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Motivation
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Almost all topics in twenty-first-century
statistics are now computer-dependent
[...]

Here and in all our examples we are
employing the language R, itself one of
the key developments in
computer-based statistical methodology.

Efron and Hastie, 2016,
pages xv and 6 (footnote 3)
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A View of the World

Computational Statistics in Practice

• Statistics is now computational (Efron & Hastie, 2016)

• Within (computational) statistics, reigning tool is R

• Given R, Rcpp key for two angles:

• Performance always matters, ease of use a sweetspot
• “Extending R” (Chambers, 2016)

• Time permitting

• Being nice to other (languages)
• an underdiscussed angle in industry
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Overview / Outline / Plan

Drawing on three Talks

• Rcpp Introduction (from recent workshops / talks / courses)
• [if time] If You Can’t Beat ’em (from JSS session at JSM)
• [if time] Open Source Finance (from an industry conference)
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About Me

Brief Bio

• PhD, MA Econometrics; MSc Ind.Eng. (Comp.Sci./OR)

• Finance Quant for 20 years

• Open Source for 22 years

• Debian developer
• R package author / contributor

• R Foundation Board member, R Consortium ISC member

• JSS Associate Editor
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Rcpp: Introduction via Tweets
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Extending R
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Why R? : Programming with Data from 1977 to 2016

Thanks to John Chambers for high-resolution cover images. The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.
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A Simple Example

xx <- faithful[,”eruptions”]
fit <- density(xx)
plot(fit)
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A Simple Example
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A Simple Example - Refined

xx <- faithful[,”eruptions”]
fit1 <- density(xx)
fit2 <- replicate(10000, {

x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))$y

})
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x,rev(fit1$x)), c(fit3[1,],rev(fit3[2,])),

col=’grey’, border=F)
lines(fit1)

UIUC Nov 2016 21/147



A Simple Example - Refined
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So Why R?

R enables us to

• work interactively
• explore and visualize data
• access, retrieve and/or generate data
• summarize and report into pdf, html, …

making it the key language for statistical computing, and a preferred
environment for many data analysts.
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So Why R?

R has always been extensible via

• C via a bare-bones interface described in Writing R Extensions
• Fortran which is also used internally by R
• Java via rJava by Simon Urbanek
• C++ but essentially at the bare-bones level of C

So while in theory this always worked – it was tedious in practice
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Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and Fortran:

Since the core of R is in fact a program written in the C
language, it’s not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code is
a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.
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Why Extend R?

Chambers proceeds with this rough map of the road ahead:

• Against:

• It’s more work
• Bugs will bite
• Potential platform dependency
• Less readable software

• In Favor:

• New and trusted computations
• Speed
• Object references
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Why Extend R?

The Why? boils down to:

• speed: Often a good enough reason for us … and a focus for us
in this workshop.

• new things: We can bind to libraries and tools that would
otherwise be unavailable in R

• references: Chambers quote from 2008 foreshadowed the work
on Reference Classes now in R and built upon via Rcpp Modules,
Rcpp Classes (and also RcppR6)
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And Why C++?

• Asking Google leads to tens of million of hits.
• Wikipedia: C++ is a statically typed, free-form, multi-paradigm,
compiled, general-purpose, powerful programming language

• C++ is industrial-strength, vendor-independent, widely-used,
and still evolving

• In science & research, one of the most frequently-used
languages: If there is something you want to use / connect to, it
probably has a C/C++ API

• As a widely used language it also has good tool support
(debuggers, profilers, code analysis)
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Why C++?

Scott Meyers: View C++ as a federation of languages

• C provides a rich inheritance and interoperability as Unix,
Windows, … are all build on C.

• Object-Oriented C++ (maybe just to provide endless discussions
about exactly what OO is or should be)

• Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

• The Standard Template Library (STL) is a specific template
library which is powerful but has its own conventions.

• C++11 and C++14 (and beyond) add enough to be called a fifth
language.

NB: Meyers original list of four languages appeared years before C++11.
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Why C++?

• Mature yet current
• Strong performance focus:

• You don’t pay for what you don’t use
• Leave no room for another language between the machine level
and C++

• Yet also powerfully abstract and high-level
• C++11 + C++14 are a big deal giving us new language features
• While there are complexities, Rcpp users are mostly shielded
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Interface Vision
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Bell Labs, May 1976
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Interface Vision

R offers us the best of both worlds:

• Compiled code with

• Access to proven libraries and algorithms in C/C++/Fortran
• Extremely high performance (in both serial and parallel modes)

• Interpreted code with

• A high-level language made for Programming with Data
• An interactive workflow for data analysis
• Support for rapid prototyping, research, and experimentation
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Why Rcpp?

• Easy to learn as it really does not have to be that complicated –
we will see numerous few examples

• Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

• Expressive as it allows for vectorised C++ using Rcpp Sugar
• Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, …

• Speed gains for a variety of tasks Rcpp excels precisely where R
struggles: loops, function calls, …

• Extensions greatly facilitates access to external libraries using
eg Rcpp modules
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Speed
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Speed Example (due to StackOverflow)

Consider a function defined as

f(n) such that

 n when n < 2
f(n − 1) + f(n − 2) when n ≥ 2

UIUC Nov 2016 37/147



Speed Example in R

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

## Using it on first 11 arguments
sapply(0:10, f)

## [1] 0 1 1 2 3 5 8 13 21 34 55
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Speed Example Timed

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

## test replications elapsed relative
## 1 f(10) 100 0.016 1.000
## 2 f(15) 100 0.140 8.750
## 3 f(20) 100 1.505 94.063
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Speed Example in C / C++

A C or C++ solution can be equally simple

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

But how do we call it from R?

UIUC Nov 2016 40/147



Speed Example in C / C++

But Rcpp makes this much easier:

Rcpp::cppFunction(”int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }”)

sapply(0:10, g)

## [1] 0 1 1 2 3 5 8 13 21 34 55
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Speed Example Comparing R and C++

Timing:

Rcpp::cppFunction(”int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }”)

library(rbenchmark)
benchmark(f(25), g(25), order=”relative”)[,1:4]

## test replications elapsed relative
## 2 g(25) 100 0.035 1.0
## 1 f(25) 100 16.037 458.2

A nice gain of a few orders of magnitude.
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Another Angle on Speed

Run-time performance is just one example.

Time to code is another metric.

We feel quite strongly that helps you code more succinctly, leading to
fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++
development quite nicely (eg the compiler error message parsing is
very helpful) and also helps with package building.
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Empirics
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Growth
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Pagerank

library(pagerank) # github.com/andrie/pagerank

cran <- ”http://cloud.r-project.org”

pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

## Rcpp MASS ggplot2 Matrix mvtnorm
## 2.541 1.719 1.105 0.905 0.726
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Pagerank
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Rcpp: A Better C API for R
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The R API

In a nutshell:

• R is a C program, and C programs can be extended
• R exposes an API with C functions and MACROS
• R also supports C++ out of the box with .cpp extension
• R provides several calling conventions:

• .C() provides the first interface, is fairly limited, and
discouraged

• .Call() provides access to R objects at the C level
• .External() and .Fortran() exist but can be ignored

• We will use .Call() exclusively
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The .Call Interface

At the C level, everything is a SEXP, and every .Call() access uses
this interface pattern:

SEXP foo(SEXP x1, SEXP x2){
...
}

which can be called from R via

.Call(”foo”, var1, var2)

Note that we need to compile, and link, and load, this manually in
wasy which are OS-dependent.
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Example: Convolution

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b) {
int na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));
b = PROTECT(coerceVector(b, REALSXP));
na = length(a);
nb = length(b);
nab = na + nb - 1;
ab = PROTECT(allocVector(REALSXP, nab));
xa = REAL(a);
xb = REAL(b);
xab = REAL(ab);
for (int i = 0; i < nab; i++)

xab[i] = 0.0;
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);
return ab;

}
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Example: Convolution

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector
convolve2cpp(Rcpp::NumericVector a,

Rcpp::NumericVector b) {
int na = a.length(), nb = b.length();
Rcpp::NumericVector ab(na + nb - 1);
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
ab[i + j] += a[i] * b[j];

return(ab);
}
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Types Overview: RObject

• The RObject can be thought of as a basic class behind many of
the key classes in the Rcpp API.

• RObject (and our core classes) provide a thin wrapper around
SEXP objects

• This is sometimes called a proxy object as we do not copy the R
object.

• RObject manages the life cycle, the object is protected from
garbage collection while in scope—so we do not have to do
memory management.

• Core classes define several member common functions
common to all objects (e.g. isS4(), attributeNames, …);
classes then add their specific member functions.
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Overview of Classes: Comparison

Rcpp class R typeof
Integer(Vector|Matrix) integer vectors and matrices
Numeric(Vector|Matrix) numeric ...
Logical(Vector|Matrix) logical ...
Character(Vector|Matrix) character ...

Raw(Vector|Matrix) raw ...
Complex(Vector|Matrix) complex ...

List list (aka generic vectors) ...
Expression(Vector|Matrix) expression ...

Environment environment
Function function

XPtr externalptr
Language language

S4 S4
... ...

\end{frame}
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Overview of key vector / matrix classes

• IntegerVector vectors of type integer
• NumericVector vectors of type numeric
• RawVector vectors of type raw
• LogicalVector vectors of type logical
• CharacterVector vectors of type character
• GenericVector generic vectors implementing list types
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Common core functions for Vectors and Matrices

Key operations for all vectors, styled after STL operations:

• operator() access elements via ()
• operator[] access elements via []
• length() also aliased to size()
• fill(u) fills vector with value of u
• begin() pointer to beginning of vector, for iterators
• end() pointer to one past end of vector
• push_back(x) insert x at end, grows vector
• push_front(x) insert x at beginning, grows vector
• insert(i, x) insert x at position i, grows vector
• erase(i) remove element at position i, shrinks vector
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Basic Usage

UIUC Nov 2016 57/147



Basic Usage: evalCpp()

evalCpp() evaluates a single C++ expression. Includes and
dependencies can be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2”) # simple test

## [1] 4

evalCpp(”std::numeric_limits<double>::max()”)

## [1] 1.797693e+308
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Basic Usage: cppFunction()

cppFunction() creates, compiles and links a C++ file, and creates
an R function to access it.

cppFunction(”
int exampleCpp11() {

auto x = 10;
return x;

}”, plugins=c(”cpp11”))
exampleCpp11() # same identifier as C++ function
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Basic Usage: sourceCpp()

sourceCpp() is the actual workhorse behind evalCpp()
andcppFunction()‘. It is described in more detail in the package
vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package
inline, but provides even more ease-of-use, control and helpers –
freeing us from boilerplate scaffolding.

A key feature are the plugins and dependency options: other
packages can provide a plugin to supply require compile-time
parameters (cf RcppArmadillo, RcppEigen, RcppGSL).
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Basic Uage: RStudio
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Basic Uage: RStudio (Cont’ed)

The following file gets created:
#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar). ...

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) { return x * 2; }

// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.

/*** R
timesTwo(42)
*/
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Basic Uage: RStudio (Cont’ed)

So what just happened?

• We defined a simple C++ function
• It operates on a numeric vector argument
• We asked Rcpp to ‘source it’ for us
• Behind the scenes Rcpp creates a wrapper
• Rcpp then compiles, links, and loads the wrapper
• The function is available in R under its C++ name
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Basic Usage: Packages

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can
be created by Rcpp.package.skeleton()

The vignette Rcpp-packages has fuller details.

As of November 10, 2016, there are 832 packages on CRAN which use
Rcpp, and a further 89 on BioConductor — with working, tested, and
reviewed examples.
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Packages and Rcpp

Best way to organize R code with Rcpp is via a package:
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Packages and Rcpp

Rcpp.package.skeleton() and its derivatives. e.g.
RcppArmadillo.package.skeleton() create working packages.
// another simple example: outer product of a vector,
// returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
//
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}
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Packages and Rcpp

Two ways to link to external libraries

• With linking of libraries: Do what RcppGSL does and use hooks
in the package startup to store compiler and linker flags, pass to
environment variables

• With C++ template headers only: Do what RcppArmadillo and
other do and just point to the headers

More details in extra vignettes.
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Sugar Example
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Syntactic ‘sugar’: Simulating π in R

Draw (x, y), compute dist d to origin. Repeat. Ratio of points with∑
I(d ≤ 1)/N goes to π/4 as we fill the 1/4 of the unit circle.

piR <- function(N) {
x <- runif(N)
y <- runif(N)
d <- sqrt(x^2 + y^2)
return(4 * sum(d <= 1.0) / N)

}
set.seed(5)
sapply(10^(3:6), piR)

## [1] 3.156000 3.155200 3.139000 3.141008
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Syntactic ‘sugar’: Simulating π in C++

Rcpp sugar enables us to write C++ code that is almost as compact.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {
NumericVector x = runif(N);
NumericVector y = runif(N);
NumericVector d = sqrt(x*x + y*y);
return 4.0 * sum(d <= 1.0) / N;

}

The code is essentially identical.
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Syntactic ‘sugar’: Simulating π

And by using the same RNG, so are the results.

library(Rcpp)
sourceCpp(”code/piSugar.cpp”)
set.seed(42); a <- piR(1.0e7)
set.seed(42); b <- piSugar(1.0e7)
identical(a,b)

## [1] TRUE

print(c(a,b), digits=7)

## [1] 3.140899 3.140899
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Syntactic ‘sugar’: Simulating π

The performance is close with a small gain for C++ as R is already
vectorised:

library(rbenchmark)
sourceCpp(”code/piSugar.cpp”)
benchmark(piR(1.0e6), piSugar(1.0e6))[,1:4]

## test replications elapsed relative
## 1 piR(1e+06) 100 6.946 2.693
## 2 piSugar(1e+06) 100 2.579 1.000
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Syntactic ‘sugar’: Simulating π

Takeaways

• We can prototype in R to derive a first solution
• We can then rewrite performance-critical parts
• Key R functions are often available in C++ via Rcpp Sugar
• Random Number Simulation will work on identical streams
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Other Examples
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Cumulative Sum: vector-cumulative-sum

A basic looped version:

#include <Rcpp.h>
#include <numeric> // for std::partial_sum
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector cumsum1(NumericVector x){

double acc = 0; // init an accumulator variable

NumericVector res(x.size()); // init result vector

for(int i = 0; i < x.size(); i++){
acc += x[i];
res[i] = acc;

}
return res;

}
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Cumulative Sum: vector-cumulative-sum

An STL variant:

// [[Rcpp::export]]
NumericVector cumsum2(NumericVector x){

// initialize the result vector
NumericVector res(x.size());
std::partial_sum(x.begin(), x.end(), res.begin());
return res;

}
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Cumulative Sum: vector-cumulative-sum

Or just Rcpp sugar:

// [[Rcpp::export]]
NumericVector cumsum_sug(NumericVector x){

return cumsum(x); // compute + return result vector
}

Of course, all results are the same.
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R Function Call from C++: r-function-from-c++

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector callFunction(NumericVector x,

Function f) {
NumericVector res = f(x);
return res;

}

/*** R
callFunction(x, fivenum)
*/
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Using Boost via BH: using-boost-with-bh

// [[Rcpp::depends(BH)]]
#include <Rcpp.h>

// One include file from Boost
#include <boost/date_time/gregorian/gregorian_types.hpp>

using namespace boost::gregorian;

// [[Rcpp::export]]
Rcpp::Date getIMMDate(int mon, int year) {

// compute third Wednesday of given month / year
date d = nth_day_of_the_week_in_month(

nth_day_of_the_week_in_month::third,
Wednesday, mon).get_date(year);

date::ymd_type ymd = d.year_month_day();
return Rcpp::wrap(Rcpp::Date(ymd.year, ymd.month, ymd.day));

}
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Using Boost via BH: using-boost-with-bh

#include <Rcpp.h>
#include <boost/foreach.hpp>
using namespace Rcpp;
// [[Rcpp::depends(BH)]]

// the C-style upper-case macro name is a bit ugly
#define foreach BOOST_FOREACH

// [[Rcpp::export]]
NumericVector square( NumericVector x ) {
// elem is a reference to each element in x
// we can re-assign to these elements as well
foreach( double& elem, x ) {
elem = elem*elem;

}
return x;

}

C++11 now has something similar in a smarter for loop.
UIUC Nov 2016 80/147



Vector Subsetting: subsetting

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector positives(NumericVector x) {

return x[x > 0];
}

// [[Rcpp::export]]
List first_three(List x) {

IntegerVector idx = IntegerVector::create(0, 1, 2);
return x[idx];

}

// [[Rcpp::export]]
List with_names(List x, CharacterVector y) {

return x[y];
}
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Armadillo Eigenvalues: armadillo-eigenvalues

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::vec getEigenValues(arma::mat M) {

return arma::eig_sym(M);
}
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Armadillo Eigenvalues: armadillo-eigenvalues

sourceCpp(”code/armaeigen.cpp”)

set.seed(42)
X <- matrix(rnorm(4*4), 4, 4)
Z <- X %*% t(X)
getEigenValues(Z)

## [,1]
## [1,] 0.3318872
## [2,] 1.6855884
## [3,] 2.4099205
## [4,] 14.2100108

# R gets the same results (in reverse)
# and also returns the eigenvectors.
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Create xts from in C++: creating-xts-from-c++

#include <Rcpp.h>
using namespace Rcpp;

NumericVector createXts(int sv, int ev) {
IntegerVector ind = seq(sv, ev); // values

NumericVector dv(ind); // date(time)s == reals
dv = dv * 86400; // scaled to days
dv.attr(”tzone”) = ”UTC”; // index has attributes
dv.attr(”tclass”) = ”Date”;

NumericVector xv(ind); // data has same index
xv.attr(”dim”) = IntegerVector::create(ev-sv+1,1);
xv.attr(”index”) = dv;
CharacterVector cls = CharacterVector::create(”xts”,”zoo”);
xv.attr(”class”) = cls;
xv.attr(”.indexCLASS”) = ”Date”;
// ... some more attributes ...

return xv;
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RcppMLPACK: K-Means Example

#include ”RcppMLPACK.h”

using namespace mlpack::kmeans;
using namespace Rcpp;

// [[Rcpp::depends(RcppMLPACK)]]

// [[Rcpp::export]]
List cppKmeans(const arma::mat& data, const int& clusters) {

arma::Col<size_t> assignments;
KMeans<> k; // Initialize with the default arguments.
k.Cluster(data, clusters, assignments);

return List::create(Named(”clusters”) = clusters,
Named(”result”) = assignments);

}
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RcppMLPACK: K-Means Example

Timing

Table 1: Benchmarking result

test replications elapsed relative user.self sys.self

mlKmeans(t(wine), 3) 100 0.028 1.000 0.028 0.000
kmeans(wine, 3) 100 0.947 33.821 0.484 0.424

Table taken ‘as is’ from RcppMLPACK vignette.
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RcppMLPACK: Nearest Neighbors Example

#include ”RcppMLPACK.h”

using namespace Rcpp;
using namespace mlpack; using namespace mlpack::neighbor;
using namespace mlpack::metric; using namespace mlpack::tree;

// [[Rcpp::depends(RcppMLPACK)]]
// [[Rcpp::export]]
List nn(const arma::mat& data, const int k) {

// using a test from MLPACK 1.0.10 file src/mlpack/tests/allknn_test.cpp
CoverTree<LMetric<2>, FirstPointIsRoot,

NeighborSearchStat<NearestNeighborSort> > tree =
CoverTree<LMetric<2>, FirstPointIsRoot,

NeighborSearchStat<NearestNeighborSort> >(data);

NeighborSearch<NearestNeighborSort, LMetric<2>,
CoverTree<LMetric<2>, FirstPointIsRoot,

NeighborSearchStat<NearestNeighborSort> > >
coverTreeSearch(&tree, data, true);

arma::Mat<size_t> coverTreeNeighbors;
arma::mat coverTreeDistances;
coverTreeSearch.Search(k, coverTreeNeighbors, coverTreeDistances);

return List::create(Named(”clusters”) = coverTreeNeighbors,
Named(”result”) = coverTreeDistances);
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More

UIUC Nov 2016 88/147



Documentation

• The package comes with eight pdf vignettes, and numerous help
pages.

• The introductory vignettes are now published (Rcpp and
RcppEigen in J Stat Software, RcppArmadillo in Comp Stat &
Data Anlys)

• The rcpp-devel list is the recommended resource, generally very
helpful, and fairly low volume.

• StackOverflow has a large collection of posts too.
• And a number of blog posts introduce/discuss features.
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Rcpp Gallery
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The Rcpp book

On sale since June 2013.
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Appendix: If You Can’t Beat ’em
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Overview

Content

• Single- or Multi-Language ?

• Interlude

• Illustration

• Conclusion
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Single- Or Multi-Language ?
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Claim: 1 + 1 > 2

Better with more than one?

• No one language fits all

• Real-world projects are frequently multi-language

• See e.g. job ads which rarely ever list just one language

UIUC Nov 2016 95/147



Counter-claim: 1 + 1 < 2

Or better with just one?

• Mental switching cost between languages? Possibly

• Interop difficult and less portable? Maybe, but that is an
argument against weak systems / OSs

• Easier / less to learn?

• “More hoops” to code?
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Mental switching costs?
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So which one is it?

Open Question

• Hard to measure or test: Any empirics on real world projects?

• Code competition / comparisons (e.g. Project Euler): Are they
realistic?
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Interlude
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John Chambers

Chambers (2008) Software For
Data Analysis
Chapters 10 and 11 devoted to
Interfaces I: C and Fortran and
Interfaces II: Other Systems.
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John Chambers

Chambers (2016) Extending R
An entire book about this with
concrete Python, Julia and C++
code and examples
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John Chambers

Chambers 2016, Chapter 1

• Everything that exists in R is an object

• Everything happens in R is a function call

• Interfaces to other software are part of R

UIUC Nov 2016 102/147



John Chambers

Chambers 2016, Chapter 4

The fundamental lesson about programming in the large is
that requires a correspondingly broad and flexible
response. In particular, no single language or software
system os likely to be ideal for all aspects. Interfacing
multiple systems is the essence. Part IV explores the
design of of interfaces from R.
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Illustration
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Using R to C++ to Boost to Python, and back

Setup

py_cflags <- system(”python2.7-config --cflags”, intern=TRUE)
se <- Sys.setenv; ge <- Sys.getenv # shorthands to typeset
se(”PKG_CFLAGS”=sprintf(”%s %s”, ge(”PKG_CFLAGS”), py_cflags))
se(”PKG_CXXFLAGS”=sprintf(”%s %s”, ge(”PKG_CXXFLAGS”), py_cflags))
py_ldflags <- system(”python2.7-config --ldflags”, intern=TRUE)
se(”PKG_LIBS”=sprintf(”%s %s %s”, ge(”PKG_CFLAGS”),

”-lboost_python-py27”, py_ldflags))
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Using R to C++ to Boost to Python, and back

#include <Rcpp.h>
#include <Python.h>

// [[Rcpp::export]]
void initialize_python() {

Py_SetProgramName(””); /* optional but recommended */
Py_Initialize();

}

// [[Rcpp::export]]
void hello_python() {

PyRun_SimpleString(”from time import time,ctime\n”
”print ’Today is’,ctime(time())\n”);

}
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Using R to C++ to Boost to Python, and back

Hello, World: Called from R

initialize_python()
hello_python()

## Today is Thu Nov 10 09:40:26 2016

More at http://gallery.rcpp.org/articles/rcpp-python/
Disclaimer: For illustration purposes. Works as designed on Ubuntu. Not meant to be universally portable to all three OSs.
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(Section) Conclusion
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Being Polyglot

Mixing Languages

• Common

• Natural

• Unavoidable
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Being Polyglot

Consequences

• Must make it easier to interoperate

• Stop bickering among ourselves

• Build systems that are larger that the sum of their parts

UIUC Nov 2016 110/147



Being Polyglot

Just Do It
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Appendix

Lars Wirzenius “Which license is the most free?”
Free software licences can be roughly grouped into permissive and copyleft ones.
[…] A permissive licence lets you do things that a copyleft one forbids, so clearly the
permissive licence is more free. A copyleft licence means software using it won’t
ever become non-free against the wills of the copyright holders, so clearly a
copyleft licence is more free than a permissive one.

Both sides are both right and wrong, of course, which is why this argument will
continue forever. […]

If a discussion about the relative freedom of licence types becomes heated, step
away. It’s not worth participating anymore.

http://yakking.branchable.com/posts/comparative-freeness/
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Appendix: Open Source Finance
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Agenda

Issues

• History: How did we get here?

• Status: What is happening now

• Onward: What may happen
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Context

To clarify

• This talk reflects views of a quantitative analyst

• Software to us is predominantly a collection of analysis and
modeling tools including programming languages, libraries, OSs

• The focus is on Open Source Finance — and much less about
Open Source and Software in general

• Insert your favourite disclaimer here
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History
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Free Software and Open Source

Terms and Players

• Open Source dominates commercial discussions

• Free Software predates it; academic roots / MIT

• past friction between sponsoring entities

• OSI and FSF are closer now
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Image by NicoBZH from Saint Etienne, Loire, France - Richard Stallman - “Le logiciel libre et ta liberté”
Saint Etienne cité du design 27/11/2008, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=5381829

UIUC Nov 2016 118/147

https://commons.wikimedia.org/w/index.php?curid=5381829


Image by Krd - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36166670UIUC Nov 2016 119/147
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Free Software and Four Freedoms

Free as in the Freedom to …

• run the program as you wish, for any purpose
• study how the program works, and change it
• redistribute copies so you can help your neighbor
• distribute copies of your modified versions to others

Access to source code is a precondition
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Free Software and the GNU Public License (GPL)

GPL: A key Free Software License

• ‘Copyleft’: right to freely distribute copies and modified versions

• Stipulates that the same rights be preserved in derivative works

• ‘Viral’: Combined works have same (aggregate) license

• Some claim that this is not ‘permissive’
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GPL versus BSD/MIT/Apache

BSD/MIT/Apache Licenses

• These license calls themselves ‘more permissive’ – ie not viral

• Allows re-use and re-licensing: “can be taken private”

• One way to think about this is

• user-focus of GPL: nobody can ever take current (or future
versions) away

• author-focus of BSD/MIT as not limiting (?) deployment

Perceived “conflict” overblown – both are Open Source licenses
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Legal Details

“It’s complicated”

• This gets into ‘need a lawyer’ territory real fast

• Good (neutral) website: http://tldrlegal.com

• Main thing: Just pick any good recognized license
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Back to Open Source

Key Aspects

• Focus on Software: ‘Infinitely copyable’

• Consider recent ‘newsworthy’ software releases (e.g. TensorFlow)

• ‘Open by Default’ a (related) winning concept:

• Wikipedia
• GitHub
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Open Source Has Won

For Software, Debate is Over

• From Ballmer’s Microsoft: Linux is a Cancer

• To Nadella’s Microsoft: We love Linux

• Today, few areas of the software industry remain unchanged

• Now frequently seen: ‘Open Core’ base with add-on services
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Open Source Has Won

Microsoft embracing R

Source: http://www.zdnet.com/article/microsofts-r-strategy/ (retrieved on 2016-May-14)
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Trading and Trading Firms
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So Where Does that leave us?

Status Quo Somewhat Obvious and Boring

• Open Source is simply how software is done / used

• Trading / Wall St have used Open Source since forever

• Niche applications with premiums remain closed

• As do ‘aggregations’ and OSs
• OS X, Windows, … as well, but at lower prices

• Hence: ‘Default is Open’

• I.e. last relevant + closed source programming language?

UIUC Nov 2016 128/147



Source: http://www.stickycomics.com/computer-update/
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So Yes, It is 80/20

Open Source Is

• what you use for your (scripting) languages

• what you use for your domain language

• what you use for your (No-)SQL backends

• and on and on an on
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And That’s A Good Thing

Leaves Focus on Value-Added

• Strategies

• Analysis

• Core (in-house) Technology

to differentiate
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Participate
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Why?

Signalling !

• Better hiring

• Better staff morale

• Better code
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Who plays?

A very incomplete list

• TwoSigma Beaker Notebook

• Bloomberg via

• large C++ libraries
• OpenBloomberg API libraries

• Goldman Sachs Java Collections Framework
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So Here is Where it falls short

Main Issue:

• Finance / Trading not known as a supporter / contributor

• I.e. Morgan Stanley employs Stroustrup
• But e.g. why is van Rossum not employed in the industry?
• Not aware of other key OS developers employed

• But could this be changing?
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Change in the Air?

Small Steps

• UseR! 2016 co-sponsored by RenTec, TwoSigma, Bridgewater

• Ketchum has sponsored NIPS, R/Finance and R Consortium

• Funding opportunities:

• R now has the R Consortium
• Python (et al) have NumFocus
• Linux has the Linux Foundation

• But also

• Software Freedom Conservancy
• Software in the Public Interest
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Source: http://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
With thanks to Michael Wong and his STAC Chicago presentation on May 17, 2016.
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(Section) Summary
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Open Source Finance

Trading

• Benefits hugely as a ‘shadow IT industry’

• By and large does not seem to contribute back

• Let’s try to change that
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One More Thing
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Computing Literacy

Software Carpentry (and Data Carpentry)

• Basic shell skills

• Basics of version control

• Good programming practice (R, Python, Matlan, …)

are essential for today’s students and tomorrow’s researchers
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Computing Literacy
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Concluding
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Summary

Key Themes

• Statistics largely computational

• R is a key ingredient

• Rcpp is a performant and expressive API extension

• Extending R is a key feature

• Programming is (often) multi-lingual
• Extending to other systems / languages natural

• Open Source is a key aspect

• Important to teach more than just single language
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Final Words

Thank You!
http://dirk.eddelbuettel.com/

dirk@eddelbuettel.com

@eddelbuettel
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