
RDieHarder:
An R interface to the DieHarder RNG test suite

Dirk Eddelbuettel1 Robert G. Brown2

1Debian Project

2Duke University

UseR! 2007
Iowa State University
August 8 - 10, 2007

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 1 / 19

http://r-project.org

Outline

1 Motivation

2 Methodology sketch

3 From DieHard to DieHarder . . .

4 . . . to RDieHarder

5 Example: Testing RNGs in R

6 Summary

7 Where ?

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 2 / 19

Quote

“The generation of random numbers is
too important to be left to chance.”

– Robert R. Coveyou

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 3 / 19

Another Quote

“Anyone who attempts to generate random numbers by
deterministic means is, of course, living in a state of sin.”

– John von Neuman

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 4 / 19

Why does RNG quality matter?

Random numbers play an ever-increasing role in statistics via
estimation: Monte Carlo Markov Chain, randomizing methods,
permutations
inference as the Bootstrap has become a standard tool
various simulation methods (also used for estimation)

Outside of statistics, random numbers are critically important for
encryption and secure communications protocols, but we completely
ignore that aspect here.
We want to ensure that our RNG is behaving consistently in producing
’random’ (i.e. unpredictable, without decernable patterns) numbers.

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 5 / 19

Basic idea of RNG testing
A conceptual algorithm

The core idea is as follows:
assume we have an RNG that produces random integers
conduct one ‘experiment’ and draw M random numbers
arrange these M integers as a binary vector of bit length N
as there should be as many zeros as ones, a test statistic is to
measure the number of ones in the vector which should be
normally distributed with mean N/2 and variance

√
N

so we can compute a p-value for this experiment of M draws
Hence, given an RNG and a test statistic, we obtain one p-value.
The second key idea is that the p-value itself should be uniformly
distributed – so we can test a series of these p-values against
departures from a uniform distribution.

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 6 / 19

Basic idea of test algorithm
Going back to Kendall and Babington-Smith

Slightly more formally stated:
formulate H0 which assumes that the RNG to be tested is perfect
select a test statistic that can operate on a sequence of RNG
draws and has a ‘known’ distribution
perform an experiment by drawing M random numbers and
evaluating the test statistic to obtain a p-value under H0

repeat previous step n times to obtain a p-value vector of size n
test resulting vector of size n for uniform distribution using e.g. a
KS test
the p-value of this last test provides the result for the RNG test
evaluate H0 using this p-value and possibly reject it

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 7 / 19

The original DieHard test library
George Marsaglia

DieHard by George Marsaglia is often seem as the ‘gold standard’ of
RNG testing with his ’diehard’ battery of tests. However, there are
some issues:

Written in Fortran without comments, not particularly extensible or
modular
no copyright notice or license
target statistics and distribution derived via state-of-the-art
simulations ... of fifteen years ago
fixed file-based inputs requiring fixed format – of rather limited size
given the cpu speed and memory size of today’s computers
no user-selectable parameters

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 8 / 19

The DieHarder re-implementation and extensions
Robert G. Brown

Over the last few years, Brown has written DieHarder:
reimplemented to be extensible
rewritten in modular, portable, standard C
wraps around over sixty RNGs from the GNU GSL
additional test statistics from NIST’s STS suite (with a crypto
focus) and by Brown, including a timer
implemented as core library plus command-line frontend
released under GNU GPL

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 9 / 19

So what’s not to like?
Hm, maybe the ’research triangle, 1980s’ look and feel?
edd@ron:~> dieharder -g 17 -d 12 -p 500 -S 0

#==

Diehard Minimum Distance (2d Circle) Test

It does this 100 times:: choose n=8000 random points in a

square of side 10000. Find d, the minimum distance between

the (n^2-n)/2 pairs of points. If the points are truly inde-

pendent uniform, then d^2, the square of the minimum distance

should be (very close to) exponentially distributed with mean

.995 . Thus 1-exp(-d^2/.995) should be uniform on [0,1) and

a KSTEST on the resulting 100 values serves as a test of uni-

formity for random points in the square. Test numbers=0 mod 5

are printed but the KSTEST is based on the full set of 100

random choices of 8000 points in the 10000x10000 square.

#

This test uses a fixed number of samples -- tsamples is ignored.

It also uses the default value of 100 psamples in the final

KS test, for once agreeing precisely with Diehard.

#==

Run Details

Random number generator tested: ran0

Samples per test pvalue = 8000 (test default is 8000)

P-values in final KS test = 500 (test default is 100)

#==

Histogram of p-values

Counting histogram bins, binscale = 0.100000

120| | | | | | | | | | |

| | | | | | | | | | |

108| | | |****| | | | | | |

| | | |****| | | | | | |

96| | | |****| | | | | | |

| | | |****| | | | | | |

84| | | |****| | | | | | |

| | | |****| | | | | | |

72| | | |****| | | |****| | |

| | | |****| | | |****| | |

60| | | |****| | | |****| | |

| | | |****| | | |****| | |

48|****| | |****| | | |****| |****|

|****| | |****|****|****| |****|****|****|

36|****| | |****|****|****| |****|****|****|

|****| |****|****|****|****| |****|****|****|

24|****|****|****|****|****|****|****|****|****|****|

|****|****|****|****|****|****|****|****|****|****|

12|****|****|****|****|****|****|****|****|****|****|

|****|****|****|****|****|****|****|****|****|****|

|--

| 0.1| 0.2| 0.3| 0.4| 0.5| 0.6| 0.7| 0.8| 0.9| 1.0|

#==

Results

Kuiper KS: p = 0.000000

Assessment: FAILED at < 0.01% for Diehard Minimum Distance (2d Circle) Test

edd@ron:~>

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 10 / 19

RDieHarder
A port to R

Straightforward ’port’ to R given the layout of dieharder
R package provides access to dieharder library
Access to all RNGs in dieharder, and all test statistics
The dieharder function replaces the dieharder command-line
interface . . .

but also returns results data to R for further analysis,
visualization, and different tests by . . .

returning a dieharder object with print, summary and plot
methods.

At the same time, also ’ported’ R’s RNGs to dieharder’s framework of
RNG further extending the set of RNGs in dieharder.

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 11 / 19

http://r-project.org
http://r-project.org
http://r-project.org

Example: R RNGs
Wichmann-Hill

Histogram and Density estimate

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF

Diehard Minimum Distance (2d Circle) Test
Created by RNG ‘R_wichmann_hill' with seed=0, sample of size 200

Test p−values: 0.4223 (Kuiper−K−S), 0.1914 (K−S), 0.2388 (Wilcoxon)

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 12 / 19

Example: R RNGs
Marsaglia Multicarry

Histogram and Density estimate

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF

Diehard Minimum Distance (2d Circle) Test
Created by RNG ‘R_marsaglia_multic.' with seed=0, sample of size 200

Test p−values: 0.1477 (Kuiper−K−S), 0.3953 (K−S), 0.7368 (Wilcoxon)

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 13 / 19

Example: R RNGs
Super Duper – failing Kuiper-K-S

Histogram and Density estimate

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF

Diehard Minimum Distance (2d Circle) Test
Created by RNG ‘R_super_duper' with seed=0, sample of size 200

Test p−values: 0.0254 (Kuiper−K−S), 0.0737 (K−S), 0.2745 (Wilcoxon)

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 14 / 19

Example: R RNGs
Mersenne Twister

Histogram and Density estimate

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF

Diehard Minimum Distance (2d Circle) Test
Created by RNG ‘R_mersenne_twister' with seed=0, sample of size 200

Test p−values: 0.4501 (Kuiper−K−S), 0.3361 (K−S), 0.2481 (Wilcoxon)

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 15 / 19

Example: R RNGs
Knuth TAOCP

Histogram and Density estimate

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF

Diehard Minimum Distance (2d Circle) Test
Created by RNG ‘R_knuth_taocp' with seed=0, sample of size 200

Test p−values: 0.371 (Kuiper−K−S), 0.4261 (K−S), 0.5892 (Wilcoxon)

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 16 / 19

Example: R RNGs
Knuth TAOCP2

Histogram and Density estimate

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF

Diehard Minimum Distance (2d Circle) Test
Created by RNG ‘R_knuth_taocp2' with seed=0, sample of size 200

Test p−values: 0.584 (Kuiper−K−S), 0.2766 (K−S), 0.1518 (Wilcoxon)

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 17 / 19

RDieHarder contributions

RDieHarder ...
brings the analytical framework of the DieHarder tests for random
number generators to R
allows the test statistics to be analysed further in R

Open venues for research
more and better tests
innovative use of the test results
possibly more flexible architecture allowing callbacks into R

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 18 / 19

http://r-project.org
http://r-project.org

RDieHarder availability

On Debian or Ubuntu (now that RDieHarder is on CRAN)

$ sudo apt-get install libdieharder-dev
$ echo "install.packages(’RDieHarder’,

’/usr/local/lib/R/site-library’,
’http://cran.us.r-project.org’)" |
sudo R --slave

On other Unix systems, download the dieharder sources from Robert
G. Brown’s site at Duke, do configure; make; make install
and run install.packages(’RDieHarder’) from R as usual.
SVN access via http://code.google.com/p/rdieharder/

‘Soon’ http://dirk.eddelbuettel.com/code/rdieharder

Eddelbuettel and Brown (Debian / Duke) RDieHarder UseR 2007 19 / 19

http://code.google.com/p/rdieharder/
http://dirk.eddelbuettel.com/code/rdieharder

	Motivation
	Methodology sketch
	From DieHard to DieHarder …
	… to RDieHarder
	Example: Testing RNGs in R
	Summary
	Where ?

