Hands-On Advanced Rcpp

Dr. Dirk Eddelbuettel
dirk.eddelbuettel@R-Project.org
@eddelbuettel

Invited Lecture
Practical Computing for Economists
Department of Economics
University of Chicago
May 30, 2014
Basic Agenda

As you already know (some) **Rcpp** and **RcppArmadillo**, we will try to cover the following:

- Simple classes for stateful computation: RcppZiggurat and faster Normal RNGs
- Simple interfaces to external libraries: RcppRedis to access Redis
- Passing compiled objective functions to compiled optimizers
- C / C++ as *glue code*: RcppOctave; embedding Python via Rcpp

We will follow existing packages which will allow you to experiment with this.
Outline

1. Intro
2. RcppZiggurat
3. RcppRedis
4. RcppDE
5. Glue
6. More
Rcpp is often used to accelerate simulations, e.g. the Gibbs sampler you already coded up.

```cpp
#include <Rcpp.h> // load Rcpp
using namespace Rcpp; // shorthand
// [[Rcpp::export]]
NumericMatrix RcppGibbs(int n, int thn) {
  int i, j;
  NumericMatrix mat(n, 2);
  double x=0, y=0;
  for (i=0; i<n; i++) {
    for (j=0; j<thn; j++) {
      x = R::rgamma(3.0, 1.0/(y*y+4));
      y = R::rnorm(1.0/(x+1), 1.0/sqrt(2*x+2));
    }
    mat(i, 0) = x;
    mat(i, 1) = y;
  }
  return mat; // Return to R
}
```

Dirk Eddelbuettel
Rcpp @ U of C Econ
Rcpp helps us to make loops a lot faster, and improves the speed of other operations too.

But some things (such as calls into compiled code) remain unchanged.

And the RNGs in R (while of excellent statistical quality) are one such item.

The next slide shows timing of the Ahrens-Dieter (AH), Kinderman-Ramage (KR), Inversion (Inv) and Box-Muller (BM) generators for N(0,1) draws.
R Normal RNGs

Time for 100 times $1e6$ normal draws

![Chart showing comparison of RNG methods AH, KR, Inv, BM in terms of time in msec.](chart.png)
Ziggurat Speeds

Time for 100 times 1e6 normal draws

Time in msec

- Zigg
- ZiggGSL
- ZiggQL
- ZiggGretl
- RInv

Dirk Eddelbuettel
Rcpp @ U of C Econ
Basic Ziggurat

```c
#include <math.h>
static unsigned long jz, jsr=123456789;

#define SHR3 (jz=jsr, jsr^=(jsr<<13), jsr^=(jsr>>17), \ 
         jsr^=(jsr<<5), jz+jsr)
#define UNI (.5 + (signed) SHR3*.2328306e-9)
#define IUNI SHR3

static long hz;
static unsigned long iz, kn[128], ke[256];
static float wn[128], fn[128], we[256], fe[256];

#define RNOR (hz=SHR3, iz=hz&127, \ 
           (fabs(hz)<kn[iz])? hz*wn[iz] : nfix())
```

A macro (!!) where `nfix()` is a tail correction invoked < 2% of calls.
```cpp
#include <cmath>
#include <stdint.h>  // or cstdint with C++11

namespace Ziggurat {

    class Zigg {
        public:
            virtual ~Zigg() {};
            virtual void setSeed(const uint32_t s) = 0;
            // no getSeed() as GSL has none
            virtual double norm() = 0;
        
    };

}  

Used by several implementations in the package.
```
```cpp
#include <Zigg.h>

#define znew (z = 36969 * (z & 65535) + ( z >> 16 ))
#define wnew (w = 18000 * (w & 65535) + ( w >> 16 ))

// ...

class Ziggurat : public Zigg {
public:
    Ziggurat(uint32_t seed=123456789) :
        jcong(234567891), jsr(123456789),
        w(345678912), z(456789123) {
        init();
        setSeed(seed);
    }
    ~Ziggurat () {};
    void setSeed(const uint32_t s) { /* ... */ }

private:
    float fn[128], wn128;
    int32_t hz;
    uint32_t iz, jcong, uint32_t jsr, uint32_t jz, uint32_t kn[128], w, z;

    void init() { /* ... */ }
    inline float nfix(void) { /* ... */ }
};

#undef znew
#undef wnew

// ...
```
// Version 1 -- Derived from Marsaglia and Tsang, JSS, 2000
static Ziggurat::MT::ZigguratMT ziggmt;

// Marsaglia and Tsang (JSS, 2000)
// [[Rcpp::export]]
Rcpp::NumericVector zrnormMT(int n) {
 Rcpp::NumericVector x(n);
 for (int i=0; i<n; i++) {
 x[i] = ziggmt.norm();
 }
 return x;
}

// [[Rcpp::export]]
void zsetseedMT(int s) {
 ziggmt.setSeed(s);
}
Overview

Why the hype?

- **Simple**: Does one thing, and does it well
- **Fast**: Run `redis-benchmark` to see just how fast
- **Widely used**: Twitter, GitHub, Craigslist, StackOverflow, . . .
- **Multi-language**: Bindings from anything you may use
- **Active**: Well maintained and documented
```python
#!/usr/bin/python

import redis

redishost = "localhost"
redisserver = redis.StrictRedis(redishost)

key = "ex:ascii:simpleString"
val = "abracadabra"
res = redisserver.set(key, val)
```
```r
library(rredis)

redisConnect()

key <- "ex:ascii:simpleString"
val <- redisGet(key)
cat("Got", val, "from", key, "\n")

## Got abracadabra from ex:ascii:simpleString
```
Or read in Shell

```bash
$ redis-cli get ex:ascii:simpleString
"abracadabra"
$
```
More generally

We can

- Read
- Write

from just about any programming language or shell.

(So far) all we require is string processing.
Data Structures

Redis supports many relevant data types:

- Strings
- Hashes
- Lists
- Sets
- Sorted Sets

as well as transactions, key management, pub/sub, embedded scripting, connection management and more.
Wonderful package by Bryan Lewis that covers (all of ?) Redis

Awesome for things like
```r
redisSet("myModel", lm(someFormula, someData))
```

(Mostly) efficient enough.

Uses string format exclusively.

Automagically deploys R serialization.

Also used as backend for **doRedis**
redisConnect("someServer.some.net")

rput <- function(X) {
 xstr <- deparse(substitute(X))
 redisSet(xstr, X)
}

rget <- function(key) {
 val <- redisGet(key) # default instance
 redisDelete(key)
 invisible(val)
}
Even nicer: memoise by Michael Kane

```r
require(rredis)
redisConnect()

memoize <- function(expr, key=NULL, expire_time=Inf,
                      verbose=FALSE, envir=parent.frame()) {
  if (is.null(key)) {
    key <- paste(substitute(expr), collapse="")
  }
  if (redisExists(key)) {
    ret <- redisGet(key)
  } else {
    ret <- eval(substitute(expr), envir=envir)
    redisSet(key, ret)
  }
  if (expire_time < Inf) {
    redisExpireAt(proj_doc_key,
                  as.integer(as.POSIXct(Sys.time())+expire_time))
  }
  ret
}
```

Dirk Eddelbuettel
Rcpp @ U of C Econ
Our basic premise and idea is to deploy disconnected writers (middleware clients in C, C++, Python, ...) and consumers (R) – by placing Redis in the middle.

But for “longer” time series the combined cost of deserialization and parsing is too high in R.
set.seed(123); N <- 2500
x <- xts(100*cumprod(1+rnorm(N)*0.005 +
 (runif(N)>0.95)*rnorm(N)*0.025),
 order.by=Sys.time()+cumsum(exp(3*runif(N))))
plot(x, main="Simulated Series", type='l')
Writing and Reading

With **rredis** we set and get the time series as follows:

```r
setAsAscii <- function(dat) {
  N <- nrow(dat)
  ## insertion is row by row
  for (i in 1:N) {
    redisZAdd("ex:ascii:series",
                dat[i,1], dat[i,])
  }
}

## retrieval is by list
getFromAscii <- function() {
  xx <- do.call(rbind,
                redisZRange("ex:ascii:series", 0, -1))
  xt <- xts(xx[,-1],
            order.by=as.POSIXct(xx[,1], origin="1970-01-01"))
}
```
A (fairly new) CRAN package we released recently.

It does just one thing: give us serialization and deserialization from the R API at the C(++) level.

It is used by **RcppRedis**, and provides it with C-level (de-)serialization without having to call “up” to R.
A (fairly new) (and higly incomplete) CRAN package (as of yesterday).

It covers just a couple of commands, but those run rather fast.
Writing and Reading

```r
setAsBinary <- function(dat) {
  redis$zadd("ex:bin:series", as.matrix(dat))
}

getFromBinary <- function() {
  zz <- redis$zrange("ex:bin:series", 0, -1)
  zt <- xts(zz[,-1],
            order.by=as.POSIXct(zz[,1], origin="1970-01-01"))
}
```
Writing and Reading – Part Two

// redis "zadd" -- insert score + matrix row (no R serial.)
// by convention, 1st elem of row vector is the score value
double zadd(std::string key, Rcpp::NumericMatrix x) {
 double res = 0;
 for (int i=0; i < x.nrow(); i++) {
 Rcpp::NumericVector y = x.row(i);
 // uses binary protocol, see hiredis doc at github
 redisReply *reply =
 static_cast<redisReply*>(redisCommand(prc_,
 "ZADD %s %f %b",
 key.c_str(),
 y[0],
 y.begin(),
 y.size() * szdb));

 checkReplyType(reply, replyInteger_t);
 res += static_cast<double>(reply->integer);
 }

 return (res);
}
```r
## Writing
##
# test  replications elapsed relative
setAsBinary(dat)     1  0.127  1.000
setAsAscii(dat)      1 100.001 787.409

## Reading
##
# test  replications elapsed relative
getFromBinary()      10  0.031  1.000
getFromAscii()      10  4.792 154.581
```
Mechanics: Link against libhiredis

- For the CRAN package, tiny bit of `configure` logic to find `CFLAGS` and `LIBS`; used in `src/Makevars`
- For local research use, just hardcode it
- Key is to tell compiler about headers, and linker about libraries
- Many powerful C and C++ libraries out there, learning to bind to them is useful
- `hiredis` is easy to build and a good test case
Outline

1. Intro
2. RcppZiggurat
3. RcppRedis
4. RcppDE
5. Glue
6. More
Differential Evolution: DEoptim and RcppDE

- The **DEoptim** package by Ardia, Mullen et al is a popular and powerful optimiser using the *differential evolution* variant of evolutionary optimization.
- At some point I had set out to port to see if I could go from "easier, shorter, faster: pick any two" to hitting all three.
- Code size was reduced from over 700 lines of C to about 400 lines of C++ in package **RcppDE** thanks to **Armadillo**.
- By virtue of diligent code review, I also made it faster.
- Josh Ulrich incorporated those changes so **DEoptim** closed the gap; it has since moved on.
- **RcppDE** pending rework for parallelism via OpenMP.
Popular to optimise classic problems from the literature:

```r
Wild <- function(x) {
  sum(10 * sin(0.3 * x) * sin(1.3 * x^2) + 0.00001 * x^4 + 0.2 * x + 80)/length(x)
}

Rastrigin <- function(x) {
  sum(x+2 - 10 * cos(2*pi*x)) + 20
}

## One generalization of the Rosenbrock banana valley function (n parameters)
Genrose <- function(x) {
  n <- length(x)
  1.0 + sum (100 * (x[-n]^2 - x[-1])^2 + (x[-1] - 1)^2)
}
```
#include <Rcpp.h>

// [[Rcpp::interfaces(r, cpp)]]

double wild(SEXP xs) {
 Rcpp::NumericVector x(xs);
 double sum = 0.0;
 for (int i=0; i<x.size(); i++)
 sum += 10 * \sin(0.3 \times x[i]) \times \sin(1.3 \times x[i] \times x[i]) + 0.00001 \times x[i] \times x[i] \times x[i] \times x[i] + 0.2 \times x[i] + 80;
 sum /= x.size();
 return(sum);
}

double rastrigin(SEXP xs) {
 Rcpp::NumericVector x(xs);
 int n = x.size();
 double sum = 20.0;
 for (int i=0; i<n; i++) {
 sum += x[i]+2 - 10*\cos(2*\text{M}_\text{PI}*x[i]);
 }
 return(sum);
}

double genrose(SEXP xs) {
 Rcpp::NumericVector x(xs);
 double sum = 1.0;
 for (int i=1; i<x.size(); i++)
 sum += 100*(\text{pow}(x[i-1]*x[i-1] - x[i], 2)) + (x[i] - 1)*(x[i] - 1);
 return(sum);
}
RcppDE allows for compiled objective functions

// cont. from previous slide

// [[Rcpp::export]]
SEXP create_xptr(std::string fstr) {
 typedef double (*funcPtr)(SEXP);
 if (fstr == "genrose")
 return Rcpp::XPtr<funcPtr>(new funcPtr(&genrose));
 else if (fstr == "wild")
 return Rcpp::XPtr<funcPtr>(new funcPtr(&wild));
 else
 return Rcpp::XPtr<funcPtr>(new funcPtr(&rastrigin));
}
RcppDE and compiled objective functions

edd@max:~/git/rcppde/demo$ r CompiledBenchmark.R
At 2014-05-26 18:35:43

<table>
<thead>
<tr>
<th></th>
<th>DEoptim</th>
<th>RcppDE</th>
<th>ratioRcppToBasic</th>
<th>pctGainOfRcpp</th>
<th>netSpeedUp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rastrigin50</td>
<td>1.81100</td>
<td>0.671</td>
<td>0.37051353</td>
<td>62.94865</td>
<td>2.698957</td>
</tr>
<tr>
<td>Rastrigin100</td>
<td>5.17800</td>
<td>2.171</td>
<td>0.41927385</td>
<td>58.07261</td>
<td>2.385076</td>
</tr>
<tr>
<td>Rastrigin200</td>
<td>17.81500</td>
<td>7.917</td>
<td>0.44440079</td>
<td>55.55992</td>
<td>2.250221</td>
</tr>
<tr>
<td>Wild50</td>
<td>3.64200</td>
<td>1.033</td>
<td>0.28363537</td>
<td>71.63646</td>
<td>3.525653</td>
</tr>
<tr>
<td>Wild100</td>
<td>11.28100</td>
<td>3.572</td>
<td>0.31663860</td>
<td>68.33614</td>
<td>3.158175</td>
</tr>
<tr>
<td>Wild200</td>
<td>40.41700</td>
<td>13.478</td>
<td>0.33347354</td>
<td>66.65265</td>
<td>2.998739</td>
</tr>
<tr>
<td>Genrose50</td>
<td>2.65800</td>
<td>0.285</td>
<td>0.10722348</td>
<td>89.27765</td>
<td>9.326316</td>
</tr>
<tr>
<td>Genrose100</td>
<td>7.66200</td>
<td>0.704</td>
<td>0.09188202</td>
<td>90.81180</td>
<td>10.883523</td>
</tr>
<tr>
<td>Genrose200</td>
<td>23.64100</td>
<td>2.110</td>
<td>0.08925172</td>
<td>91.07483</td>
<td>11.204265</td>
</tr>
<tr>
<td>MEANS</td>
<td>12.67833</td>
<td>3.549</td>
<td>0.27992638</td>
<td>72.00736</td>
<td>3.572368</td>
</tr>
</tbody>
</table>

Done 2014-05-26 18:38:10
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

// [[Rcpp::export]]
arma::vec fun_cpp(const arma::vec& x) { return(10*x); }

typedef arma::vec (*funcPtr)(const arma::vec& x);

// [[Rcpp::export]]
Rcpp::XPtr<funcPtr> putFunPtrInXPtr() {
 return(Rcpp::XPtr<funcPtr>(new funcPtr(&fun_cpp)));
}

// [[Rcpp::export]]
arma::vec callViaXPtr(const arma::vec x, SEXP xpsexp) {
 Rcpp::XPtr<funcPtr> xpfun(xpsexp);
 funcPtr fun = *xpfun;
 arma::vec y = fun(x);
 return(y);
}
Quick illustration:

```r
fun <- putFunPtrInXPtr()
callViaXPtr(1:4, fun)
```

```
# [,1]
# [1,] 10
# [2,] 20
# [3,] 30
# [4,] 40
```
Outline

1. Intro
2. RcppZiggurat
3. RcppRedis
4. RcppDE
5. Glue
6. More
RcppOctave embeds Octave

- Package by Renaud Gaujoux
- Embeds Octave using Rcpp
- Permits use of many Matlab and Octave scripts from R
- Package on CRAN, builds on all major OSs
- Package has a few demos, including the Kalman filtering example from the RcppArmadillo vignette / paper
RcppOctave example: The Gibbs Sampler

```r
library(RcppOctave)

Mgibbs <- OctaveFunction(''
    function mat = Mgibbs(N, thin)
        mat = zeros(N, 2);
        x = 0;
        y = 0;
        for i = 1:N
            for j = 1:thin
                x = randg(3) / (y*y+4);
                y = randn(1)*1/sqrt(2*(x+1)) + 1/(x+1);
            end
            mat(i,:) = [ x, y ];
        end
    end
)'

Dirk Eddelbuettel
Rcpp @ U of C Econ
Use Boost Python to embed Python in C++

- Contribution by Wush Wu to the Rcpp Gallery
- Uses Rcpp to call C++, and Boost Python to embed Python
- Builds fine on Ubuntu, some porting work may be needed for other platforms but *should* work on other Linux variants and OS X.
- See Gallery article for details.
- At present a powerful proof-of-concept, could be generally useful.
The **Rcpp** package comes with **eight pdf vignettes**, and numerous help pages.

The introductory vignettes are now **published** (Rcpp and RcppEigen in *J Stat Software*, RcppArmadillo in *Comp. Stat. & Data Anal.*).

The **rcpp-devel** list is *the* recommended resource, generally very helpful, and fairly low volume.

**StackOverflow** is at almost 500 **Rcpp** posts.

And a number of **blog posts** introduce/discuss features.

Plus . . .
Rcpp Gallery

Featured Articles
Quick conversion of a list of lists into a data frame — John Merrill
This post shows one method for creating a data frame quickly
Passing user-supplied C++ functions — Dirk Eddelbuettel
This example shows how to select user-supplied C++ functions
Using Rcpp to access the C API of xts — Dirk Eddelbuettel
This post shows how to use the exported API functions of xts
Timing normal RNGs — Dirk Eddelbuettel
This post compares drawing N(0,1) vectors from R, Boost and C++
A first lambda function with C++11 and Rcpp — Dirk Eddelbuettel
This post shows how to play with lambda functions in C++11
First steps in using C++11 with Rcpp — Dirk Eddelbuettel
This post shows how to experiment with C++11 features
Using Rcpp for output synchronised with R — Dirk Eddelbuettel
This post shows how to use Rcpp (and Rcerr) for output
Using the Rcpp sugar function clamp — Dirk Eddelbuettel
This post illustrates the sugar function clamp
Using the Rcpp Timer — Dirk Eddelbuettel
This post shows how to use the Timer class in Rcpp
Calling R Functions from C++ — Dirk Eddelbuettel
This post discusses calling R functions from C++
More »

Recently Published
Apr 12, 2013 » Using the RcppArmadillo-based implementation of R's sample() — Christian Gunning and Jonathan Ours
Apr 8, 2013 » Dynamic Wrapping and Recursion with Rcpp — Kevin Ushey
Mar 14, 2013 » Using bigmemory with Rcpp — Michael Kane
Mar 12, 2013 » Generating a multivariate gaussian distribution using RcppArmadillo — Ahmadou Dicko
Feb 27, 2013 » Fast factor generation with Rcpp — Kevin Ushey
Available since June 2013