Seamless R and C++ Integration with Rcpp: Introduction and Examples

Dr. Dirk Eddelbuettel
dirk.eddelbuettel@R-Project.org
edd@debian.org
@eddelbuettel

Institut für Statistik
Ludwig-Maximilians-Universität München
23 June 2014
Outline

1. Why
 - R
 - C++
 - Vision
 - Features
Why R?
Programming with Data

Thanks to John Chambers for sending me high-resolution scans of the covers of his books.
Why R?
Succinct and expressive

\[
\begin{align*}
xx & \leftarrow \text{faithful[, "eruptions"]} \\
\text{fit} & \leftarrow \text{density}(xx) \\
\text{plot(fit)}
\end{align*}
\]
The example was posted by Greg Snow on r-help a few years ago.
Why R?
Extensible

R has always been extensible via

- **C** via a bare-bones interface described in *Writing R Extensions*
- **Fortran** which is also used internally by R
- **Java** via **rJava** by S Urbanek
- **C++** but essentially at the bare-bones level of C

So ’in theory’ this worked – yet tedious ’in practice’.
Why C++?

- Asking Google [currently] leads to 64,200,000 hits.
- **Wikipedia**: *C++ is a statically typed, free-form, multi-paradigm, compiled, general-purpose, powerful programming language.*
- C++ is industrial-strength, vendor-independent, widely-used, and *still evolving*.
- In science & research, one of the most frequently-used languages: If there is something you want to use / connect to, it probably has a C/C++ API.
- As a widely used language it also has good tool support (debuggers, profilers, code analysis).
Why C++?

Scott Meyers: “View C++ as a federation of languages”

C provides a rich inheritance and interoperability as Unix, Windows, ... are all build on C.

Object-Oriented C++ just to provide endless discussions about exactly what OO is or should be.

Templated C++ which is mighty powerful; template meta programming unequalled in other languages.

The STL which is a specific template library which is powerful but has its own conventions.

C++11 adds enough to be called a fifth language.
Interface Vision

Source: John Chambers, personal communication.
Why Rcpp?

- **Easy to use**: it really does not have to be that complicated – we will look at a few examples.
- **Expressive**: it allows for *vectorised* C++ using *Rcpp Sugar*.
- **Seamless**: access to all R objects: vector, matrix, list, S3/S4/RefClass, Environment, Function, ...
- **Speed gains**: for a variety of tasks *Rcpp* excels precisely where R struggles: loops, function calls, ...
- **Extensions**: greatly facilitates access to external libraries using eg *Rcpp modules* (but we will not have time for a walkthrough).
Outline

2 What
 • R API
 • C++
What can Rcpp do?

Everything evolves around `.Call`

At the C++ level:

```
SEXP foo(SEXP a, SEXP b, SEXP c, ...)
```

and at the R level:

```
res <- .Call("foo", a, b, c, ..., PACKAGE="mypkg")
```
What can Rcpp do?
Seamless interchange of R objects: C API of R

```c
#include <R.h>
#include <Rdefines.h>

SEXP convolve2(SEXP a, SEXP b) {
    int i, j, na, nb, nab;
    double *xa, *xb, *xab;
    SEXP ab;

    PROTECT(a = AS_NUMERIC(a));
    PROTECT(b = AS_NUMERIC(b));
    na = LENGTH(a); nb = LENGTH(b); nab = na + nb - 1;
    PROTECT(ab = NEW_NUMERIC(nab));
    xa = NUMERIC_POINTER(a); xb = NUMERIC_POINTER(b);
    xab = NUMERIC_POINTER(ab);
    for (i = 0; i < nab; i++) xab[i] = 0.0;
    for (i = 0; i < na; i++)
        for (j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];
    UNPROTECT(3);
    return(ab);
}
```
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector convolveCpp(NumericVector a, NumericVector b) {
 int na = a.size(), nb = b.size();
 int nab = na + nb - 1;
 NumericVector xab(nab);

 for (int i = 0; i < na; i++)
 for (int j = 0; j < nb; j++)
 xab[i + j] += a[i] * b[j];

 return xab;
}
What can Rcpp do?
Seamless interchange of R objects

- Any R object can be passed down to C++ code: vectors, matrices, list, ...
- But also functions, environments and more.
- This includes S3 and S4 objects as well as Reference Classes.
- Object attributes can be accessed directly.
- Objects can be created at the C++ level, and the R garbage collector *does the right thing* as if were an R-created object.
What can Rcpp do?

Seamless use of RNGs

```r
set.seed(42); runif(5)
```

```r
## [1] 0.9148 0.9371 0.2861 0.8304 0.6417
```

```r
cppFunction(
  '
NumericVector r1(int n) {
    NumericVector x(n);
    for (int i=0; i<n; i++) x[i] = R::runif(0,1);
    return(x);
}
')
set.seed(42); r1(5)
```

```r
## [1] 0.9148 0.9371 0.2861 0.8304 0.6417
```

```r
cppFunction('NumericVector r2(int n) { return runif(n,0,1); }')
set.seed(42); r2(5)
```

```r
## [1] 0.9148 0.9371 0.2861 0.8304 0.6417
```
piR <- function(N) {
 x <- runif(N)
 y <- runif(N)
 d <- sqrt(x^2 + y^2)
 return(4 * sum(d <= 1.0) / N)
}
What can Rcpp do?
Sugar: C++ version

```cpp
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {
  // ensure RNG gets set/reset
  RNGScope scope;
  NumericVector x = runif(N);
  NumericVector y = runif(N);
  NumericVector d = sqrt(x*x + y*y);
  return 4.0 * sum(d <= 1.0) / N;
}
```
Outline

3 When
 Example 1
 Example 2
Consider a function defined as

\[f(n) \text{ such that } \begin{cases}
 n & \text{when } n < 2 \\
 f(n-1) + f(n-2) & \text{when } n \geq 2
\end{cases} \]
When do we use Rcpp?

Easy speedup: Simple R Implementation

```r
fibR <- function(n) {
  if (n < 2) return(n)
  return(fibR(n-1) + fibR(n-2))
}

## Using it on first 11 arguments
sapply(0:10, fibR)

## [1] 0 1 1 2 3 5 8 13 21 34 55
```
When do we use Rcpp?

Easy speedup: Timing R Implementation

```r
benchmark(fibR(10), fibR(15), fibR(20))[,1:4]
```

<table>
<thead>
<tr>
<th></th>
<th>test</th>
<th>replications</th>
<th>elapsed</th>
<th>relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fibR(10)</td>
<td>100</td>
<td>0.020</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>fibR(15)</td>
<td>100</td>
<td>0.200</td>
<td>10.0</td>
</tr>
<tr>
<td>3</td>
<td>fibR(20)</td>
<td>100</td>
<td>2.215</td>
<td>110.8</td>
</tr>
</tbody>
</table>
When do we use Rcpp?

Easy speedup: C++ Implementation

cppFunction("
 int fibCpp(int n) {
 if (n < 2) return(n);
 return(fibCpp(n-1) + fibCpp(n-2));
 }")

Using it on first 11 arguments

sapply(0:10, fibCpp)

[1] 0 1 1 2 3 5 8 13 21 34 55
When do we use Rcpp?

Easy speedup: Putting it all together

```r
fibR <- function(n) {
  if (n<2) return(n)
  return(fibR(n-1) + fibR(n-2))
}

cppFunction('int fibCpp(int n) {
  if (n<2) return n;
  return fibCpp(n-2) + fibCpp(n-1);
}

benchmark(fibR(25), fibCpp(25), order="relative")[,1:4]

## test  replications elapsed relative
## 2 fibCpp(25) 100   0.061    1.0
## 1 fibR(25)   100 24.444   400.7
```
Let’s consider a simple possible VAR(1) system of \(k \) variables.

For \(k = 2 \):

\[
X_t = X_{t-1} B + E_t
\]

where \(X_t \) is a row vector of length 2, \(B \) is a 2 by 2 matrix and \(E_t \) is a row of the error matrix of 2 columns.
In R code, given both the coefficient and error matrices (revealing k and n):

```r
rSim <- function(B,E) {
  X <- matrix(0,nrow(E), ncol(E))
  for (r in 2:nrow(E)) {
    X[r,] = X[r-1, ] %*% B + E[r, ]
  }
  return(X)
}
```
When do we use Rcpp?

Easy speedup: VAR(1) Simulation

cppFunction('arma::mat cppSim(arma::mat B, arma::mat E) {
 int m = E.n_rows; int n = E.n_cols;
 arma::mat X(m,n);
 X.row(0) = arma::zeros<arma::mat>(1,n);
 for (int r=1; r<m; r++) {
 X.row(r) = X.row(r-1) * B + E.row(r);
 }
 return X;
}', depends="RcppArmadillo")

a <- matrix(c(0.5,0.1,0.1,0.5),nrow=2)
e <- matrix(rnorm(10000),ncol=2)

benchmark(cppSim(a,e), rSim(a,e), order="relative")

test replications elapsed relative
1 cppSim(a, e) 100 0.024 1.00
2 rSim(a, e) 100 2.299 95.79
When do we use Rcpp?

New things: Easy access to C/C++ libraries

- Sometimes speed is not the only reason
- C and C++ provide a enormous amount of libraries and APIs we may want to use
- Easy to provide access to as **Rcpp** eases data transfer to/from R
- *Rcpp modules* can make it even easier (not covered today)
Where is Rcpp being used?
Numbers as of June 2014

Rcpp is

- used by 223 packages on CRAN
- used by another 27 package on BioConductor
- cited 105 times (Google Scholar count for 2011 JSS paper)
Where is Rcpp being used?

Several well-known packages

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
<th>Authors</th>
<th>Library Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amelia</td>
<td>Gary King et al: Multiple Imputation; uses Rcpp and RcppArmadillo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>forecast</td>
<td>Rob Hyndman et al: (Automated) Time-series forecasting; uses Rcpp and RcppArmadillo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RStan</td>
<td>Andrew Gelman et al: Bayesian models / MCMC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rugarch</td>
<td>Alexios Ghalanos: Sophisticated financial models; using Rcpp and RcppArmadillo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lme4</td>
<td>Doug Bates et al: Hierarchical/Mixed Linear Models; uses Rcpp and RcppEigen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dplyr, bigviz, ...</td>
<td>Hadley Wickham: Data munging; high-dim. visualization for 10-100 million obs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

5 How
- Setup
- evalCpp
- cppFunction
- sourceCpp
- skeleton
How do we use Rcpp?

Uses only standard R tools to build packages

Depending on the platform, one needs

Windows the Rtools kit for Windows, properly installed – see CRAN, the Installation manual and many tutorials; the `installr` package may help

OS X the Xcode *command-line tools* (plus possibly the Fortran compiler) – see Simon’s pages

Linux generally just work out of the box

Several environments can be used to work with **Rcpp** – RStudio is very popular.

No additional requirements for Rcpp beyond *being able to compile R packages*.
How do we use Rcpp?

Easy to test

```r
## evaluate a C++ expression, retrieve result
evalCpp("2 + 2")

## [1] 4

## a little fancier
evalCpp("std::numeric_limits<double>::max()")

## [1] 1.798e+308

## create ad-hoc R function 'square'
cppFunction('int square(int x) { return x*x;}')
square(7L)

## [1] 49
```
How do we use Rcpp?

Basic Usage: `evalCpp`

`evalCpp()` evaluates a single C++ expression. Includes and dependencies can be declared.

This allows us to quickly check C++ constructs.

```r
evalCpp("2 * M_PI")
```

```r
## [1] 6.283
```
cppFunction() creates, compiles and links a C++ file, and creates an R function to access it.

cppFunction("int useCpp11() {
 auto x = 10;
 return x;
}"
, plugins=c("cpp11"))
useCpp11() # same identifier as C++ function

[1] 10
sourceCpp() is the actual workhorse behind evalCpp() and cppFunction(). It is described in more detail in the package vignette Rcpp-attributes.

A key feature are the plugins and dependency options: other packages can provide a plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen, RcppGSL).

We have also provided plugins for other compiler features. These allow to enable support for C++11 (and beyond), as well as for OpenMP.
How do we use Rcpp?

Basic Usage: `Rcpp.package.skeleton()`

- To create a complete and working package, the `Rcpp.package.skeleton()` function can be used.
- It extends the base R function `package.skeleton()` and supports the same set of options.
- For **Rcpp** use is also supports (via additional options) *Rcpp Modules* and *Rcpp Attributes* both of which can be included with working examples.
- The vignette **Rcpp-package** has complete details.
How do we use Rcpp?

RStudio makes it very easy: Single File
How do we use Rcpp?

RStudio example cont’ed

The following file gets created:

```cpp
#include <Rcpp.h>
using namespace Rcpp;

// Below is a simple example of exporting a C++ function to R.
// You can source this function into an R session using the
// Rcpp::sourceCpp function (or via the Source button on the
// editor toolbar)

// For more on using Rcpp click the Help button on the editor toolbar

// [[Rcpp::export]]
int timesTwo(int x) {
    return x * 2;
}
```
How do we use Rcpp?

RStudio makes it very easy: Package
Outline

Armadillo

- Overview
- Users
- Examples
- Case Study: FastLM
- Case Study: Kalman Filter
- Case Study: Sparse Matrices
- XPtr
Armadillo

C++ linear algebra library

About
License FAQ API Docs Speed Authors Download

Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.

The syntax (API) is deliberately similar to Matlab.

Integer, floating point and complex numbers are supported, as well as a subset of trigonometric and statistics functions.

Various matrix decompositions are provided through optional integration with LAPACK, or one of its high performance drop-in replacements (such as the multi-threaded Intel MKL, or AMD ACML, or OpenBLAS libraries).

A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries; this is automatically accomplished through template meta-programming.

Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.

The library is open-source software, and is distributed under a license that is useful in both open-source and commercial/proprietary contexts.

Primarily developed at NICTA (Australia) by Conrad Sanderson, with contributions from around the world.

Download latest version
What is Armadillo?
From arma.sf.net and slightly edited

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.
- The syntax is deliberately similar to Matlab.
- Integer, floating point and complex numbers are supported.
- A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries.
- Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.
What is Armadillo?
From arma.sf.net and slightly edited

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between **speed and ease of use**.

- The syntax is **deliberately similar to Matlab**.

- **Integer, floating point and complex numbers** are supported.

- A **delayed evaluation approach** is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries.

- Useful for conversion of research code into **production environments**, or if C++ has been decided as the language of choice, due to **speed** and/or integration capabilities.
Armadillo highlights

- Provides integer, floating point and complex vectors, matrices and fields (3d) with all the common operations.
- Very good documentation and examples at website http://arma.sf.net, a technical report (Sanderson, 2010)
- Modern code, building upon and extending from earlier matrix libraries.
- Responsive and active maintainer, frequent updates.
- Used by MLPACK; cf Curtin et al (JMLR, 2013)
RcppArmadillo highlights

- Template-only builds—no linking, and available wherever R and a compiler work (but Rcpp is needed)!
- Easy with R packages: just add LinkingTo: RcppArmadillo, Rcpp to DESCRIPTION (i.e., no added cost beyond Rcpp)
- Data exchange really seamless from R via Rcpp
- Frequently updated; documentation includes Eddelbuettel and Sanderson (CSDA, 2014).
Well-know packages using RcppArmadillo

Amelia by Gary King et al: Multiple Imputation from cross-section, time-series or both;
forecast by Rob Hyndman et al: Time-series forecasting including state space and automated ARIMA modeling;
rugarch by Alexios Ghalanos: Sophisticated financial time series models;
gRbase by Søren Højsgaard: Graphical modeling
```
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::vec getEigenValues(arma::mat M) {
    return arma::eig_sym(M);
}
```
```r
set.seed(42); X <- matrix(rnorm(4*4), 4, 4)
Z <- X %*% t(X); getEigenValues(Z)
```

```r
## [,1]
## [1,] 0.3319
## [2,] 1.6856
## [3,] 2.4099
## [4,] 14.2100
```

R gets the same results (in reverse)
and also returns the eigenvectors.
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::mat mvrnormArma(int n, arma::vec mu,
 arma::mat sigma) {
 arma::mat Y = arma::randn(n, sigma.n_cols);
 return arma::repmat(mu, 1, n).t() +
 Y * arma::chol(sigma);
}

Dirk Eddelbuettel

Rcpp Intro & Examples
Faster Linear Model with FastLm

Background

- Implementations of ‘fastLm()‘ have been a staple all along the development of **Rcpp**
- The very first version was in response to a question by Ivo Welch on r-help.
- The request was for a fast function to estimate parameters – and their standard errors – from a linear model,
- It used GSL functions to estimate $\hat{\beta}$ as well as its standard errors $\hat{\sigma}$ – as `lm.fit()` in R only returns the former.
- It had since been reimplemented for **RcppArmadillo** and **RcppEigen**.
```cpp
#include <RcppArmadillo.h>

extern "C" SEXP fastLm(SEXP Xs, SEXP ys) {

try {
    Rcpp::NumericVector yr(ys); // creates Rcpp vector from SEXP
    Rcpp::NumericMatrix Xr(Xs); // creates Rcpp matrix from SEXP
    int n = Xr.nrow(), k = Xr.ncol();
    arma::mat X(Xr.begin(), n, k, false); // reuses memory, avoids extra copy
    arma::colvec y(yr.begin(), yr.size(), false);

    arma::colvec coef = arma::solve(X, y); // fit model y \sim X
    arma::colvec res = y - X*coef; // residuals
    double s2 = std::inner_product(res.begin(), res.end(), res.begin(), 0.0)/(n - k);
    arma::colvec std_err = arma::sqrt(s2*arma::diagvec(arma::pinv(arma::trans(X)*X)));

    return Rcpp::List::create(Rcpp::Named("coefficients") = coef,
                               Rcpp::Named("stderr") = std_err,
                               Rcpp::Named("df.residual") = n - k);
}

} catch (std::exception &ex ) {
    forward_exception_to_r(ex);
} catch(...) {
    ::Rf_error("c++ exception (unknown reason)" );
}

return R_NilValue; // -Wall
```
Faster Linear Model with FastLm
Edited version of earlier RcppArmadillo’s src/fastLm.cpp

```
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp; using namespace arma;

// [[Rcpp::export]]
List fastLm(NumericVector yr, NumericMatrix Xr) {
  int n = Xr.nrow(), k = Xr.ncol();
  mat X(Xr.begin(), n, k, false);
  colvec y(yr.begin(), yr.size(), false);

  colvec coef = solve(X, y);
  colvec resid = y - X*coef;

  double sig2 = as_scalar(trans(resid)*resid/(n-k));
  colvec stderrest = sqrt(sig2 * diagvec(inv(trans(X)*X)));

  return List::create(Named("coefficients") = coef,
                       Named("stderr") = stderrest,
                       Named("df.residual") = n - k);
}
```
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp;
using namespace arma;

// [[Rcpp::export]]
List fastLm(const arma::mat & X, const arma::colvec & y) {
 int n = X.n_rows, k = X.n_cols;

 colvec coef = solve(X, y);
 colvec resid = y - X*coef;

 double sig2 = as_scalar(trans(resid)*resid/(n-k));
 colvec stderrest = sqrt(sig2 * diagvec(inv(trans(X)*X)));

 return List::create(
 Named("coefficients") = coef,
 Named("stderr") = stderrest,
 Named("df.residual") = n - k
);
}
Faster Linear Model with FastLm
Note on as<>() casting with Armadillo

arma::colvec y = Rcpp::as<arma::colvec>(ys);
arma::mat X = Rcpp::as<arma::mat>(Xs);

Convenient, yet incurs an additional copy. Next variant uses two steps, but only a pointer to objects is copied:

Rcpp::NumericVector yr(ys);
Rcpp::NumericMatrix Xr(Xs);
int n = Xr.nrow(), k = Xr.ncol();
arma::mat X(Xr.begin(), n, k, false);
arma::colvec y(yr.begin(), yr.size(), false);

Preferable if performance is a concern. Since last fall RcppArmadillo has efficient const references too.
Faster Linear Model with FastLm
Performance comparison

Running the script included in the **RcppArmadillo** package:

edd@max:~/svn/rcpp/pkg/RcppArmadillo/inst/examples$ r fastLm.r
Loading required package: Rcpp

test replications relative elapsed
2 fLmTwoCasts(X, y) 5000 1.000 0.188
3 fLmConstRef(X, y) 5000 1.000 0.188
1 fLmOneCast(X, y) 5000 1.005 0.189
5 fastLmPureDotCall(X, y) 5000 1.064 0.200
4 fastLmPure(X, y) 5000 2.000 0.376
7 lm.fit(X, y) 5000 2.691 0.506
6 fastLm(frm, data = trees) 5000 35.596 6.692
8 lm(frm, data = trees) 5000 44.883 8.438
edd@max:~/svn/rcpp/pkg/RcppArmadillo/inst/examples$
The position of an object is estimated based on past values of 6×1 state vectors X and Y for position, V_X and V_Y for speed, and A_X and A_Y for acceleration.

Position updates as a function of the speed

$$X = X_0 + V_X dt \quad \text{and} \quad Y = Y_0 + V_Y dt,$$

which is updated as a function of the (unobserved) acceleration:

$$V_x = V_{X,0} + A_X dt \quad \text{and} \quad V_y = V_{Y,0} + A_Y dt.$$
Kalman Filter
Basic Matlab Function

function y = kalmanfilter(z)
% #codegen
dt=1;
% Initialize state transition matrix
A=[1 0 dt 0 0 0;...
 0 1 0 dt 0 0;...
 0 0 1 0 dt 0;...
 0 0 0 1 0 dt;...
 0 0 0 0 1];
%
H = [1 0 0 0 0 0; 0 1 0 0 0 0];
Q = eye(6);
R = 1000 * eye(2);
persistent x_est p_est
if isempty(x_est)
 x_est = zeros(6, 1);
 p_est = zeros(6, 6);
end
% Predicted state and covariance
x_prd = A * x_est;
p_prd = A * p_est * A' + Q;
% Estimation
S = H * p_prd' * H' + R;
B = H * p_prd';
klm_gain = (S \
 B)';
% Estimated state and covariance
x_est = x_prd+klm_gain*(z-H*x_prd);
p_est = p_prd-klm_gain*H*p_prd;
% Compute the estimated measurements
y = H * x_est;
end

% of the function

Plus a simple wrapper function calling this function.
Kalman Filter: In R
Easy enough – first naive solution

```r
FirstKalmanR <- function(pos) {
  kf <- function(z) {
    dt <- 1
    A <- matrix(c(1, 0, dt, 0, 0, 0, # x
               0, 1, 0, dt, 0, 0, # y
               0, 0, 1, 0, dt, 0, # Vx
               0, 0, 0, 1, 0, dt, # Vy
               0, 0, 0, 0, 1, 0, # Ax
               0, 0, 0, 0, 0, 1), # Ay
               6, 6, byrow=TRUE)
    H <- matrix(c(1, 0, 0, 0, 0, 0,
                  0, 1, 0, 0, 0, 0),
               2, 6, byrow=TRUE)
    Q <- diag(6)
    R <- 1000 * diag(2)
    N <- nrow(pos)
    y <- matrix(NA, N, 2)

    ## predicted state and covariance
    xprd <- A %*% xest
    pprd <- A %*% pest %*% t(A) + Q

    ## estimation
    S <- H %*% t(pprd) %*% H + R
    B <- H %*% t(pprd)
    kalmangain <- -(S %*% B)'
    kg <- t(solve(S, B))

    ## est. state and cov, assign to vars in parent env
    xest <<- xprd + kg %*% (z-H%*%xprd)
    pest <<- pprd - kg %*% H %*% pprd

    ## compute the estimated measurements
    y <<- H %*% xest

    # compute the estimated measurements
    y <- H %*% xest

    for (i in 1:N) {
      y[i,] <- kf(t(pos[i,drop=FALSE]))
    }

    invisible(y)
}
```
```
Kalman Filter: In R
Easy enough – with some minor refactoring

KalmanR <- function(pos) {
  kf <- function(z) {
    ## predicted state and covariance
    xprd <- A %*% xest
    pprd <- A %*% pest %*% t(A) + Q
    
    ## estimation
    S <- H %*% t(pprd) %*% t(H) + R
    B <- H %*% t(pprd)
    kg <- (S %*% B)'
    kg <- t(solve(S, B))
    
    ## estimated state and covariance
    ## assigned to vars in parent env
    xest <<- xprd + kg %*% (z-H%*%xprd)
    pest <<- pprd - kg %*% H %*% pprd
    
    ## compute the estimated measurements
    y <- H %*% xest
  }
  dt <- 1
}

A <- matrix(c(1, 0, dt, 0, 0, 0, # x
               0, 1, 0, dt, 0, 0, # y
               0, 0, 1, 0, dt, 0, # Vx
               0, 0, 0, 1, 0, dt, # Vy
               0, 0, 0, 0, 1, 0, # Ax
               0, 0, 0, 0, 0, 1), # Ay
            6, 6, byrow=TRUE)

H <- matrix(c(1, 0, 0, 0, 0, 0,
              0, 1, 0, 0, 0, 0),
            2, 6, byrow=TRUE)

Q <- diag(6)
R <- 1000 * diag(2)

N <- nrow(pos)
y <- matrix(NA, N, 2)

xest <- matrix(0, 6, 1)
pest <- matrix(0, 6, 6)

for (i in 1:N) {
  y[i,] <- kf(t(pos[i,"drop=FALSE"]))
}

invisible(y)
Kalman Filter: In C++
Using a simple class

```cpp
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

using namespace arma;

class Kalman {
private:
 mat A, H, Q, R, xest, pest;
 double dt;

class Kalman {
public:
 // constructor, sets up data structures
 Kalman() : dt(1.0) {
 A.eye(6,6);
 A(0,2) = A(1,3) = dt;
 A(2,4) = A(3,5) = dt;
 H.zeros(2,6);
 H(0,0) = H(1,1) = 1.0;
 Q.eye(6,6);
 R = 1000 * eye(2,2);
 xest.zeros(6,1);
 pest.zeros(6,6);
 }

 // sole member func.: estimate model
 mat estimate(const mat & Z) {
 unsigned int n = Z.n_rows,
 k = Z.n_cols;
 mat Y = zeros(n, k);
 mat xprd, pprd, S, B, kg;
 colvec z, y;

 for (unsigned int i = 0; i<n; i++) {
 z = Z.row(i).t();
 // predicted state and covariance
 xprd = A * xest;
 pprd = A * pest * A.t() + Q;
 // estimation
 S = H * pprd.t() * H.t() + R;
 B = H * pprd.t();
 kg = (solve(S, B)).t();
 // estimated state and covariance
 xest = xprd + kg * (z - H * xprd);
 pest = pprd - kg * H * pprd;
 // compute estimated measurements
 y = H * xest;
 Y.row(i) = y.t();
 }
 return Y;
 }
};
```
Given the code from the previous slide, we just add

```cpp
// [[Rcpp::export]]
mat KalmanCpp(mat Z) {
 Kalman K;
 mat Y = K.estimate(Z);
 return Y;
}
```
Kalman Filter: Performance
Quite satisfactory relative to R

Even byte-compiled 'better' R version is 66 times slower:

```r
R> FirstKalmanRC <- cmpfun(FirstKalmanR)
R> KalmanRC <- cmpfun(KalmanR)
R>
R> stopifnot(identical(KalmanR(pos), KalmanRC(pos)),
+ all.equal(KalmanR(pos), KalmanCpp(pos)),
+ identical(FirstKalmanR(pos), FirstKalmanRC(pos)),
+ all.equal(KalmanR(pos), FirstKalmanR(pos)))
R>
R> res <- benchmark(KalmanR(pos), KalmanRC(pos),
+ FirstKalmanR(pos), FirstKalmanRC(pos),
+ KalmanCpp(pos),
+ columns = c("test", "replications",
+ "elapsed", "relative"),
+ order="relative",
+ replications=100)
R>
R> print(res) # print results
```

<table>
<thead>
<tr>
<th>test</th>
<th>replications</th>
<th>elapsed</th>
<th>relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>KalmanCpp(pos)</td>
<td>100</td>
<td>0.087</td>
<td>1.0000</td>
</tr>
<tr>
<td>KalmanRC(pos)</td>
<td>100</td>
<td>5.774</td>
<td>66.3678</td>
</tr>
<tr>
<td>KalmanR(pos)</td>
<td>100</td>
<td>6.448</td>
<td>74.1149</td>
</tr>
<tr>
<td>FirstKalmanRC(pos)</td>
<td>100</td>
<td>8.153</td>
<td>93.7126</td>
</tr>
<tr>
<td>FirstKalmanR(pos)</td>
<td>100</td>
<td>8.901</td>
<td>102.3103</td>
</tr>
</tbody>
</table>
```
Kalman Filter: Figure

Last but not least we can redo the plot as well
A nice example for work on R objects.

```r
i <- c(1,3:8)
j <- c(2,9,6:10)
x <- 7 * (1:7)
A <- sparseMatrix(i, j, x = x)

## Error: could not find function "sparseMatrix"

A

## Error: object 'A' not found
```
Note how the construction was in terms of $<i, j, x>$, yet the representation is in terms of $<i, p, x>$ – CSC format.

```r
str(A)

## Error: object 'A' not found
```
#include <RcppArmadillo.h>

using namespace Rcpp;
using namespace arma;

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
sp_mat armaEx(S4 mat, bool show) {
 IntegerVector dims = mat.slot("Dim");
 arma::urowvec i = Rcpp::as<arma::urowvec>(mat.slot("i"));
 arma::urowvec p = Rcpp::as<arma::urowvec>(mat.slot("p"));
 arma::vec x = Rcpp::as<arma::vec>(mat.slot("x"));

 int nrow = dims[0], ncol = dims[1];
 arma::sp_mat res(i, p, x, nrow, ncol);
 if (show) Rcpp::Rcout << res << std::endl;
 return res;
}
sourceCpp('code/sparseEx.cpp')

```r
i <- c(1, 3:8)
j <- c(2, 9, 6:10)
x <- 7 * (1:7)
A <- sparseMatrix(i, j, x = x)
B <- armaEx(A, TRUE)
```

```r
## [matrix size: 8x10; n_nonzero: 7; density: 8.75%]
##
## (0, 1) 7.0000
## (3, 5) 21.0000
## (4, 6) 28.0000
## (5, 7) 35.0000
## (2, 8) 14.0000
## (6, 8) 42.0000
## (7, 9) 49.0000
```
Consider two simple functions modifying a given Armadillo vector:

```cpp
#include <RcppArmadillo.h>

using namespace arma;
using namespace Rcpp;

vec fun1_cpp(const vec& x) { // a first function
    vec y = x + x;
    return (y);
}

vec fun2_cpp(const vec& x) { // and a second function
    vec y = 10*x;
    return (y);
}
```
Using a `typedef` to declare an interface to a function taking and returning a vector — and a function returning a function pointer given a string argument

```cpp
typedef vec (*funcPtr)(const vec& x);

// [[Rcpp::export]]
XPtr<funcPtr> putFunPtrInXPtr(std::string fstr) {
    if (fstr == "fun1")
        return XPtr<funcPtr>(new funcPtr(&fun1_cpp));
    else if (fstr == "fun2")
        return XPtr<funcPtr>(new funcPtr(&fun2_cpp));
    else
        // runtime err.: NULL no XPtr
        return XPtr<funcPtr>(R_NilValue);
}
```
We then create a function calling the supplied function on a given vector by 'unpacking' the function pointer:

```cpp
// [[Rcpp::export]]
vec callViaXPtr(const vec x, SEXP xpsexp) {
  XPtr<funcPtr> xpfun(xpsexp);
  funcPtr fun = *xpfun;
  vec y = fun(x);
  return (y);
}
```
get us a function

```r
fun <- putFunPtrInXPtr("fun1")
```

and pass it down to C++ to have it applied on given vector

```r
callViaXPtr(1:4, fun)
```

```
## [,1]
## [1,] 2
## [2,] 4
## [3,] 6
## [4,] 8
```

Could use same mechanism for user-supplied functions, gradients, or samplers, ...
Outline

7 Doc
- Basics
- Gallery
- Book
The package comes with **eight pdf vignettes**, and numerous help pages.

The introductory vignettes are now **published** (Rcpp and RcppEigen in *J Stat Software*, RcppArmadillo in *Comp. Stat.& Data Anal.*).

The **rcpp-devel** list is *the* recommended resource, generally very helpful, and fairly low volume. **StackOverflow** has over 500 posts too.

Several blog posts introduce/discuss features.
What Else?

Rcpp Gallery: 80+ working and detailed examples
What Else?
The Rcpp book

In print since June 2013