
Intro R Rcpp RcppParallel

R, Rcpp and Parallel Computing
Notes from our Rcpp Experience

Dirk Eddelbuettel and JJ Allaire

Jan 26-27, 2015
Workshop for Distributed Computing in R

HP Research, Palo Alto, CA

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Outline

1 Intro

2 R

3 Rcpp

4 RcppParallel

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

One View on Parallel Computing

The whole “let’s parallelize” thing is a huge waste of
everybody’s time. There’s this huge body of
“knowledge” that parallel is somehow more efficient,
and that whole huge body is pure and utter garbage.
Big caches are efficient. Parallel stupid small cores
without caches are horrible unless you have a very
specific load that is hugely regular (ie graphics).
[. . . ]
Give it up. The whole “parallel computing is the
future” is a bunch of crock.

Linus Torvalds, Dec 2014

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing

http://www.realworldtech.com/forum/?threadid=146066&curpostid=146227


Intro R Rcpp RcppParallel

Another View on Big Data
Imagine a gsub("DBMs", "", tweet) to complement further...

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Outline

1 Intro

2 R

3 Rcpp

4 RcppParallel

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

CRAN Task View on HPC
http://cran.r-project.org/web/views/HighPerformanceComputing.html

Things R does well:

Package snow by Tierney et al a trailblazer
Package Rmpi by Yu equally important
multicore / snow / parallel even work on Windows
Hundreds of applications
It just works for data-parallel tasks

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Outline

1 Intro

2 R

3 Rcpp

4 RcppParallel

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Rcpp: Early Days

In the fairly early days of Rcpp, we also put out RInside as a
simple C++ class wrapper around the R-embedding API.
It got one clever patch taking this (ie: R wrapped in C++ with
its own main() function) and encapsulating it within MPI.
HP Vertica also uses Rcpp and RInside in DistributedR.

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing

https://github.com/vertica/DistributedR/tree/master/third_party


Intro R Rcpp RcppParallel

Rcpp: More recently

Rcpp is now easy to deploy; Rcpp Attributes played a key role:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {

NumericVector x = runif(N);
NumericVector y = runif(N);
NumericVector d = sqrt(x*x + y*y);
return 4.0 * sum(d < 1.0) / N;

}

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Rcpp: Extensions

Rcpp Attributes also support “plugins”
OpenMP is easy to use and widely supported (on suitable OS /
compiler combinations).
So we added support via a plugin. Use is still not as
wide-spread.
Errors have commonality: calling back into R.

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Outline

1 Intro

2 R

3 Rcpp

4 RcppParallel

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Parallel Programming for Rcpp Users
NOT like this...

using namespace boost;

void task()
{

lock_guard<boost::mutex> lock(mutex);
// etc...

}

threadpool::pool tp(thread::hardware_concurrency());
for (int i=0; i<slices; i++)

tp.schedule(&task);

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Parallel Programming for Rcpp Users

Goals:

Encapsulate threading and locking
Provide high level constructs for common parallel tasks
High performance: locality, work stealing, etc.
Safe access to R data structures on multiple threads

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Parallel Programming Alternatives

TBB OMP RAW
Task level parallelism • •
Data decomposition support • •
Non loop parallel patterns •
Generic parallel patterns •
Nested parallelism support •
Built in load balancing • •
Affinity support • •
Static scheduling •
Concurrent data structures •
Scalable memory allocator •

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

TBB vs. OpenMP vs. Threads

Raw threads shift too much burden for parallelization onto
the developer (error prone and not performant)
OpenMP is excellent for parallelizing existing loops where
the iterations are independent (R already has some support
for OpenMP)
TBB fares better when there is more potential interaction
between threads (e.g. more complex loops, simulations, or
where concurrent containers are required).
RcppParallel: Enable use of TBB with R to complement
existing OpenMP stack.

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Win32 Platform Complications

TBB supports mingw on Win32 however we haven’t (yet)
sorted out how to build it with Rtools
As a result we use TinyThread on Win32
This requires that we create a layer to abstract over TBB
and TinyThread (thus limiting the expressiveness of code
that wants to be portable to Windows).
Developers are still free to use all of TBB if they are
content targeting only Linux and OSX
Would love to see TBB working on Win32 (pull requests
welcome!)

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing

http://tinythreadpp.bitsnbites.eu/


Intro R Rcpp RcppParallel

R Concurrency Complications

R is single-threaded and includes this warning in Writing R
Extensions when discussing the use of OpenMP:

Calling any of the R API from threaded code is ‘for
experts only’: they will need to read the source code
to determine if it is thread-safe. In particular, code
which makes use of the stack-checking mechanism
must not be called from threaded code.

However we don’t really want to force Rcpp users to resort to
reading the Rcpp and R source code to assess thread safety
issues.

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing

http://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://cran.r-project.org/doc/manuals/r-release/R-exts.html


Intro R Rcpp RcppParallel

RcppParallel Threadsafe Accessors

Since R vectors and matrices are just raw contiguous arrays it’s
easy to create threadsafe C++ wrappers for them:

RVector<T> is a very thin wrapper over a C array.
RMatrix<T> is the same but also provides Row<T> and
Column<T> accessors/iterators.

The implementions of these classes are extremely lightweight
and never call into Rcpp or the R API (so are always
threadsafe).

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

RcppParallel Operations

Two high-level operations are provided (with TBB and
TinyThread implementations of each):

parallelFor – Convert the work of a standard serial “for”
loop into a parallel one
parallelReduce – Used for accumulating aggregate or
other values.

Not surprisingly the TBB versions of these operations perform ~
50% better than the “naive” parallel implementation provided
by TinyThread.

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Basic Mechanics: Create a Worker

Create a Worker class with operator() that RcppParallel uses
to operate on discrete slices of the input data on different
threads:

class MyWorker : public RcppParallel::Worker {

void operator()(size_t begin, size_t end) {
// do some work from begin to end
// within the input data

}

}

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Basic Mechanics: Call the Worker
Worker would typically take input and output data in it’s
constructor then save them as members (for reading/writing
within operator()):

NumericMatrix matrixSqrt(NumericMatrix x) {

NumericMatrix output(x.nrow(), x.ncol());

SquareRootWorker worker(x, output);

parallelFor(0, x.length(), worker);

return output;
}

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Basic Mechanics: Join Function

For parallelReduce you need to specify how data is to be
combined. Typically you save data in a member within
operator() then fuse it with another Worker instance in the
join function.

class SumWorker : public RcppParallel::Worker

// join my value with that of another SumWorker
void join(const SumWorker& rhs) {

value += rhs.value;
}

}

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

What does all of this buy us?

Developers just write pieces of code that are called at the
correct time by an intelligent parallel supervisor
In most cases no locking or explicit thread management
required!
Supervisor does some intelligent optimization around:

Grain size (which affects locality of reference and
therefore cache hit rates). Note that grain size can also
be tuned directly per-application.
Work stealing (detecting idle threads and pushing work to
them)

In the case of TBB, high performance concurrent
containers are available if necessary

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Examples

All available on the Rcpp Gallery
http://gallery.rcpp.org
Tested with 4 cores on a 2.6GHz Haswell MacBook Pro
Note that benchmarks will be 30-50% slower on Windows
because we aren’t using the more sophisticated scheduling
of TBB

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing

http://gallery.rcpp.org


Intro R Rcpp RcppParallel

Example: Transforming a Matrix in Parallel
http://gallery.rcpp.org/articles/parallel-matrix-transform

void operator()(size_t begin, size_t end) {
std::transform(input.begin() + begin,

input.begin() + end,
output.begin() + begin,
::sqrt);

}

test replications elapsed relative
2 parallelMatrixSqrt(m) 100 0.294 1.000
1 matrixSqrt(m) 100 0.755 2.568

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Example: Summing a Vector in Parallel
http://gallery.rcpp.org/articles/parallel-vector-sum

void operator()(size_t begin, size_t end) {
value += std::accumulate(input.begin() + begin,

input.begin() + end,
0.0);

}
void join(const Sum& rhs) {

value += rhs.value;
}

test replications elapsed relative
2 parallelVectorSum(v) 100 0.182 1.000
1 vectorSum(v) 100 0.857 4.709

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Example: Parallel Distance Matrix Calculation
http://gallery.rcpp.org/articles/parallel-distance-matrix

test reps elapsed relative
3 rcpp_parallel_distance(m) 3 0.110 1.000
2 rcpp_distance(m) 3 0.618 5.618
1 distance(m) 3 35.560 323.273

Rcpp + RcppParallel = 323x over R implementation!
Unbalanced workload benefits from work stealing

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

The Rest of TBB

Advanced algorithms: parallel_scan, parallel_while,
parallel_do, parallel_pipeline, parallel_sort
Containers: concurrent_queue,
concurrent_priority_queue, concurrent_vector,
concurrent_hash_map
Mutual exclusion: mutex, spin_mutex, queuing_mutex,
spin_rw_mutex, queuing_rw_mutex,
recursive_mutex
Atomic operations: fetch_and_add,
fetch_and_increment, fetch_and_decrement,
compare_and_swap, fetch_and_store
Timing: portable fine grained global time stamp
Task Scheduler: direct access to control the creation and
activation of tasks

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing



Intro R Rcpp RcppParallel

Open Issues

Additional (portable to Win32 via TinyThread) wrappers
for other TBB constructs?
Alternatively, sort out Rtools configuration issues required
to get TBB working on Windows.
Education: Parallel Programming is hard.
Simple parallelFor and parallelReduce are
reasonably easy to grasp, but more advanced idioms aren’t
trivial to learn and use (but for some applications have lots
of upside so are worth the effort).

Dirk Eddelbuettel and JJ Allaire R, Rcpp and Parallel Computing


	Intro
	R
	Rcpp
	RcppParallel

