
Computational Statistics in Practice

Some Observations

Dirk Eddelbuettel

10 November 2016

Invited Presentation
Department of Statistics
University of Illinois
Urbana-Champaign, IL

UIUC Nov 2016 1/147

Motivation

UIUC Nov 2016 2/147

Almost all topics in twenty-first-century
statistics are now computer-dependent
[...]

Here and in all our examples we are
employing the language R, itself one of
the key developments in
computer-based statistical methodology.

Efron and Hastie, 2016,
pages xv and 6 (footnote 3)

UIUC Nov 2016 3/147

A View of the World

Computational Statistics in Practice

• Statistics is now computational (Efron & Hastie, 2016)

• Within (computational) statistics, reigning tool is R

• Given R, Rcpp key for two angles:

• Performance always matters, ease of use a sweetspot
• “Extending R” (Chambers, 2016)

• Time permitting

• Being nice to other (languages)
• an underdiscussed angle in industry

UIUC Nov 2016 4/147

Overview / Outline / Plan

Drawing on three Talks

• Rcpp Introduction (from recent workshops / talks / courses)
• [if time] If You Can’t Beat ’em (from JSS session at JSM)
• [if time] Open Source Finance (from an industry conference)

UIUC Nov 2016 5/147

About Me

Brief Bio

• PhD, MA Econometrics; MSc Ind.Eng. (Comp.Sci./OR)

• Finance Quant for 20 years

• Open Source for 22 years

• Debian developer
• R package author / contributor

• R Foundation Board member, R Consortium ISC member

• JSS Associate Editor

UIUC Nov 2016 6/147

Rcpp: Introduction via Tweets

UIUC Nov 2016 7/147

UIUC Nov 2016 8/147

UIUC Nov 2016 9/147

UIUC Nov 2016 10/147

UIUC Nov 2016 11/147

UIUC Nov 2016 12/147

UIUC Nov 2016 13/147

UIUC Nov 2016 14/147

UIUC Nov 2016 15/147

UIUC Nov 2016 16/147

Extending R

UIUC Nov 2016 17/147

Why R? : Programming with Data from 1977 to 2016

Thanks to John Chambers for high-resolution cover images. The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.

UIUC Nov 2016 18/147

A Simple Example

xx <- faithful[,”eruptions”]
fit <- density(xx)
plot(fit)

UIUC Nov 2016 19/147

A Simple Example

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

UIUC Nov 2016 20/147

A Simple Example - Refined

xx <- faithful[,”eruptions”]
fit1 <- density(xx)
fit2 <- replicate(10000, {

x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))$y

})
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x,rev(fit1$x)), c(fit3[1,],rev(fit3[2,])),

col=’grey’, border=F)
lines(fit1)

UIUC Nov 2016 21/147

A Simple Example - Refined

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

UIUC Nov 2016 22/147

So Why R?

R enables us to

• work interactively
• explore and visualize data
• access, retrieve and/or generate data
• summarize and report into pdf, html, …

making it the key language for statistical computing, and a preferred
environment for many data analysts.

UIUC Nov 2016 23/147

So Why R?

R has always been extensible via

• C via a bare-bones interface described in Writing R Extensions
• Fortran which is also used internally by R
• Java via rJava by Simon Urbanek
• C++ but essentially at the bare-bones level of C

So while in theory this always worked – it was tedious in practice

UIUC Nov 2016 24/147

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and Fortran:

Since the core of R is in fact a program written in the C
language, it’s not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code is
a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.

UIUC Nov 2016 25/147

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and Fortran:

Since the core of R is in fact a program written in the C
language, it’s not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code is
a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.

UIUC Nov 2016 26/147

Why Extend R?

Chambers proceeds with this rough map of the road ahead:

• Against:

• It’s more work
• Bugs will bite
• Potential platform dependency
• Less readable software

• In Favor:

• New and trusted computations
• Speed
• Object references

UIUC Nov 2016 27/147

Why Extend R?

The Why? boils down to:

• speed: Often a good enough reason for us … and a focus for us
in this workshop.

• new things: We can bind to libraries and tools that would
otherwise be unavailable in R

• references: Chambers quote from 2008 foreshadowed the work
on Reference Classes now in R and built upon via Rcpp Modules,
Rcpp Classes (and also RcppR6)

UIUC Nov 2016 28/147

And Why C++?

• Asking Google leads to tens of million of hits.
• Wikipedia: C++ is a statically typed, free-form, multi-paradigm,
compiled, general-purpose, powerful programming language

• C++ is industrial-strength, vendor-independent, widely-used,
and still evolving

• In science & research, one of the most frequently-used
languages: If there is something you want to use / connect to, it
probably has a C/C++ API

• As a widely used language it also has good tool support
(debuggers, profilers, code analysis)

UIUC Nov 2016 29/147

http://en.wikipedia.org/wiki/C%2B%2B%7D%7BWikipedia

Why C++?

Scott Meyers: View C++ as a federation of languages

• C provides a rich inheritance and interoperability as Unix,
Windows, … are all build on C.

• Object-Oriented C++ (maybe just to provide endless discussions
about exactly what OO is or should be)

• Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

• The Standard Template Library (STL) is a specific template
library which is powerful but has its own conventions.

• C++11 and C++14 (and beyond) add enough to be called a fifth
language.

NB: Meyers original list of four languages appeared years before C++11.

UIUC Nov 2016 30/147

Why C++?

• Mature yet current
• Strong performance focus:

• You don’t pay for what you don’t use
• Leave no room for another language between the machine level
and C++

• Yet also powerfully abstract and high-level
• C++11 + C++14 are a big deal giving us new language features
• While there are complexities, Rcpp users are mostly shielded

UIUC Nov 2016 31/147

Interface Vision

UIUC Nov 2016 32/147

Bell Labs, May 1976

UIUC Nov 2016 33/147

Interface Vision

R offers us the best of both worlds:

• Compiled code with

• Access to proven libraries and algorithms in C/C++/Fortran
• Extremely high performance (in both serial and parallel modes)

• Interpreted code with

• A high-level language made for Programming with Data
• An interactive workflow for data analysis
• Support for rapid prototyping, research, and experimentation

UIUC Nov 2016 34/147

Why Rcpp?

• Easy to learn as it really does not have to be that complicated –
we will see numerous few examples

• Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

• Expressive as it allows for vectorised C++ using Rcpp Sugar
• Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, …

• Speed gains for a variety of tasks Rcpp excels precisely where R
struggles: loops, function calls, …

• Extensions greatly facilitates access to external libraries using
eg Rcpp modules

UIUC Nov 2016 35/147

Speed

UIUC Nov 2016 36/147

Speed Example (due to StackOverflow)

Consider a function defined as

f(n) such that

 n when n < 2
f(n − 1) + f(n − 2) when n ≥ 2

UIUC Nov 2016 37/147

Speed Example in R

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

Using it on first 11 arguments
sapply(0:10, f)

[1] 0 1 1 2 3 5 8 13 21 34 55

UIUC Nov 2016 38/147

Speed Example Timed

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

test replications elapsed relative
1 f(10) 100 0.016 1.000
2 f(15) 100 0.140 8.750
3 f(20) 100 1.505 94.063

UIUC Nov 2016 39/147

Speed Example in C / C++

A C or C++ solution can be equally simple

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

But how do we call it from R?

UIUC Nov 2016 40/147

Speed Example in C / C++

But Rcpp makes this much easier:

Rcpp::cppFunction(”int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }”)

sapply(0:10, g)

[1] 0 1 1 2 3 5 8 13 21 34 55

UIUC Nov 2016 41/147

Speed Example Comparing R and C++

Timing:

Rcpp::cppFunction(”int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }”)

library(rbenchmark)
benchmark(f(25), g(25), order=”relative”)[,1:4]

test replications elapsed relative
2 g(25) 100 0.035 1.0
1 f(25) 100 16.037 458.2

A nice gain of a few orders of magnitude.

UIUC Nov 2016 42/147

Another Angle on Speed

Run-time performance is just one example.

Time to code is another metric.

We feel quite strongly that helps you code more succinctly, leading to
fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++
development quite nicely (eg the compiler error message parsing is
very helpful) and also helps with package building.

UIUC Nov 2016 43/147

Empirics

UIUC Nov 2016 44/147

Growth

2010 2012 2014 2016

0
20

0
40

0
60

0
80

0

Growth of Rcpp usage on CRAN

n

Number of CRAN packages using Rcpp (left axis)
Percentage of CRAN packages using Rcpp (right axis)

0
20

0
40

0
60

0
80

0

2010 2012 2014 2016

0
2

4
6

8

UIUC Nov 2016 45/147

Pagerank

library(pagerank) # github.com/andrie/pagerank

cran <- ”http://cloud.r-project.org”

pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Rcpp MASS ggplot2 Matrix mvtnorm
2.541 1.719 1.105 0.905 0.726

UIUC Nov 2016 46/147

Pagerank

raster
ape
boot
magrittr
RColorBrewer
rgl
zoo
nlme
shiny
data.table
RCurl
coda
XML
foreach
reshape2
jsonlite
igraph
RcppArmadillo
sp
stringr
dplyr
httr
lattice
plyr
survival
mvtnorm
Matrix
ggplot2
MASS
Rcpp

0.005 0.010 0.015 0.020 0.025

Top 30 of Page Rank as of November 2016

UIUC Nov 2016 47/147

Rcpp: A Better C API for R

UIUC Nov 2016 48/147

The R API

In a nutshell:

• R is a C program, and C programs can be extended
• R exposes an API with C functions and MACROS
• R also supports C++ out of the box with .cpp extension
• R provides several calling conventions:

• .C() provides the first interface, is fairly limited, and
discouraged

• .Call() provides access to R objects at the C level
• .External() and .Fortran() exist but can be ignored

• We will use .Call() exclusively

UIUC Nov 2016 49/147

The .Call Interface

At the C level, everything is a SEXP, and every .Call() access uses
this interface pattern:

SEXP foo(SEXP x1, SEXP x2){
...
}

which can be called from R via

.Call(”foo”, var1, var2)

Note that we need to compile, and link, and load, this manually in
wasy which are OS-dependent.

UIUC Nov 2016 50/147

Example: Convolution

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b) {
int na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));
b = PROTECT(coerceVector(b, REALSXP));
na = length(a);
nb = length(b);
nab = na + nb - 1;
ab = PROTECT(allocVector(REALSXP, nab));
xa = REAL(a);
xb = REAL(b);
xab = REAL(ab);
for (int i = 0; i < nab; i++)

xab[i] = 0.0;
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);
return ab;

}

UIUC Nov 2016 51/147

Example: Convolution

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector
convolve2cpp(Rcpp::NumericVector a,

Rcpp::NumericVector b) {
int na = a.length(), nb = b.length();
Rcpp::NumericVector ab(na + nb - 1);
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
ab[i + j] += a[i] * b[j];

return(ab);
}

UIUC Nov 2016 52/147

Types Overview: RObject

• The RObject can be thought of as a basic class behind many of
the key classes in the Rcpp API.

• RObject (and our core classes) provide a thin wrapper around
SEXP objects

• This is sometimes called a proxy object as we do not copy the R
object.

• RObject manages the life cycle, the object is protected from
garbage collection while in scope—so we do not have to do
memory management.

• Core classes define several member common functions
common to all objects (e.g. isS4(), attributeNames, …);
classes then add their specific member functions.

UIUC Nov 2016 53/147

Overview of Classes: Comparison

Rcpp class R typeof
Integer(Vector|Matrix) integer vectors and matrices
Numeric(Vector|Matrix) numeric ...
Logical(Vector|Matrix) logical ...
Character(Vector|Matrix) character ...

Raw(Vector|Matrix) raw ...
Complex(Vector|Matrix) complex ...

List list (aka generic vectors) ...
Expression(Vector|Matrix) expression ...

Environment environment
Function function

XPtr externalptr
Language language

S4 S4
... ...

\end{frame}

UIUC Nov 2016 54/147

Overview of key vector / matrix classes

• IntegerVector vectors of type integer
• NumericVector vectors of type numeric
• RawVector vectors of type raw
• LogicalVector vectors of type logical
• CharacterVector vectors of type character
• GenericVector generic vectors implementing list types

UIUC Nov 2016 55/147

Common core functions for Vectors and Matrices

Key operations for all vectors, styled after STL operations:

• operator() access elements via ()
• operator[] access elements via []
• length() also aliased to size()
• fill(u) fills vector with value of u
• begin() pointer to beginning of vector, for iterators
• end() pointer to one past end of vector
• push_back(x) insert x at end, grows vector
• push_front(x) insert x at beginning, grows vector
• insert(i, x) insert x at position i, grows vector
• erase(i) remove element at position i, shrinks vector

UIUC Nov 2016 56/147

Basic Usage

UIUC Nov 2016 57/147

Basic Usage: evalCpp()

evalCpp() evaluates a single C++ expression. Includes and
dependencies can be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2”) # simple test

[1] 4

evalCpp(”std::numeric_limits<double>::max()”)

[1] 1.797693e+308

UIUC Nov 2016 58/147

Basic Usage: cppFunction()

cppFunction() creates, compiles and links a C++ file, and creates
an R function to access it.

cppFunction(”
int exampleCpp11() {

auto x = 10;
return x;

}”, plugins=c(”cpp11”))
exampleCpp11() # same identifier as C++ function

UIUC Nov 2016 59/147

Basic Usage: sourceCpp()

sourceCpp() is the actual workhorse behind evalCpp()
andcppFunction()‘. It is described in more detail in the package
vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package
inline, but provides even more ease-of-use, control and helpers –
freeing us from boilerplate scaffolding.

A key feature are the plugins and dependency options: other
packages can provide a plugin to supply require compile-time
parameters (cf RcppArmadillo, RcppEigen, RcppGSL).

UIUC Nov 2016 60/147

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf
http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf

Basic Uage: RStudio

UIUC Nov 2016 61/147

Basic Uage: RStudio (Cont’ed)

The following file gets created:
#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar). ...

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) { return x * 2; }

// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.

/*** R
timesTwo(42)
*/

UIUC Nov 2016 62/147

Basic Uage: RStudio (Cont’ed)

So what just happened?

• We defined a simple C++ function
• It operates on a numeric vector argument
• We asked Rcpp to ‘source it’ for us
• Behind the scenes Rcpp creates a wrapper
• Rcpp then compiles, links, and loads the wrapper
• The function is available in R under its C++ name

UIUC Nov 2016 63/147

Basic Usage: Packages

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can
be created by Rcpp.package.skeleton()

The vignette Rcpp-packages has fuller details.

As of November 10, 2016, there are 832 packages on CRAN which use
Rcpp, and a further 89 on BioConductor — with working, tested, and
reviewed examples.

UIUC Nov 2016 64/147

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-packages.pdf

Packages and Rcpp

Best way to organize R code with Rcpp is via a package:

UIUC Nov 2016 65/147

Packages and Rcpp

Rcpp.package.skeleton() and its derivatives. e.g.
RcppArmadillo.package.skeleton() create working packages.
// another simple example: outer product of a vector,
// returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
//
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}

UIUC Nov 2016 66/147

Packages and Rcpp

Two ways to link to external libraries

• With linking of libraries: Do what RcppGSL does and use hooks
in the package startup to store compiler and linker flags, pass to
environment variables

• With C++ template headers only: Do what RcppArmadillo and
other do and just point to the headers

More details in extra vignettes.

UIUC Nov 2016 67/147

Sugar Example

UIUC Nov 2016 68/147

Syntactic ‘sugar’: Simulating π in R

Draw (x, y), compute dist d to origin. Repeat. Ratio of points with∑
I(d ≤ 1)/N goes to π/4 as we fill the 1/4 of the unit circle.

piR <- function(N) {
x <- runif(N)
y <- runif(N)
d <- sqrt(x^2 + y^2)
return(4 * sum(d <= 1.0) / N)

}
set.seed(5)
sapply(10^(3:6), piR)

[1] 3.156000 3.155200 3.139000 3.141008

UIUC Nov 2016 69/147

Syntactic ‘sugar’: Simulating π in C++

Rcpp sugar enables us to write C++ code that is almost as compact.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {
NumericVector x = runif(N);
NumericVector y = runif(N);
NumericVector d = sqrt(x*x + y*y);
return 4.0 * sum(d <= 1.0) / N;

}

The code is essentially identical.

UIUC Nov 2016 70/147

Syntactic ‘sugar’: Simulating π

And by using the same RNG, so are the results.

library(Rcpp)
sourceCpp(”code/piSugar.cpp”)
set.seed(42); a <- piR(1.0e7)
set.seed(42); b <- piSugar(1.0e7)
identical(a,b)

[1] TRUE

print(c(a,b), digits=7)

[1] 3.140899 3.140899

UIUC Nov 2016 71/147

Syntactic ‘sugar’: Simulating π

The performance is close with a small gain for C++ as R is already
vectorised:

library(rbenchmark)
sourceCpp(”code/piSugar.cpp”)
benchmark(piR(1.0e6), piSugar(1.0e6))[,1:4]

test replications elapsed relative
1 piR(1e+06) 100 6.946 2.693
2 piSugar(1e+06) 100 2.579 1.000

UIUC Nov 2016 72/147

Syntactic ‘sugar’: Simulating π

Takeaways

• We can prototype in R to derive a first solution
• We can then rewrite performance-critical parts
• Key R functions are often available in C++ via Rcpp Sugar
• Random Number Simulation will work on identical streams

UIUC Nov 2016 73/147

Other Examples

UIUC Nov 2016 74/147

Cumulative Sum: vector-cumulative-sum

A basic looped version:

#include <Rcpp.h>
#include <numeric> // for std::partial_sum
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector cumsum1(NumericVector x){

double acc = 0; // init an accumulator variable

NumericVector res(x.size()); // init result vector

for(int i = 0; i < x.size(); i++){
acc += x[i];
res[i] = acc;

}
return res;

}

UIUC Nov 2016 75/147

Cumulative Sum: vector-cumulative-sum

An STL variant:

// [[Rcpp::export]]
NumericVector cumsum2(NumericVector x){

// initialize the result vector
NumericVector res(x.size());
std::partial_sum(x.begin(), x.end(), res.begin());
return res;

}

UIUC Nov 2016 76/147

Cumulative Sum: vector-cumulative-sum

Or just Rcpp sugar:

// [[Rcpp::export]]
NumericVector cumsum_sug(NumericVector x){

return cumsum(x); // compute + return result vector
}

Of course, all results are the same.

UIUC Nov 2016 77/147

R Function Call from C++: r-function-from-c++

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector callFunction(NumericVector x,

Function f) {
NumericVector res = f(x);
return res;

}

/*** R
callFunction(x, fivenum)
*/

UIUC Nov 2016 78/147

Using Boost via BH: using-boost-with-bh

// [[Rcpp::depends(BH)]]
#include <Rcpp.h>

// One include file from Boost
#include <boost/date_time/gregorian/gregorian_types.hpp>

using namespace boost::gregorian;

// [[Rcpp::export]]
Rcpp::Date getIMMDate(int mon, int year) {

// compute third Wednesday of given month / year
date d = nth_day_of_the_week_in_month(

nth_day_of_the_week_in_month::third,
Wednesday, mon).get_date(year);

date::ymd_type ymd = d.year_month_day();
return Rcpp::wrap(Rcpp::Date(ymd.year, ymd.month, ymd.day));

}

UIUC Nov 2016 79/147

Using Boost via BH: using-boost-with-bh

#include <Rcpp.h>
#include <boost/foreach.hpp>
using namespace Rcpp;
// [[Rcpp::depends(BH)]]

// the C-style upper-case macro name is a bit ugly
#define foreach BOOST_FOREACH

// [[Rcpp::export]]
NumericVector square(NumericVector x) {
// elem is a reference to each element in x
// we can re-assign to these elements as well
foreach(double& elem, x) {
elem = elem*elem;

}
return x;

}

C++11 now has something similar in a smarter for loop.
UIUC Nov 2016 80/147

Vector Subsetting: subsetting

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector positives(NumericVector x) {

return x[x > 0];
}

// [[Rcpp::export]]
List first_three(List x) {

IntegerVector idx = IntegerVector::create(0, 1, 2);
return x[idx];

}

// [[Rcpp::export]]
List with_names(List x, CharacterVector y) {

return x[y];
}

UIUC Nov 2016 81/147

Armadillo Eigenvalues: armadillo-eigenvalues

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::vec getEigenValues(arma::mat M) {

return arma::eig_sym(M);
}

UIUC Nov 2016 82/147

Armadillo Eigenvalues: armadillo-eigenvalues

sourceCpp(”code/armaeigen.cpp”)

set.seed(42)
X <- matrix(rnorm(4*4), 4, 4)
Z <- X %*% t(X)
getEigenValues(Z)

[,1]
[1,] 0.3318872
[2,] 1.6855884
[3,] 2.4099205
[4,] 14.2100108

R gets the same results (in reverse)
and also returns the eigenvectors.

UIUC Nov 2016 83/147

Create xts from in C++: creating-xts-from-c++

#include <Rcpp.h>
using namespace Rcpp;

NumericVector createXts(int sv, int ev) {
IntegerVector ind = seq(sv, ev); // values

NumericVector dv(ind); // date(time)s == reals
dv = dv * 86400; // scaled to days
dv.attr(”tzone”) = ”UTC”; // index has attributes
dv.attr(”tclass”) = ”Date”;

NumericVector xv(ind); // data has same index
xv.attr(”dim”) = IntegerVector::create(ev-sv+1,1);
xv.attr(”index”) = dv;
CharacterVector cls = CharacterVector::create(”xts”,”zoo”);
xv.attr(”class”) = cls;
xv.attr(”.indexCLASS”) = ”Date”;
// ... some more attributes ...

return xv;
}UIUC Nov 2016 84/147

RcppMLPACK: K-Means Example

#include ”RcppMLPACK.h”

using namespace mlpack::kmeans;
using namespace Rcpp;

// [[Rcpp::depends(RcppMLPACK)]]

// [[Rcpp::export]]
List cppKmeans(const arma::mat& data, const int& clusters) {

arma::Col<size_t> assignments;
KMeans<> k; // Initialize with the default arguments.
k.Cluster(data, clusters, assignments);

return List::create(Named(”clusters”) = clusters,
Named(”result”) = assignments);

}

UIUC Nov 2016 85/147

RcppMLPACK: K-Means Example

Timing

Table 1: Benchmarking result

test replications elapsed relative user.self sys.self

mlKmeans(t(wine), 3) 100 0.028 1.000 0.028 0.000
kmeans(wine, 3) 100 0.947 33.821 0.484 0.424

Table taken ‘as is’ from RcppMLPACK vignette.

UIUC Nov 2016 86/147

RcppMLPACK: Nearest Neighbors Example

#include ”RcppMLPACK.h”

using namespace Rcpp;
using namespace mlpack; using namespace mlpack::neighbor;
using namespace mlpack::metric; using namespace mlpack::tree;

// [[Rcpp::depends(RcppMLPACK)]]
// [[Rcpp::export]]
List nn(const arma::mat& data, const int k) {

// using a test from MLPACK 1.0.10 file src/mlpack/tests/allknn_test.cpp
CoverTree<LMetric<2>, FirstPointIsRoot,

NeighborSearchStat<NearestNeighborSort> > tree =
CoverTree<LMetric<2>, FirstPointIsRoot,

NeighborSearchStat<NearestNeighborSort> >(data);

NeighborSearch<NearestNeighborSort, LMetric<2>,
CoverTree<LMetric<2>, FirstPointIsRoot,

NeighborSearchStat<NearestNeighborSort> > >
coverTreeSearch(&tree, data, true);

arma::Mat<size_t> coverTreeNeighbors;
arma::mat coverTreeDistances;
coverTreeSearch.Search(k, coverTreeNeighbors, coverTreeDistances);

return List::create(Named(”clusters”) = coverTreeNeighbors,
Named(”result”) = coverTreeDistances);

}UIUC Nov 2016 87/147

More

UIUC Nov 2016 88/147

Documentation

• The package comes with eight pdf vignettes, and numerous help
pages.

• The introductory vignettes are now published (Rcpp and
RcppEigen in J Stat Software, RcppArmadillo in Comp Stat &
Data Anlys)

• The rcpp-devel list is the recommended resource, generally very
helpful, and fairly low volume.

• StackOverflow has a large collection of posts too.
• And a number of blog posts introduce/discuss features.

UIUC Nov 2016 89/147

Rcpp Gallery

UIUC Nov 2016 90/147

The Rcpp book

On sale since June 2013.

UIUC Nov 2016 91/147

Appendix: If You Can’t Beat ’em

UIUC Nov 2016 92/147

Overview

Content

• Single- or Multi-Language ?

• Interlude

• Illustration

• Conclusion

UIUC Nov 2016 93/147

Single- Or Multi-Language ?

UIUC Nov 2016 94/147

Claim: 1 + 1 > 2

Better with more than one?

• No one language fits all

• Real-world projects are frequently multi-language

• See e.g. job ads which rarely ever list just one language

UIUC Nov 2016 95/147

Counter-claim: 1 + 1 < 2

Or better with just one?

• Mental switching cost between languages? Possibly

• Interop difficult and less portable? Maybe, but that is an
argument against weak systems / OSs

• Easier / less to learn?

• “More hoops” to code?

UIUC Nov 2016 96/147

Mental switching costs?

UIUC Nov 2016 97/147

So which one is it?

Open Question

• Hard to measure or test: Any empirics on real world projects?

• Code competition / comparisons (e.g. Project Euler): Are they
realistic?

UIUC Nov 2016 98/147

Interlude

UIUC Nov 2016 99/147

John Chambers

Chambers (2008) Software For
Data Analysis
Chapters 10 and 11 devoted to
Interfaces I: C and Fortran and
Interfaces II: Other Systems.

UIUC Nov 2016 100/147

John Chambers

Chambers (2016) Extending R
An entire book about this with
concrete Python, Julia and C++
code and examples

UIUC Nov 2016 101/147

John Chambers

Chambers 2016, Chapter 1

• Everything that exists in R is an object

• Everything happens in R is a function call

• Interfaces to other software are part of R

UIUC Nov 2016 102/147

John Chambers

Chambers 2016, Chapter 4

The fundamental lesson about programming in the large is
that requires a correspondingly broad and flexible
response. In particular, no single language or software
system os likely to be ideal for all aspects. Interfacing
multiple systems is the essence. Part IV explores the
design of of interfaces from R.

UIUC Nov 2016 103/147

Illustration

UIUC Nov 2016 104/147

Using R to C++ to Boost to Python, and back

Setup

py_cflags <- system(”python2.7-config --cflags”, intern=TRUE)
se <- Sys.setenv; ge <- Sys.getenv # shorthands to typeset
se(”PKG_CFLAGS”=sprintf(”%s %s”, ge(”PKG_CFLAGS”), py_cflags))
se(”PKG_CXXFLAGS”=sprintf(”%s %s”, ge(”PKG_CXXFLAGS”), py_cflags))
py_ldflags <- system(”python2.7-config --ldflags”, intern=TRUE)
se(”PKG_LIBS”=sprintf(”%s %s %s”, ge(”PKG_CFLAGS”),

”-lboost_python-py27”, py_ldflags))

UIUC Nov 2016 105/147

Using R to C++ to Boost to Python, and back

#include <Rcpp.h>
#include <Python.h>

// [[Rcpp::export]]
void initialize_python() {

Py_SetProgramName(””); /* optional but recommended */
Py_Initialize();

}

// [[Rcpp::export]]
void hello_python() {

PyRun_SimpleString(”from time import time,ctime\n”
”print ’Today is’,ctime(time())\n”);

}

UIUC Nov 2016 106/147

Using R to C++ to Boost to Python, and back

Hello, World: Called from R

initialize_python()
hello_python()

Today is Thu Nov 10 09:40:26 2016

More at http://gallery.rcpp.org/articles/rcpp-python/
Disclaimer: For illustration purposes. Works as designed on Ubuntu. Not meant to be universally portable to all three OSs.

UIUC Nov 2016 107/147

http://gallery.rcpp.org/articles/rcpp-python/

(Section) Conclusion

UIUC Nov 2016 108/147

Being Polyglot

Mixing Languages

• Common

• Natural

• Unavoidable

UIUC Nov 2016 109/147

Being Polyglot

Consequences

• Must make it easier to interoperate

• Stop bickering among ourselves

• Build systems that are larger that the sum of their parts

UIUC Nov 2016 110/147

Being Polyglot

Just Do It

UIUC Nov 2016 111/147

Appendix

Lars Wirzenius “Which license is the most free?”
Free software licences can be roughly grouped into permissive and copyleft ones.
[…] A permissive licence lets you do things that a copyleft one forbids, so clearly the
permissive licence is more free. A copyleft licence means software using it won’t
ever become non-free against the wills of the copyright holders, so clearly a
copyleft licence is more free than a permissive one.

Both sides are both right and wrong, of course, which is why this argument will
continue forever. […]

If a discussion about the relative freedom of licence types becomes heated, step
away. It’s not worth participating anymore.

http://yakking.branchable.com/posts/comparative-freeness/

UIUC Nov 2016 112/147

http://yakking.branchable.com/posts/comparative-freeness/

Appendix: Open Source Finance

UIUC Nov 2016 113/147

Agenda

Issues

• History: How did we get here?

• Status: What is happening now

• Onward: What may happen

UIUC Nov 2016 114/147

Context

To clarify

• This talk reflects views of a quantitative analyst

• Software to us is predominantly a collection of analysis and
modeling tools including programming languages, libraries, OSs

• The focus is on Open Source Finance — and much less about
Open Source and Software in general

• Insert your favourite disclaimer here

UIUC Nov 2016 115/147

History

UIUC Nov 2016 116/147

Free Software and Open Source

Terms and Players

• Open Source dominates commercial discussions

• Free Software predates it; academic roots / MIT

• past friction between sponsoring entities

• OSI and FSF are closer now

UIUC Nov 2016 117/147

Image by NicoBZH from Saint Etienne, Loire, France - Richard Stallman - “Le logiciel libre et ta liberté”
Saint Etienne cité du design 27/11/2008, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=5381829

UIUC Nov 2016 118/147

https://commons.wikimedia.org/w/index.php?curid=5381829

Image by Krd - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36166670UIUC Nov 2016 119/147

https://commons.wikimedia.org/w/index.php?curid=36166670

Free Software and Four Freedoms

Free as in the Freedom to …

• run the program as you wish, for any purpose
• study how the program works, and change it
• redistribute copies so you can help your neighbor
• distribute copies of your modified versions to others

Access to source code is a precondition

UIUC Nov 2016 120/147

Free Software and the GNU Public License (GPL)

GPL: A key Free Software License

• ‘Copyleft’: right to freely distribute copies and modified versions

• Stipulates that the same rights be preserved in derivative works

• ‘Viral’: Combined works have same (aggregate) license

• Some claim that this is not ‘permissive’

UIUC Nov 2016 121/147

GPL versus BSD/MIT/Apache

BSD/MIT/Apache Licenses

• These license calls themselves ‘more permissive’ – ie not viral

• Allows re-use and re-licensing: “can be taken private”

• One way to think about this is

• user-focus of GPL: nobody can ever take current (or future
versions) away

• author-focus of BSD/MIT as not limiting (?) deployment

Perceived “conflict” overblown – both are Open Source licenses

UIUC Nov 2016 122/147

Legal Details

“It’s complicated”

• This gets into ‘need a lawyer’ territory real fast

• Good (neutral) website: http://tldrlegal.com

• Main thing: Just pick any good recognized license

UIUC Nov 2016 123/147

http://tldrlegal.com

Back to Open Source

Key Aspects

• Focus on Software: ‘Infinitely copyable’

• Consider recent ‘newsworthy’ software releases (e.g. TensorFlow)

• ‘Open by Default’ a (related) winning concept:

• Wikipedia
• GitHub

UIUC Nov 2016 124/147

Open Source Has Won

For Software, Debate is Over

• From Ballmer’s Microsoft: Linux is a Cancer

• To Nadella’s Microsoft: We love Linux

• Today, few areas of the software industry remain unchanged

• Now frequently seen: ‘Open Core’ base with add-on services

UIUC Nov 2016 125/147

Open Source Has Won

Microsoft embracing R

Source: http://www.zdnet.com/article/microsofts-r-strategy/ (retrieved on 2016-May-14)

UIUC Nov 2016 126/147

http://www.zdnet.com/article/microsofts-r-strategy/

Trading and Trading Firms

UIUC Nov 2016 127/147

So Where Does that leave us?

Status Quo Somewhat Obvious and Boring

• Open Source is simply how software is done / used

• Trading / Wall St have used Open Source since forever

• Niche applications with premiums remain closed

• As do ‘aggregations’ and OSs
• OS X, Windows, … as well, but at lower prices

• Hence: ‘Default is Open’

• I.e. last relevant + closed source programming language?

UIUC Nov 2016 128/147

Source: http://www.stickycomics.com/computer-update/

UIUC Nov 2016 129/147

http://www.stickycomics.com/computer-update/

So Yes, It is 80/20

Open Source Is

• what you use for your (scripting) languages

• what you use for your domain language

• what you use for your (No-)SQL backends

• and on and on an on

UIUC Nov 2016 130/147

And That’s A Good Thing

Leaves Focus on Value-Added

• Strategies

• Analysis

• Core (in-house) Technology

to differentiate

UIUC Nov 2016 131/147

Participate

UIUC Nov 2016 132/147

Why?

Signalling !

• Better hiring

• Better staff morale

• Better code

UIUC Nov 2016 133/147

Who plays?

A very incomplete list

• TwoSigma Beaker Notebook

• Bloomberg via

• large C++ libraries
• OpenBloomberg API libraries

• Goldman Sachs Java Collections Framework

UIUC Nov 2016 134/147

UIUC Nov 2016 135/147

UIUC Nov 2016 136/147

So Here is Where it falls short

Main Issue:

• Finance / Trading not known as a supporter / contributor

• I.e. Morgan Stanley employs Stroustrup
• But e.g. why is van Rossum not employed in the industry?
• Not aware of other key OS developers employed

• But could this be changing?

UIUC Nov 2016 137/147

Change in the Air?

Small Steps

• UseR! 2016 co-sponsored by RenTec, TwoSigma, Bridgewater

• Ketchum has sponsored NIPS, R/Finance and R Consortium

• Funding opportunities:

• R now has the R Consortium
• Python (et al) have NumFocus
• Linux has the Linux Foundation

• But also

• Software Freedom Conservancy
• Software in the Public Interest

UIUC Nov 2016 138/147

http://user2016.org/
https://www.r-consortium.org/
http://www.numfocus.org/
http://www.linuxfoundation.org/
https://sfconservancy.org/
http://www.spi-inc.org/

Source: http://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
With thanks to Michael Wong and his STAC Chicago presentation on May 17, 2016.

UIUC Nov 2016 139/147

http://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

(Section) Summary

UIUC Nov 2016 140/147

Open Source Finance

Trading

• Benefits hugely as a ‘shadow IT industry’

• By and large does not seem to contribute back

• Let’s try to change that

UIUC Nov 2016 141/147

One More Thing

UIUC Nov 2016 142/147

Computing Literacy

Software Carpentry (and Data Carpentry)

• Basic shell skills

• Basics of version control

• Good programming practice (R, Python, Matlan, …)

are essential for today’s students and tomorrow’s researchers

UIUC Nov 2016 143/147

Computing Literacy

UIUC Nov 2016 144/147

Concluding

UIUC Nov 2016 145/147

Summary

Key Themes

• Statistics largely computational

• R is a key ingredient

• Rcpp is a performant and expressive API extension

• Extending R is a key feature

• Programming is (often) multi-lingual
• Extending to other systems / languages natural

• Open Source is a key aspect

• Important to teach more than just single language

UIUC Nov 2016 146/147

Final Words

Thank You!
http://dirk.eddelbuettel.com/

dirk@eddelbuettel.com

@eddelbuettel

UIUC Nov 2016 147/147

http://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel

	Motivation
	Rcpp: Introduction via Tweets
	Extending R
	Interface Vision
	Speed
	Empirics
	Rcpp: A Better C API for R
	Basic Usage
	Sugar Example
	Other Examples
	More
	Appendix: If You Can't Beat 'em
	Single- Or Multi-Language ?
	Interlude
	Illustration
	(Section) Conclusion
	Appendix: Open Source Finance
	History
	Trading and Trading Firms
	Participate
	(Section) Summary
	One More Thing
	Concluding

