Seamless R Extensions
using Rcpp and Rinside

Dirk Eddelbuettel
Debian & R

Joint work with Romain Frangois

Presentation on March 30, 2010 to
UCLA Department of Statistics (3pm)
Los Angeles R Users Group (6pm)

© @

Dirk Eddelbuettel

http://www.debian.org

Why ? The standard API Inline
Outline

e Extending R
® Why ?
@ The standard API
@ Inline

© R

http://www.debian.org

The standard APl Inline
Outline

0 Extending R
@ Why ?

@ W

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline

Motivation

John M. Chambers

Chambers. Software for
Data Analysis:
Programming with R.
Springer, 2008

wR

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) opens chapter 11 (Interfaces I:
Using C and Fortran) with these words:

John M. Chambers

Chambers. Software for
Data Analysis:
Programming with R.
Springer, 2008

© oAR

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) opens chapter 11 (Interfaces I:
Using C and Fortran) with these words:

Since the core of R is in fact a program
written in the C language, it's not surprising
that the most direct interface to non-R
software is for code written in C, or directly
callable from C. All the same, including
additional C code is a serious step, with
some added dangers and often a substantial

Chambers. Software for

Data Analysis: amount of programming and debugging
Pi i ith R. .
Springer. 2008 required. You should have a good reason.

@ B

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

© SR

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

© SR

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

@ It's more work

© SR

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:
@ It's more work
@ Bugs will bite

© SR

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:
@ It's more work

@ Bugs will bite

@ Potential platform
dependency

@ R

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:
@ It's more work

@ Bugs will bite

@ Potential platform
dependency

@ Less readable software

@ R

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:
@ It's more work
@ Bugs will bite

@ Potential platform
dependency

@ Less readable software

@ R

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the

road ahead:
Against: In Favor:
@ It's more work @ New and trusted

@ Bugs will bite computations

@ Potential platform
dependency

@ Less readable software

© SR

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the

road ahead:
Against: In Favor:
@ It's more work @ New and trusted
@ Bugs will bite computations
@ Speed

@ Potential platform
dependency

@ Less readable software

@ R

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the

road ahead:
Against: In Favor:
@ It's more work @ New and trusted
@ Bugs will bite computations
@ Potential platform @ Speed
dependency @ Object references

@ Less readable software

@ R

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the

road ahead:
Against: In Favor:
@ It's more work @ New and trusted
@ Bugs will bite computations
@ Potential platform @ Speed
dependency @ Object references

@ Less readable software

@ R

Dirk Eddelbuettel

http://www.debian.org

The standard APl Inline
Motivation

Chambers (2008) then proceeds with this rough map of the

road ahead:
Against: In Favor:
@ It's more work @ New and trusted
@ Bugs will bite computations
@ Potential platform @ Speed
dependency @ Object references

@ Less readable software

So is the deck stacked against us?

@ AR

Dirk Eddelbuettel

http://www.debian.org

Inline

Outline

0 Extending R

® The standard API

© R

http://www.debian.org

Why ? Inline

Compiled Code: The Basics

R offers several functions to access compiled code: we focus
on .c and .call here. (R Extensions, sections 5.2 and 5.9;
Software for Data Analysis).

© w iR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org

Why ? Inline

Compiled Code: The Basics

R offers several functions to access compiled code: we focus

on .c and .call here. (R Extensions, sections 5.2 and 5.9;
Software for Data Analysis).

The canonical example is the convolution function:

1| void convolve (double xa, int xna, double xb,
2 int xnb, double xab)
3 {

4 int i, j, nab = xna + *xnb — 1;
5

6 for(i = 0; i < nab; i++)

7 ab[i] = 0.0;

8 for(i = 0; i < *na; i++)

9 for(j = 0; j < *nb; j++)

10 ab[i + j] += a[i] = b[j];

1| }

@

iR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org

Why ? Inline

Compiled Code: The Basics cont.

The convolution function is called from R by

© w iR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Why ? Inline

Compiled Code: The Basics cont.

The convolution function is called from R by

conv <— function(a, b)
.C("convolve",
as.double(a),
as.integer(length(a)),
as.double(b) ,
as.integer(length (b)),
ab = double(length(a) + length(b) — 1))$ab

N o oA~ W NN =

As stated in the manual, one must take care to coerce all the
arguments to the correct R storage mode before calling . C as
mistakes in matching the types can lead to wrong results or
hard-to-catch errors.

@ AR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Why ? Inline

Compiled Code: The Basics cont.

Using .call, the example becomes

© w iR

Dirk Eddelbuettel

http://www.debian.org

Why ? Inline

Compiled Code: The Basics co

Using .call, the example becomes

#include <R.h>
#include <Rdefines.h>

extern "C" SEXP convolve2 (SEXP a, SEXP b)
{

int i, j, na, nb, nab;

double xxa, xxb, xxab;

SEXP ab;

O©CoONOOHA~WN =

10| PROTECT(a = AS_NUMERIC(a));
11| PROTECT(b = AS_NUMERIC(b));

12| na = LENGTH(a); nb = LENGTH(
13| PROTECT(ab = NEW_NUMERIC(nab
14| xa = NUMERIC_POINTER(a); xb

)

b); nab = na + nb — 1;
)
= NUMERIC_POINTER(b) ;

15 xab = NUMERICﬁPOINTER(ab);

16 for(i = 0; i < nab; i++) xab[i] = 0.0;

17 for(i = 0; i < na; i++)

18 for(j = 0; j < nb; j++) xab[i + j] += xa[i] = xb[]];
19 UNPROTECT(3) ;

20 return(ab) ;

= ué@i /

http://www.debian.org

Why ? Inline

Compiled Code: The Basics cont.

Now the call simplifies to just the function name and the vector
arguments—all other handling is done at the C/C++ level:

1| conv <— function(a, b) .Call("convolve2", a, b)

@ R

Dirk Eddelbuettel

http://www.debian.org

Why ? Inline

Compiled Code: The Basics cont.

Now the call simplifies to just the function name and the vector
arguments—all other handling is done at the C/C++ level:

1| conv <— function(a, b) .Call("convolve2", a, b)

In summary, we see that
@ there are different entry points

© w iR

Dirk Eddelbuettel

http://www.debian.org

Why ? Inline

Compiled Code: The Basics cont.

Now the call simplifies to just the function name and the vector
arguments—all other handling is done at the C/C++ level:

1| conv <— function(a, b) .Call("convolve2", a, b)

In summary, we see that
@ there are different entry points
@ using different calling conventions

@ R

Dirk Eddelbuettel

http://www.debian.org

Why ? Inline

Compiled Code: The Basics cont.

Now the call simplifies to just the function name and the vector
arguments—all other handling is done at the C/C++ level:

1| conv <— function(a, b) .Call("convolve2", a, b)

In summary, we see that
@ there are different entry points
@ using different calling conventions

@ leading to code that may need to do more work at the
lower level.

@ R

Dirk Eddelbuettel

http://www.debian.org

Why ? The standard API

Outline

0 Extending R

@ Inline

@ wR

Dirk Eddelbuettel

http://www.debian.org

Why ? The standard API
Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the
function cfunction which can wrap Fortran, C or C++ code.

@ SR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org

Why ? The standard API
Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the
function cfunction which can wrap Fortran, C or C++ code.

1| ## A simple Fortran example

2| code <— "

3 integer i

4 do 1 i=1, n(1)

5 1 x(i) = x(i)*=*3

ol v

7| cubefn <— cfunction(signature(n="integer", x="numeric"),
8 code, convention=".Fortran")
9| X <— as.numeric(1:10)

10| n <— as.integer(10)

11| cubefn(n, x)$x

@ AR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org

Why ? The standard API
Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the
function cfunction which can wrap Fortran, C or C++ code.

A simple Fortran example
code <— "

integer i

do 1 i=1, n(1)

1 x(i) = x(i)**3
cubefn <— cfunction(signature (n="integer", x="numeric"),
code, convention=".Fortran")

X <— as.numeric(1:10)
n <— as.integer(10)
cubefn(n, x)$x

- O © 00 N O g & W N =

cfunction takes care of compiling, linking, loading, ... by
placing the resulting dynamically-loadable object code in the
@ per-session temporary directory used by R.

iR

http://www.debian.org
http://www.r-project.org

Overview New API Examples

Outline

@ Repp

@ Overview
@ New API
@ Examples

© R

http://www.debian.org

New APl Examples

Outline

e Rcpp

@ Overview

@ wR

Dirk Eddelbuettel

http://www.debian.org

Compiled Code: Rcpp

In a nutshell:

@ wR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Compiled Code: Rcpp

In a nutshell:
@ Rcpp makes it easier to interface C++ and R code.

© R

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Compiled Code: Rcpp

In a nutshell:
@ Rcpp makes it easier to interface C++ and R code.

@ Using the .call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.

(E) iR

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Compiled Code: Rcpp |

In a nutshell:
@ Rcpp makes it easier to interface C++ and R code.

@ Using the .call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.

@ One major advantage of using .ca1l1l is that richer R
objects (vectors, matrices, lists, ... in fact most SEXP
types incl functions, environments etc) can be passed
directly between R and C++ without the need for explicit
passing of dimension arguments.

(E) iR

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Compiled Code: Rcpp |

In a nutshell:
@ Rcpp makes it easier to interface C++ and R code.

@ Using the .call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.

@ One major advantage of using .Cca1l1 is that richer R
objects (vectors, matrices, lists, ... in fact most SEXP
types incl functions, environments etc) can be passed
directly between R and C++ without the need for explicit
passing of dimension arguments.

@ By using the C++ class layers, we do not need to
manipulate the SEXP objects using any of the old-school C
macros.

@ SR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Compiled Code: Rcpp

In a nutshell:
@ Rcpp makes it easier to interface C++ and R code.

@ Using the .call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.

@ One major advantage of using .Cca1l1 is that richer R
objects (vectors, matrices, lists, ... in fact most SEXP
types incl functions, environments etc) can be passed
directly between R and C++ without the need for explicit
passing of dimension arguments.

@ By using the C++ class layers, we do not need to
manipulate the SEXP objects using any of the old-school C
macros.

(?) @ inline eases usage, development and testing. ué/

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

New APl Examples
Rcpp example

The convolution example can be rewritten in the 'Classic API’:

@ u R

Dirk Eddelbuettel

http://www.debian.org

New API Examples

Rcpp example

The convolution example can be rewritten in the 'Classic API’:

1| #include <Rcpp.h>

2

3| RcppExport SEXP convolve_cpp (SEXP a, SEXP b)
41

5 RcppVector<double> xa(a) ;

6 RcppVector<double> xb(b) ;

7

8 int nab = xa.size() + xb.size() — 1;

9

10 RcppVector<double> xab(nab) ;

11 for (int i = 0; i < nab; i++) xab(i) = 0.0;
12

13 for (int i = 0; i < xa.size(); i++)

14 for (int j = 0; j < xb.size(); j++)
15 xab(i + j) += xa(i) = xb(j);

16

17 RcppResultSet rs;

18 rs.add("ab", xab);

19 return rs.getReturnList();

20| }

= ué@i /

http://www.debian.org

Overview Examples

Outline

@ Repp

@ New API

@ WSB!

Dirk Eddelbuettel

http://www.debian.org

Overview Examples

Rcpp: The 'New AP’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

@ SR

Dirk Eddelbuettel

http://www.debian.org

Overview Examples

Rcpp: The 'New AP’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

SEXP ab;

PROTECT(ab = allocVector (STRSXP, 2));
SET_STRING_ELT(ab, 0, mkChar("foo"));
SET_STRING_ELT(ab, 1, mkChar("bar"));
UNPROTECT (1) ;

g~ =

@ WSB!

Dirk Eddelbuettel

http://www.debian.org

Overview Examples

Rcpp: The 'New AP’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

1| SEXP ab;

2| PROTECT(ab = allocVector (STRSXP, 2)); 1| CharacterVector ab(2) ;
3| SET_STRING_ELT(ab, 0, mkChar("foo")); 2| ab[0] = "foo" ;

4| SET_STRING_ELT(ab, 1, mkChar("bar")); 3| ab[1] = "bar" ;

5

UNPROTECT(1) ;

@ AR

Dirk Eddelbuettel

http://www.debian.org

Overview Examples

Rcpp: The 'New AP’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

1| SEXP ab;

2| PROTECT(ab = allocVector (STRSXP, 2)); 1| CharacterVector ab(2) ;
3| SET_STRING_ELT(ab, 0, mkChar("foo")); 2| ab[0] = "foo" ;

4| SET_STRING_ELT(ab, 1, mkChar("bar")); 3| ab[1] = "bar" ;

5

UNPROTECT(1) ;

Data types, including STL containers and iterators, can be
nested. and other niceties. Implicit converters allow us to
combine types:

@ AR

Dirk Eddelbuettel

http://www.debian.org

Overview Examples

Rcpp: The 'New AP’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

1| SEXP ab;

2| PROTECT(ab = allocVector (STRSXP, 2)); 1| CharacterVector ab(2) ;
3| SET_STRING_ELT(ab, 0, mkChar("foo")); 2| ab[0] = "foo" ;

4| SET_STRING_ELT(ab, 1, mkChar("bar")); 3| ab[1] = "bar" ;

5

UNPROTECT(1) ;

Data types, including STL containers and iterators, can be
nested. and other niceties. Implicit converters allow us to
combine types:

std :: vector<double> vec;

[

List x(3);
x[0] = vec;
x[1] = "some text";
x[2] = 42;

iR

Deee:

http://www.debian.org

Overview

Examples

Rcpp: The 'New AP’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

SEXP ab;
PROTECT(ab = allocVector (STRSXP, 2));

SET_STRING_ELT(ab, 1,
UNPROTECT(1) ;

g~ =

SET_STRING_ELT(ab, 0, mkChar("foo"));
mkChar("bar"));

W N =

CharacterVector ab(2) ;
ab[0] = "foo" ;
ab[1] = "bar" ;

Data types, including STL containers and iterators, can be
nested. and other niceties. Implicit converters allow us to

combine types:

std :: vector<double> vec;

[

List x(3);
x[0] = vec;
x[1] = "some text";
x[2] = 42;

o OTs WN =

/1 With Repp 0.7.11 or later we can do:
std :: vector<double> vec;

List x = List::create(vec,
"some text",
42);

Deee:

us

>/

Dirk Eddelbuettel

http://www.debian.org

Overview Examples

Functional programming in both languages

In R, functional programming is easy:

@ WSB!

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Overview Examples

Functional programming in both languages

In R, functional programming is easy:

1| R> data(faithful); lapply(faithful , summary)

2| $eruptions

3 Min. 1st Qu. Median Mean 3rd Qu. Max.
4 1.60 2.16 4.00 3.49 4.45 5.10
5

6| $waiting

7 Min. 1st Qu. Median Mean 3rd Qu. Max .
8 43.0 58.0 76.0 70.9 82.0 96.0

@ WSB!

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Overview Examples

Functional programming in both languages

In R, functional programming is easy:

1| R> data(faithful); lapply(faithful , summary)

2| $eruptions

3 Min. 1st Qu. Median Mean 3rd Qu. Max.
4 1.60 2.16 4.00 3.49 4.45 5.10
5

6| $waiting

7 Min. 1st Qu. Median Mean 3rd Qu. Max .
8 43.0 58.0 76.0 70.9 82.0 96.0

We can do that in C++ as well and pass the R function down to
the data elements we let the STL iterate over:

src <— ’'Repp::List input(data);
Rcpp :: Function f(fun) ;
Rcpp:: List output(input.size());
std ::transform (input.begin(), input.end(), output.begin(), f);
output.names() = input.names();
return output; ’
cpp_lapply <— cfunction(signature(data="1list", fun = "function"), src, Rcpp = TRUE)

@ AR

Dirk Eddelbuettel

NOoO oA WD =

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Overview Examples

Exception handling

Automatic catching and conversion of C++ exceptions:

@ WSB!

Dirk Eddelbuettel

http://www.debian.org

Overview Examples

Exception handling

Automatic catching and conversion of C++ exceptions:
R> library (Rcpp); library(inline)

R> cpp <- '

+ Rcpp: :NumericVector x(xs); // automatic conversion from SEXP
+ for (int i=0; i<x.size(); i++) {

+ if (x[1i] < 0)

+ throw std::range_error ("Non-negative values required");
+ x[1] = log(x[i]);

+ }

+ return x; // automatic conversion to SEXP

4o

R> fun <- cfunction(signature (xs="numeric"), cpp, Rcpp=TRUE)
R> fun(seq(2, 5))

[1] 0.6931 1.0986 1.3863 1.6094
R> fun(seq(5, -2))
Error in fun(seqg(5, -2)) : Non-negative values required

R> fun(LETTERS[1:5])

Error in fun(LETTERS[1:5]) : not compatible with INTSXP
" r> *R

Dirk Eddelbuettel

http://www.debian.org

Overview New API
Ouitline

@ Repp

@ Examples

@ W

Dirk Eddelbuettel

http://www.debian.org

Overview New API
Rcpp example

The convolution example can be rewritten in the new API:

@ R

Dirk Eddelbuettel

http://www.debian.org

Overview New API

Rcpp example

The convolution example can be rewritten in the new API:

1| #include <Rcpp.h>

2

3| RcppExport SEXP convolve_cpp (SEXP a, SEXP b){

4 Rcpp :: NumericVector xa(a); // automatic conversion from SEXP
5 Rcpp :: NumericVector xb(b);

6

7 int n_xa = xa.size();

8 int n_xb = xb.size();

9 int nab = n_xa + n_xb — 1;

10

11 Rcpp :: NumericVector xab(nab);

12

13 for (int i = 0; i < n_xa; i++)

14 for (int j = 0; j < n_xb; j++)

15 xab[i + j] += xa[i] = xb[j];

16

17 return xab; // automatic conversion to SEXP
18] }

= ué@i /

http://www.debian.org

Overview New API
Speed comparison

In a recently-submitted paper, the following table summarises
the performance of convolution examples:

© SR

Dirk Eddelbuettel

http://www.debian.org

Overview New API
Speed comparison

@

In a recently-submitted paper, the following table summarises
the performance of convolution examples:

Relative
to R API

Implementation Time in

millisec
R API (as benchmark) 32
RcppVector<double> 354
NumericVector: :operator|[] 52
NumericVector: :begin 33

—t ks
o=

Table 1: Performance for convolution example

iR

Dirk Eddelbuettel

http://www.debian.org

Overview New API
Speed comparison

In a recently-submitted paper, the following table summarises
the performance of convolution examples:

Implementation Time in Relative
millisec to R API
R API (as benchmark) 32
RcppVector<double> 354 111
NumericVector: :operator|[] 52 1.6
NumericVector: :begin 33 1.0

Table 1: Performance for convolution example

We averaged 1000 replications with two 100-element vectors —
@ see examples/ConvolveBenchmarks/ in Repp for details.

/

usSR:

Dirk Eddelbuettel

http://www.debian.org

Overview New API
Another Speed Comparison Example

@ Regression is a key component of many studies. In
simulations, we often want to run a very large number of
regressions.

(E) iR

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Overview New API
Another Speed Comparison Example

@ Regression is a key component of many studies. In
simulations, we often want to run a very large number of
regressions.

@ Rhas 1m() as the general purposes function. It is very
powerful and returns a rich object—but it is not lightweight.

© R

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Overview New API
Another Speed Comparison Example

@ Regression is a key component of many studies. In
simulations, we often want to run a very large number of
regressions.

@ Rhas 1m() as the general purposes function. It is very
powerful and returns a rich object—but it is not lightweight.

@ For this purpose, R has 1m. fit (). But, this does not
provide all relevant auxiliary data as e.g. the standard error
of the estimate.

@ R

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Overview New API
Another Speed Comparison Example

@ Regression is a key component of many studies. In
simulations, we often want to run a very large number of
regressions.

@ Rhas 1m() as the general purposes function. It is very
powerful and returns a rich object—but it is not lightweight.

@ For this purpose, R has 1m. fit (). But, this does not
provide all relevant auxiliary data as e.g. the standard error
of the estimate.

@ For the most recent Introduction to High-Performance
Computing with R tutorial, | had written a hybrid R/C/C++
solution using the GNU GSL.

@ R

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Another Speed Comparison Example

@ Regression is a key component of many studies. In
simulations, we often want to run a very large number of
regressions.

@ Rhas 1m() as the general purposes function. It is very
powerful and returns a rich object—but it is not lightweight.

@ For this purpose, R has 1m. fit (). But, this does not
provide all relevant auxiliary data as e.g. the standard error
of the estimate.

@ For the most recent Introduction to High-Performance
Computing with R tutorial, | had written a hybrid R/C/C++
solution using the GNU GSL.

@ We complement this with a new C++ implementation
around the Armadillo linear algebra classes.
© uR/

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Overview New API

Linear regression via GSL: ImGSL()

- 28| for (i = 0; i <k; i++) {

3| mGSL <~ function () { 29| Coef(i) = gsl_vector_get(c,i);

3 30 StdErr(i) =

4| RoppVectorView<double> Yr(Ysexp): g; } sqrt(gsl_matrix_get(cov,i,i));

5 RcppMatrixView<double> Xr(Xsexp) ; 33

5 . Lo .) . 34 gsl_matrix_free (X);

7 int i,j N = Xr.dim1 (), k = Xr.dim2() ; 35 gsl_vector_free (y):

g double chi2; 36 gsl_vector_free (c);

10 gsl_matrix =X = gsl_matrix_alloc(n,k); gg gsl_matrix_free (cov);

11 gsl_vector =y = gsl_vector_alloc(n); 39 ReppResultSet rs:

12 gsl_vector *c = gsl_vector_alloc (k); 20 rs pa’iid("coef“ Cl:)ef)'

13 gsl_matrix xcov = gsl_matrix_alloc (k,k); 41 rs'add("stder;“ StdiErr)'

14 ' ’ ’

. . . 42

15 for (i = 0; i <n; i++) { _ : .

18 for (j = 05] < ki jo4) { 33 return = rs.getReturnList();

1; } gsl_matrix_set (X, i, j, Xr(i,j)); 45 ## turn into a function that R can call
19 gsl_vector_set (y, i, Yr(i)): 33 ;#l#fna:gs redundant on Debian/Ubuntu
g? } 48 cfunction (signature (Ysexp="numeric",
22 gsl_multifit_linear_workspace *wk = gg ?(nsgrup;e:ijmerlc). sre,
23 gsl_multifit_linear_alloc(n,k); 51 "#include <gsl/gsl_multifit.h>"
24 gsl_multifit_linear (X,y,c,cov,&chi2 ,wk) ; 50 Repp=TRUE - : :
25 gsl_multifit_linear_free (wk); 53 cppargs:"il/usr/include"

RcppVector<double> StdErr (k) ; 54 libargs="—Igs| 7|gs|cb|as’”)
7 RcppVector<double> Coef (k) ; 55/ } @/

Dirk Eddelbuettel

http://www.debian.org

Overview New API

Linear regression via Armadillo: ImArmadillo example

1| ImArmadillo <— function () {
2 src <— ’
3 Rcpp :: NumericVector yr(Ysexp);
4 Rcpp :: NumericVector Xr(Xsexp); /1 actually an n x k matrix
5 std ::vector<int> dims = Xr.attr ("dim");
6 int n = dims[0], k = dims[1];
7 arma::mat X(Xr.begin(), n, k, false); /1 use advanced armadillo constructors
8 arma::colvec y(yr.begin(), yr.size());
9 arma::colvec coef = solve(X, y); /1 model fit
10 arma::colvec resid = y — Xxcoef; /1 to comp. std.errr of the coefficients
11 arma::mat covmat = trans(resid)xresid/(n—k) = arma::inv(arma::trans (X)=*X);
12
13 Rcpp:: NumericVector coefr(k), stderrestr(k);
14 for (int i=0; i<k; i++) { /1 with RcppArmadillo template converters
15 coefr[i] = coef[i]; /1 this would not be needed but we only
16 stderrestr[i] = sqrt(covmat(i,i)); // have Rcpp.h here
17 }
18
19 return Rcpp::List::create(Rcpp::Named("coefficients", coefr), // Rcpp 0.7.11
20 Rcpp::Named("stderr", stderrestr));
21 !
22
23 ## turn into a function that R can call
24 fun <— cfunction(signature (Ysexp="numeric", Xsexp="numeric"),
25 src, includes="#include <armadillo>", Rcpp=TRUE,
26 cppargs="—I/usr/include", libargs="—larmadillo")
} = /

us .

Dirk Eddelbuettel

http://www.debian.org

Overview New API

Linear regression via Armadillo: RcppArmadillo

fastLm in the new RcppArmadillo does even better:

#include <RcppArmadillo.h>

1
2
3| extern "C" SEXP fastLm (SEXP ys, SEXP Xs) {

4 Rcpp :: NumericVector yr(ys); // creates Rcpp vector from SEXP
5 Repp :: NumericMatrix Xr(Xs); // creates Rcpp matrix from SEXP
6 int n = Xr.nrow(), k = Xr.ncol();

7

8

arma::mat X(Xr.begin(), n, k, false); /1 reuses memory and avoids extra copy
9 arma::colvec y(yr.begin(), yr.size(), false);
10
11 arma::colvec coef = arma::solve (X, y); /1 fit model y ~ X
12 arma::colvec resid = y — X«coef; // residuals
13

14 double sig2 = arma::as_scalar(arma::trans(resid)=xresid/(n—k)); // std.err est
15 arma::colvec sdest = arma::sqrt(sig2+arma::diagvec(arma::inv(arma::trans (X)*X)));

16

17 return Rcpp::List::create(// requires Recpp 0.7.11
18 Rcpp ::Named(" coefficients") = coef,

19 Rcpp ::Named("stderr") = sdest

200),

21|}

= ué@i /

http://www.debian.org

Overview New API

Rcpp Example: Regression timings

Comparison of R and linear model fit routines

—— longley (16 x 7 obs)

— simuated (10000x3) The small 1ongley
example exhibits less
variability between
methods, but the larger
data set shows the gains
more clearly.

time in milliseconds
150 200 250
I I |

100
L

For the small data set, all
J three appear to improve
o | [— similarly on 1m.

Im.fit ImGSL ImArmadillo

‘ ;) ; Source: Our calculations, see examples/FastLM/ in Repp. ué/

50
L

Dirk Eddelbuettel

http://www.debian.org

Overview New API

Another Rcpp example (cont.)

Comparison of R and linear model fit routines

o _ — longley (16 x 7 obs)
¥ 7| — simulated (10000 x 3)

ratio to Im() baseline

o
| L
o J I

Im

Im.fit ImGSL ImArmadillo

‘ ;) ' Source: Our calculations, see examples/FastLM/ in Repp.

By dividing the 1m time by
the respective times, we
obtain the 'possible gains’
from switching.

One caveat,
measurements depends
critically on the size of the
data as well as the cpu
and libraries that are
used.

iR

Dirk Eddelbuettel

http://www.debian.org

Rinside Others

Outline

e Rcpp Usage Examples
@ Rinside
@ Others

© R

http://www.debian.org

Others
Outline

e Rcpp Usage Examples
@ Rinside

© R

http://www.debian.org

From RApache to littler to RInside

Jeff Horner’s work on RApache lead to joint work in 1ittler,
a scripting / cmdline front-end. As it embeds R and simply
'feeds’ the REPL loop, the next step was to embed R in proper
C++ classes: RInside.

© w iR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org

From RApache to littler to RInside

Jeff Horner’s work on RApache lead to joint work in 1ittler,
a scripting / cmdline front-end. As it embeds R and simply
'feeds’ the REPL loop, the next step was to embed R in proper
C++ classes: RInside.

1| #include <RInside.h> /1 for the embedded R via Rinside

§ int main(int argc, char xargv[]) {

g Rinside R(argc, argv); /| create an embedded R instance

3 R["txt"] = "Hello, world!\n"; /1 assign a charx (string) to ’txt’

1§ R.parseEvalQ("cat(txt)"); /1 eval the init string, ignoring any returns

11 exit(0);

@ AR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org

Others

Another simple example

This example shows some of the new assignment and
converter code:

9
2| #include <RInside.h> /1 for the embedded R via Rlinside
3
4| int main(int argc, char xargv[]) {

5

6 Rinside R(argc, argv); /1 create an embedded R instance
7

8 R["x"] = 10 ;

9 R["y"] = 20 ;

10

11 R.parseEvalQ("z <— x + y") ;

12

13 int sum = R["z"];

14

15 std::cout << "10 + 20 = " << sum << std::endl ;

16 exit(0);

17}

@ SR

Dirk Eddelbuettel

http://www.debian.org

Others

And another parallel example

1| /1 MPI C++ APl version of file contributed by Jianping Hua

2

3| #include <mpi.h> // mpi header

4| #include <RlInside.h> // for the embedded R via Rlnside

5

6| int main(int argc, char =xargv[]) {

7

8 MPI:: Init (argc, argv); /1 mpi initialization

9 int myrank = MPI::00MM WORLD. Get_rank () ; /1 obtain current node rank

10 int nodesize = MPI::0OMM WORLD. Get_size () ; // obtain total nodes running.
11

12 Rinside R(argc, argv); /'l create an embedded R instance
13

14 std ::stringstream txt;

15 txt << "Hello from node " << myrank /'l node information

16 << " of " << nodesize << " nodes!" << std::endl;

17 R.assign(txt.str(), "txt"); /'l assign string to R variable ’txt’
18

19 std ::string evalstr = "cat(txt)"; /1 show node information

20 R.parseEvalQ(evalstr); /'l eval the string, ign. any returns
21

22 MPI:: Finalize () ; /1 mpi finalization

23

24| exit(0);

25|}

R

http://www.debian.org

Others
RlInside workflow

@ C++ programs compute, gather or aggregate raw data.

© R

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Others
RlInside workflow

@ C++ programs compute, gather or aggregate raw data.
@ Data is saved and analysed before a new ’run’ is launched.

@ R

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Others
RlInside workflow

@ C++ programs compute, gather or aggregate raw data.

@ Data is saved and analysed before a new run’ is launched.
@ With RInside we now skip a step:

@ R

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Others
RlInside workflow

@ C++ programs compute, gather or aggregate raw data.

@ Data is saved and analysed before a new run’ is launched.
@ With RInside we now skip a step:
e collect data in a vector or matrix

@ R

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Others
RlInside workflow

@ C++ programs compute, gather or aggregate raw data.

@ Data is saved and analysed before a new run’ is launched.
@ With RInside we now skip a step:

e collect data in a vector or matrix
@ pass data to R — easy thanks to Rcpp wrappers

@ R

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Others
RlInside workflow

@ C++ programs compute, gather or aggregate raw data.
@ Data is saved and analysed before a new run’ is launched.

@ With RInside we now skip a step:

e collect data in a vector or matrix
@ pass data to R — easy thanks to Rcpp wrappers
@ pass one or more short ’scripts’ as strings to R to evaluate

@ R

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Others
RlInside workflow

@ C++ programs compute, gather or aggregate raw data.

@ Data is saved and analysed before a new run’ is launched.
@ With RInside we now skip a step:

collect data in a vector or matrix

pass data to R — easy thanks to Rcpp wrappers

pass one or more short 'scripts’ as strings to R to evaluate

pass data back to C++ programm — easy thanks to Rcpp
converters

@ R

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Others
RlInside workflow

@ C++ programs compute, gather or aggregate raw data.

@ Data is saved and analysed before a new run’ is launched.
@ With RInside we now skip a step:

collect data in a vector or matrix

pass data to R — easy thanks to Rcpp wrappers

pass one or more short 'scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters

resume main execution based on new results

@ R

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Others
RlInside workflow

@ C++ programs compute, gather or aggregate raw data.

@ Data is saved and analysed before a new run’ is launched.
@ With RInside we now skip a step:

collect data in a vector or matrix

pass data to R — easy thanks to Rcpp wrappers

pass one or more short 'scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters

@ resume main execution based on new results

@ A number of simple examples ship with RInside

@ WSB!

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Rinside
Outline

e Rcpp Usage Examples

@ Others

© R

http://www.debian.org

Users of Rcpp

@ Rinside uses Rcpp for object transfer and more

© R

http://www.debian.org

Users of Rcpp

@ Rinside uses Rcpp for object transfer and more
@ RcppArmadillo (which contains fastLM())

@ WSB!

Dirk Eddelbuettel

http://www.debian.org

Users of Rcpp

@ Rinside uses Rcpp for object transfer and more
@ RcppArmadillo (which contains fastLM())
@ RcppExamples is a ’this is how you can do it’ stanza

@ SR

Dirk Eddelbuettel

http://www.debian.org

Users of Rcpp

@ Rinside uses Rcpp for object transfer and more
@ RcppArmadillo (which contains fastLM())
@ RcppExamples is a ’this is how you can do it’ stanza

@ RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp

© w iR

Dirk Eddelbuettel

http://www.debian.org

Users of Rcpp

@ Rinside uses Rcpp for object transfer and more

@ RcppArmadillo (which contains fastLM())

@ RcppExamples is a ’this is how you can do it’ stanza

@ RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp

@ RQuantLib is where Rcpp orginally started

@ SR

Dirk Eddelbuettel

http://www.debian.org

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo (which contains fastLM())
RcppExamples is a ’this is how you can do it’ stanza

RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp

RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp

@ SR

Dirk Eddelbuettel

http://www.debian.org

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo (which contains fastLM())
RcppExamples is a ’this is how you can do it’ stanza

RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp

RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp

@ mvabund, sdcTable, bifactorial, minga are truly external
users which are all on CRAN

@ SR

Dirk Eddelbuettel

http://www.debian.org

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo (which contains fastLM())
RcppExamples is a ’this is how you can do it’ stanza

RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp

RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp

@ mvabund, sdcTable, bifactorial, minga are truly external
users which are all on CRAN

@ upcoming: pcaMethods (BioC), phylobase, possibly Ime4

@ AR

Dirk Eddelbuettel

http://www.debian.org

Users of Rcpp

@

RInside uses Rcpp for object transfer and more
RcppArmadillo (which contains fastLM())
RcppExamples is a ’this is how you can do it’ stanza

RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp

RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp

mvabund, sdcTable, bifactorial, minga are truly external
users which are all on CRAN

upcoming: pcaMethods (BioC), phylobase, possibly Ime4
Your package here next?
uSR/

Dirk Eddelbuettel

http://www.debian.org

Key points Resources

Outline

e Summary
@ Key points

<§) @ Resources u_/,/

http://www.debian.org

Resources
Outline

e Summary
@ Key points

@ wR

Dirk Eddelbuettel

http://www.debian.org

Wrapping up

This presentation has tried to convince you that

@ While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play

© R

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Wrapping up

This presentation has tried to convince you that

@ While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play

@ R can be extended in many ways; we focus on something
that allows us write extensions

@ WSB!

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Wrapping up

This presentation has tried to convince you that

@ While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play

@ R can be extended in many ways; we focus on something
that allows us write extensions

e that are efficient: we want speed and features

@ SR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Wrapping up

This presentation has tried to convince you that

@ While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play

@ R can be extended in many ways; we focus on something
that allows us write extensions

e that are efficient: we want speed and features
e that correspond to the R object model

@ WSB!

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Wrapping up

This presentation has tried to convince you that

@ While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play

@ R can be extended in many ways; we focus on something
that allows us write extensions

e that are efficient: we want speed and features
e that correspond to the R object model
e that also allow us to embed R inside C++

@ SR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Wrapping up

This presentation has tried to convince you that

@ While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play

@ R can be extended in many ways; we focus on something
that allows us write extensions

e that are efficient: we want speed and features
e that correspond to the R object model
e that also allow us to embed R inside C++

@ And all this while retaining "high-level’ STL-alike semantics,
templates and other goodies in C++

@ SR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Wrapping up

This presentation has tried to convince you that

@ While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play

@ R can be extended in many ways; we focus on something
that allows us write extensions

e that are efficient: we want speed and features
e that correspond to the R object model
e that also allow us to embed R inside C++

@ And all this while retaining ’high-level’ STL-alike semantics,
templates and other goodies in C++

@ Using C++ abstractions wisely can keep the code both
clean and readable — yet very efficient

@ SR

Dirk Eddelbuettel

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Key points

Outline

e Summary

<§) @ Resources M/

http://www.debian.org

Key points
Some pointers

@ http://dirk.eddelbuettel.com/code/rcpp.html

@ WSB!

Dirk Eddelbuettel

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Key points
Some pointers

@ http://dirk.eddelbuettel.com/code/rcpp.html

@ http://romainfrancois.blog.free.fr/index.php?
category/R-package/Rcpp

© R

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Key points
Some pointers

@ http://dirk.eddelbuettel.com/code/rcpp.html

@ http://romainfrancois.blog.free.fr/index.php?
category/R-package/Rcpp

@ http://cran.r-project.org/package=Rcpp

© R

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Key points
Some pointers

@ http://dirk.eddelbuettel.com/code/rcpp.html

@ http://romainfrancois.blog.free.fr/index.php?
category/R-package/Rcpp

@ http://cran.r-project.org/package=Rcpp

@ http://r-forge.r-project.org/projects/rcpp/

© R

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Key points
Some pointers

@ http://dirk.eddelbuettel.com/code/rcpp.html

@ http://romainfrancois.blog.free.fr/index.php?
category/R-package/Rcpp

@ http://cran.r-project.org/package=Rcpp
@ http://r-forge.r-project.org/projects/rcpp/

@ and likewise for RInside, RProtoBuf and more.

(E) iR

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Key points
The end

Thank you!

@ wR

Dirk Eddelbuettel

http://www.debian.org

	Extending R
	Why ?
	The standard API
	Inline

	Rcpp
	Overview
	New API
	Examples

	Rcpp Usage Examples
	RInside
	Others

	Summary
	Key points
	Resources

