
        A(2,4) = A(3,5) = dt;
        H.zeros(2,6);
        H(0,0) = H(1,1) = 1.0;
        Q.eye(6,6);
        R = 1000 * eye(2,2);
        xest.zeros(6,1);
        pest.zeros(6,6);
    }

    // sole member func.: estimate model
    mat estimate(const mat & Z) {
        unsigned int n = Z.n_rows,
                    k = Z.n_cols;
        mat Y = zeros(n, k);
        mat xprd, pprd, S, B, kg;
        colvec z, y;

        for (unsigned int i = 0; i < n; i++) {
            z = Z.row(i).t();
            // predicted state and covariance
            xprd = A * xest;
            pprd = A * pest * A.t() + Q;
            // estimation
            S = H * pprd.t() * H.t() + R;
            B = H * pprd.t();
            kg = (solve(S, B)).t();
            // estimated state and covariance
            xest = xprd + kg * (z - H * xprd);
            pest = pprd - kg * H * pprd;
            // compute estimated measurements
            y = H * xest;
            Y.row(i) = y.t();
        }
        return Y;
    }
};
```

Dirk Eddelbuettel
Intro to Rcpp
Given the code from the previous slide, we just add

```cpp
// [[Rcpp::export]]
mat KalmanCpp(mat Z) {
    Kalman K;
    mat Y = K.estimate(Z);
    return Y;
}
```
Kalman Filter: Performance

Quite satisfactory relative to R

Even byte-compiled 'better' R version is 66 times slower:

```
R> FirstKalmanRC <- cmpfun(FirstKalmanR)
R> KalmanRC <- cmpfun(KalmanR)
R>
R> stopifnot(identical(KalmanR(pos), KalmanRC(pos)),
+   all.equal(KalmanR(pos), KalmanCpp(pos)),
+   identical(FirstKalmanR(pos), FirstKalmanRC(pos)),
+   all.equal(KalmanR(pos), FirstKalmanR(pos)))
R>
R> res <- benchmark(KalmanR(pos), KalmanRC(pos),
+   FirstKalmanR(pos), FirstKalmanRC(pos),
+   KalmanCpp(pos),
+   columns = c("test", "replications",
+   "elapsed", "relative"),
+   order="relative",
+   replications=100)
R>
R> print(res)
```

<table>
<thead>
<tr>
<th>test</th>
<th>replications</th>
<th>elapsed</th>
<th>relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>KalmanCpp(pos)</td>
<td>100</td>
<td>0.087</td>
<td>1.0000</td>
</tr>
<tr>
<td>KalmanRC(pos)</td>
<td>100</td>
<td>5.774</td>
<td>66.3678</td>
</tr>
<tr>
<td>KalmanR(pos)</td>
<td>100</td>
<td>6.448</td>
<td>74.1149</td>
</tr>
<tr>
<td>FirstKalmanRC(pos)</td>
<td>100</td>
<td>8.153</td>
<td>93.7126</td>
</tr>
<tr>
<td>FirstKalmanR(pos)</td>
<td>100</td>
<td>8.901</td>
<td>102.3103</td>
</tr>
</tbody>
</table>

Dirk Eddelbuettel
Intro to Rcpp
Kalman Filter: Figure

Last but not least we can redo the plot as well
Outline

8 Doc
- Basics
- Gallery
- Book
The package comes with **eight pdf vignettes**, and numerous help pages.

The introductory vignettes are now **published** (Rcpp and RcppEigen in *J Stat Software*, RcppArmadillo in *Comp. Stat.& Data Anal.*).

The **rcpp-devel** list is *the* recommended resource, generally very helpful, and fairly low volume.

StackOverflow has over 500 posts too.

Several blog posts introduce/discuss features.
What Else?

Rcpp Gallery: 80+ working and detailed examples