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Why Measure Vector Ra BLAS/GPUs Compile Parallel Automation

Motivation: What describes our current situation?

Source: http://en.wikipedia.org/wiki/Moore’s_law

Moore’s Law: Computers
keep getting faster and
faster

But at the same time our
datasets get bigger and
bigger.

So we’re still waiting and
waiting . . .

Hence: A need for higher
performance computing with
R.
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Motivation: Presentation Roadmap

We will start by measuring how we are doing before looking at ways
to improve our computing performance.

We will look at vectorisation, as well as various ways to compile code.

We will look briefly at debugging tools and tricks as well.

We will have a detailed discussion of several ways to get more things
done at the same time by using simple parallel computing
approaches.

We also look at ways to automate and script running R code.
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Profiling

We need to know where our code spends the time it takes to compute
our tasks.
Measuring—using profiling tools—is critical.
R already provides the basic tools for performance analysis.

the system.time function for simple measurements.
the Rprof function for profiling R code.
the Rprofmem function for profiling R memory usage.

In addition, the profr and proftools package on CRAN can be
used to visualize Rprof data.
We will also look at a script from the R Wiki for additional
visualization.
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Profiling cont.

The chapter Tidying and profiling R code in the R Extensions manual
is a good first source for documentation on profiling and debugging.

Simon Urbanek has a page on benchmarks (for Macs) at
http://r.research.att.com/benchmarks/

One can also profile compiled code, either directly (using the -pg
option to gcc) or by using e.g. the Google perftools library.
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RProf example

Consider the problem of repeatedly estimating a linear model, e.g. in
the context of Monte Carlo simulation.

The lm() workhorse function is a natural first choice.

However, its generic nature as well the rich set of return arguments
come at a cost. For experienced users, lm.fit() provides a more
efficient alternative.

But how much more efficient?

We will use both functions on the longley data set to measure this.
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RProf example cont.

This code runs both approaches 2000 times:
data(longley)
Rprof("longley.lm.out")
invisible(replicate(2000,

lm(Employed ~ ., data=longley)))
Rprof(NULL)

longleydm <- data.matrix(data.frame(intcp=1, longley))
Rprof("longley.lm.fit.out")
invisible(replicate(2000,

lm.fit(longleydm[,-8],
longleydm[,8])))

Rprof(NULL)
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RProf example cont.

We can analyse the output two different ways. First, directly from R
into an R object:
data <- summaryRprof("longley.lm.out")
print(str(data))

Second, from the command-line (on systems having Perl)
R CMD Prof longley.lm.out | less

The CRAN package / function profr by H. Wickham can profile,
evaluate, and optionally plot, an expression directly. Or we can use
parse_profr() to read the previously recorded output:
plot(parse_rprof("longley.lm.out"),

main="Profile of lm()")
plot(parse_rprof("longley.lm.fit.out"),

main="Profile of lm.fit()")
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RProf example cont.
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Source: Our calculations.

We notice the different x
and y axis scales

For the same number of
runs, lm.fit() is
about fourteen times
faster as it makes fewer
calls to other functions.
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RProf example cont.

In addition, the proftools package by L. Tierney can read profiling
data and summarize directly in R.

The flatProfile function aggregates the data, optionally with
totals.
lmfitprod <- readProfileData("longley.lm.fit.out"))
plotProfileCallGraph(lmfitprof)

And plotProfileCallGraph() can be used to visualize profiling
information using the Rgraphviz package (which is no longer on
CRAN).

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2009 Tutorial

http://www.r-project.org


Why Measure Vector Ra BLAS/GPUs Compile Parallel Automation Overview RProf RProfmem Profiling

RProf example cont.
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Color is used to indicate
which nodes use the
most of amount of time.

Use of color and other
aspects can be
configured.
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Another profiling example

Both packages can be very useful for their quick visualisation of the
RProf output. Consider this contrived example:
sillysum <- function(N) {s <- 0;

for (i in 1:N) s <- s + i; s}
ival <- 1/5000
plot(profr(a <- sillysum(1e6), ival))

and for a more efficient solution where we use a larger N:
efficientsum <- function(N) {
sum(as.numeric(seq(1,N))) }
ival <- 1/5000
plot(profr(a <- efficientsum(1e7), ival))
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Another profiling example (cont.)
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profr and proftools
complement each other.

Numerical values in
profr provide
information too.

Choice of colour is
useful in proftools.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2009 Tutorial



Why Measure Vector Ra BLAS/GPUs Compile Parallel Automation Overview RProf RProfmem Profiling

Additional profiling visualizations

Romain Francois has contributed a Perl script1 which can be used
to visualize profiling output via the dot program (part of graphviz):
./prof2dot.pl longley.lm.out | dot -Tpdf \

> longley_lm.pdf
./prof2dot.pl longley.lm.fit.out | dot -Tpdf \

> longley_lmfit.pdf

Its key advantages are the ability to include, exclude or restrict
functions.

1http://wiki.r-project.org/rwiki/doku.php?id=tips:misc:
profiling:current
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Additional profiling visualizations (cont.)

For lm(), this yields:

[[
1.64 seconds

[[.data.frame
1.14 seconds

1.14s

na.omit.data.frame
1.74 seconds

0.46s

[
1.66 seconds

1.06s

pmatch
0.46 seconds

model.frame.default
6.48 seconds

0.42s

sapply
19.46 seconds

2.26s

na.omit
1.8 seconds

1.8s

identical
0.26 seconds

0.14s

makepredictcall
0.52 seconds

0.52s

terms
0.28 seconds0.28s

unique
1.2 seconds

1.2s

array
0.32 seconds

0.32s

lapply
18.66 seconds

17.5s

[.data.frame
1.64 seconds

1.64s

model.frame
6.54 seconds

6.48s

duplicated
0.16 seconds

1.74s

unique.default
0.46 seconds

0.46s

unlist
0.7 seconds0.52s

%in%
1.44 seconds

match
2.52 seconds

1.32s

as.vector
0.24 seconds

0.16s

match.call
0.12 seconds

inherits
2.5 seconds

1.04s

mode
0.24 seconds

0.22s

as.list
0.42 seconds

as.list.data.frame
0.2 seconds

0.2s

as.list.default
0.14 seconds

0.14s

replicate
13.72 seconds

13.72s

is.factor
2.44 seconds 2.18s

is.data.frame
0.12 seconds

model.matrix.default
2.24 seconds

0.26s

0.62s

0.12s

1.06s

deparse
0.14 seconds

0.14s

dim
0.18 seconds

structure
0.42 seconds

0.12s!
0.1 seconds

length
0.1 seconds

FUN
17.08 seconds

1.26s

0.22s

lm
13.36 seconds

13.36s

.deparseOpts
1.2 seconds

1.14s

makepredictcall.default
0.2 seconds

0.2s

match.fun
0.1 seconds

eval
13.18 seconds

6.54s

6.54s

0.44s

0.16s

0.34s

terms.formula
0.22 seconds

0.22s

is.vector
0.72 seconds

0.6s

model.matrix
2.28 seconds

2.24s

is.na
0.12 seconds

model.response
0.24 seconds

<Anonymous>
0.46 seconds

.getXlevels
2.68 seconds1.82s

0.84s

$<-
0.18 seconds

NextMethod
0.1 seconds

-
0.16 seconds

0.32s 0.42s

17.06s

0.72s

2.14s 0.12s

6.54s

2.28s

0.24s

2.68s

0.18s

lm.fit
0.9 seconds

0.9s

0.46s

0.46s

and for lm.fit(), this yields:
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RProfmem

When R has been built with the enable-memory-profiling
option, we can also look at use of memory and allocation.

To continue with the R Extensions manual example, we issue calls to
Rprofmem to start and stop logging to a file as we did for Rprof.
This can be a helpful check for code that is suspected to have an
error in its memory allocations.

We also mention in passing that the tracemem function can log when
copies of a (presumably large) object are being made. Details are in
section 3.3.3 of the R Extensions manual.
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Profiling compiled code

Profiling compiled code typically entails rebuilding the binary and
libraries with the -pg compiler option. In the case of R, a complete
rebuild is required as R itself needs to be compiled with profiling
options.

Add-on tools like valgrind and kcachegrind can be very helpful
and may not require rebuilds.

Two other options for Linux are mentioned in the R Extensions
manual. First, sprof, part of the C library, can profile shared
libraries. Second, the add-on package oprofile provides a daemon
that has to be started (stopped) when profiling data collection is to
start (end).

A third possibility is the use of the Google Perftools which we will
illustrate.
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Profiling with Google Perftools

The Google Perftools provide four modes of performance analysis /
improvement:

a thread-caching malloc (memory allocator),
a heap-checking facility,
a heap-profiling facility and
cpu profiling.

Here, we will focus on the last feature.

There are two possible modes of running code with the cpu profiler.

The preferred approach is to link with -lprofiler. Alternatively,
one can dynamically pre-load the profiler library.
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Profiling with Google Perftools (cont.)

# turn on profiling and provide a profile log file
LD_PRELOAD="/usr/lib/libprofiler.so.0" \
CPUPROFILE=/tmp/rprof.log \
r profilingSmall.R

We can then analyse the profiling output in the file. The profiler
(renamed from pprof to google-pprof on Debian) has a large
number of options. Here just use two different formats:
# show text output
google-pprof --cum --text \

/usr/bin/r /tmp/rprof.log | less

# or analyse call graph using gv
google-pprof --gv /usr/bin/r /tmp/rprof.log

The shell script googlePerftools.sh runs the complete example.
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Profiling with Google Perftools

This can generate complete (yet complex) graphs.
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Profiling with Google Perftools

Another output format is used by the callgrind analyser that is part of
valgrind—a frontend to a variety of analysis tools such as cachegrind
(cache simulator), callgrind (call graph tracer), helpgrind (race
condition analyser), massif (heap profiler), and memcheck
(fine-grained memory checker).

For example, the KDE frontend kcachegrind can be used to visualize
the profiler output as follows:
google-pprof --callgrind \

/usr/bin/r /tmp/gpProfile.log \
> googlePerftools.callgrind

kcachegrind googlePerftools.callgrind
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Profiling with Google Perftools

Kcachegrind running on the the profiling output looks as follows:
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Profiling with Google Perftools

One problem with the ’global’ approach to profiling is that a large
number of internal functions are being reported as well—this may
obscure our functions of interest.
An alternative is to re-compile the portion of code that we want to
profile, and to bracket the code with
ProfilerStart()

// ... code to be profiled here ...

ProfilerEnd()

which are defined in google/profiler.h which needs to be
included. One uses the environment variable CPUPROFILE to
designate an output file for the profiling information, or designates a
file as argument to ProfilerStart().

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2009 Tutorial



Why Measure Vector Ra BLAS/GPUs Compile Parallel Automation

Vectorisation

Revisiting our trivial trivial example from the preceding section:
> sillysum <- function(N) { s <- 0;

for (i in 1:N) s <- s + i; return(s) }
> system.time(print(sillysum(1e7)))

[1] 5e+13
user system elapsed

13.617 0.020 13.701
>

> system.time(print(sum(as.numeric(seq(1,1e7)))))

[1] 5e+13
user system elapsed
0.224 0.092 0.315

>

Replacing the loop yielded a gain of a factor of more than 40. It really
pays to know the corpus of available functions.
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Vectorisation cont.

A more interesting example is provided in a case study on the Ra
(c.f. next section) site and taken from the S Programming book:

Consider the problem of finding the distribution of the
determinant of a 2 x 2 matrix where the entries are
independent and uniformly distributed digits 0, 1, . . ., 9. This
amounts to finding all possible values of ac − bd where a, b,
c and d are digits.
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Vectorisation cont.

The brute-force solution is using explicit loops over all combinations:
dd.for.c <- function() {

val <- NULL
for (a in 0:9)

for (b in 0:9)
for (d in 0:9)

for (e in 0:9)
val <- c(val, a*b - d*e)

table(val)
}

The naive time is
> mean(replicate(10, system.time(dd.for.c())["elapsed"]))

[1] 0.2678
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Vectorisation cont.

The case study discusses two important points that bear repeating:
pre-allocating space helps with performance:
val <- double(10000)
and using val[i <- i + 1] as the left-hand side reduces the
time to 0.1204
switching to faster functions can help too as tabulate
outperforms table and reduced the time further to 0.1180.
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Vectorisation cont.

However, by far the largest improvement comes from eliminating the
four loops with two calls each to outer:
dd.fast.tabulate <- function() {

val <- outer(0:9, 0:9, "*")
val <- outer(val, val, "-")
tabulate(val)

}

The time for the most efficient solution is:
> mean(replicate(10,

system.time(dd.fast.tabulate())["elapsed"]))

[1] 0.0014

which is orders of magnitude faster.

All examples can be run via the script dd.naive.r.
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Accelerated R with just-in-time compilation

Stephen Milborrow maintains “Ra”, a set of patches to R that allow
’just-in-time compilation’ of loops and arithmetic expressions.
Together with his jit package on CRAN, this can be used to obtain
speedups of standard R operations.

Our trivial example run in Ra:
library(jit)
sillysum <- function(N) { jit(1); s <- 0; \

for (i in 1:N) s <- s + i; return(s) }

> system.time(print(sillysum(1e7)))
[1] 5e+13

user system elapsed
1.548 0.028 1.577

which gets a speed increase of a factor of five—not bad at all.
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Accelerated R with just-in-time compilation

The last looping example can be improved with jit:
dd.for.pre.tabulate.jit <- function() {

jit(1)
val <- double(10000)
i <- 0
for (a in 0:9) for (b in 0:9)

for (d in 0:9) for (e in 0:9) {
val[i <- i + 1] <- a*b - d*e

}
tabulate(val)

}

> mean(replicate(10, system.time(dd.for.pre.tabulate.jit())["elapsed"]))
[1] 0.0053
or only about three to four times slower than the non-looped solution
using ’outer’—a rather decent improvement.
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Accelerated R with just-in-time compilation

naive naive+prealloc n+p+tabulate outer

Comparison of R and Ra on 'dd' example
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Ra achieves very good
decreases in total
computing time in these
examples but cannot
improve the efficient solution
any further.

Ra and jit are still fairly
new and not widely
deployed yet, but readily
available in Debian and
Ubuntu.
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Optimised Blas

Blas (’basic linear algebra subprogram’, see Wikipedia) are standard
building blocks for linear algebra. Highly-optimised libraries exist that
can provide considerable performance gains.

R can be built using so-called optimised Blas such as Atlas (’free’),
Goto (not ’free’), or those from Intel or AMD; see the ’R Admin’
manual, section A.3 ’Linear Algebra’.

The speed gains can be noticeable. For Debian/Ubuntu, one can
simply install on of the atlas-base-* packages.

An example from the old README.Atlas, running with a R 2.8.1 on a
four-core machine:
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Optimised Blas cont.

# with Atlas
> mm <- matrix(rnorm(4*10^6), ncol = 2*10^3)
> mean(replicate(10,

system.time(crossprod(mm))["elapsed"]),trim=0.1)

[1] 2.6465

# with basic. non-optmised Blas,
> mm <- matrix(rnorm(4*10^6), ncol = 2*10^3)
> mean(replicate(10,

system.time(crossprod(mm))["elapsed"]),trim=0.1)

[1] 16.42813

For linear algebra problems, we may get an improvement by an
integer factor that may be as large (or even larger) than the number of
cores as we benefit from both better code and multithreaded
execution. Even higher increases are possibly by ’tuning’ the library,
see the Atlas documentation.
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From Blas to GPUs.

The next frontier for hardware acceleration is computing on GPUs
(’graphics programming units’, see Wikipedia).
GPUs are essentially hardware that is optimised for both I/O and
floating point operations, leading to much faster code execution than
standard CPUs on floating-point operations.
Development kits are available (e.g. Nvidia CUDA) and the recently
announced OpenCL programming specification should make
GPU-computing vendor-independent.
Some initial work on integration with R has been undertaken but there
appear to be very few easy-to-install and easy-to-use kits for R – the
gputools packages is a first, providing a few accelerated data-mining
functions.
So this provides a perfect intro for the next subsection on compilation.
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Compiled Code

Beyond smarter code (using e.g. vectorised expression and/or
just-in-time compilation) or optimised libraries, the most direct speed
gain comes from switching to compiled code.

This section covers two possible approaches:
inline for automated wrapping of simple expression
Rcpp for easing the interface between R and C++

A different approach is to keep the core logic ’outside’ but to embed R
into the application. There is some documentation in the ’R
Extensions’ manual—and the RInside package on R-Forge offers
C++ classes to automate this. This may still require some familiarity
with R internals.
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Compiled Code: The Basics

R offers several functions to access compiled code: .C and
.Fortran as well as .Call and .External. (R Extensions,
sections 5.2 and 5.9; Software for Data Analysis). .C and .Fortran
are older and simpler, but more restrictive in the long run.

The canonical example in the documentation is the convolution
function:

1 vo id convolve ( double ∗a , i n t ∗na , double ∗b ,
2 i n t ∗nb , double ∗ab )
3 {
4 i n t i , j , nab = ∗na + ∗nb − 1;
5

6 for ( i = 0 ; i < nab ; i ++)
7 ab [ i ] = 0 . 0 ;
8 for ( i = 0 ; i < ∗na ; i ++)
9 for ( j = 0 ; j < ∗nb ; j ++)

10 ab [ i + j ] += a [ i ] ∗ b [ j ] ;
11 }
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Compiled Code: The Basics cont.

The convolution function is called from R by

1 conv <− function ( a , b )
2 .C( " convolve " ,
3 as . double ( a ) ,
4 as . integer ( length ( a ) ) ,
5 as . double ( b ) ,
6 as . integer ( length ( b ) ) ,
7 ab = double ( length ( a ) + length ( b ) − 1) ) $ab

As stated in the manual, one must take care to coerce all the
arguments to the correct R storage mode before calling .C as
mistakes in matching the types can lead to wrong results or
hard-to-catch errors.

The script convolve.C.sh compiles and links the source code, and
then calls R to run the example.
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Compiled Code: The Basics cont.

Using .Call, the example becomes

1 #include <R. h>
2 #include <Rdefines . h>
3

4 SEXP convolve2 (SEXP a , SEXP b )
5 {
6 i n t i , j , na , nb , nab ;
7 double ∗xa , ∗xb , ∗xab ;
8 SEXP ab ;
9

10 PROTECT( a = AS_NUMERIC( a ) ) ;
11 PROTECT( b = AS_NUMERIC( b ) ) ;
12 na = LENGTH( a ) ; nb = LENGTH( b ) ; nab = na + nb − 1;
13 PROTECT( ab = NEW_NUMERIC( nab ) ) ;
14 xa = NUMERIC_POINTER( a ) ; xb = NUMERIC_POINTER( b ) ;
15 xab = NUMERIC_POINTER( ab ) ;
16 for ( i = 0 ; i < nab ; i ++) xab [ i ] = 0 . 0 ;
17 for ( i = 0 ; i < na ; i ++)
18 for ( j = 0 ; j < nb ; j ++) xab [ i + j ] += xa [ i ] ∗ xb [ j ] ;
19 UNPROTECT( 3 ) ;
20 return ( ab ) ;
21 }
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Compiled Code: The Basics cont.

Now the call becomes easier by just using the function name and the
vector arguments—all other handling is done at the C/C++ level:
conv <- function(a, b) .Call("convolve2", a, b)

The script convolve.Call.sh compiles and links the source code,
and then calls R to run the example.

In summary, we see that
there are different entry points
using different calling conventions
leading to code that may need to do more work at the lower level.
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Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the function
cfunction that can wrap Fortran, C or C++ code.

1 ## A simple For t ran example
2 code <− "
3 i n t e g e r i
4 do 1 i =1 , n ( 1 )
5 1 x ( i ) = x ( i )∗∗3
6 "
7 cubefn <− c f un c t i on ( s igna tu re ( n=" i n t e g e r " , x= " numeric " ) ,
8 code , convent ion=" . For t ran " )
9 x <− as . numeric ( 1 : 1 0 )

10 n <− as . integer (10)
11 cubefn ( n , x ) $x

cfunction takes care of compiling, linking, loading, . . . by placing
the resulting dynamically-loadable object code in the per-session
temporary directory used by R.
Run this via cat inline.Fortan.R | R -no-save.
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Compiled Code: inline cont.

inline defaults to using the .Call() interface:
1 ## Use of . Ca l l convent ion wi th C code
2 ## Mu l t yp l y i ng each image i n a stack wi th a 2D Gaussian a t a given p o s i t i o n
3 code <− "
4 SEXP res ;
5 i n t np ro tec t = 0 , nx , ny , nz , x , y ;
6 PROTECT( res = Rf_ d u p l i c a te ( a ) ) ; np ro tec t ++;
7 nx = INTEGER(GET_DIM( a ) ) [ 0 ] ;
8 ny = INTEGER(GET_DIM( a ) ) [ 1 ] ;
9 nz = INTEGER(GET_DIM( a ) ) [ 2 ] ;

10 double sigma2 = REAL( s ) [ 0 ] ∗ REAL( s ) [ 0 ] , d2 ;
11 double cx = REAL( cent re ) [ 0 ] , cy = REAL( cent re ) [ 1 ] , ∗data , ∗rda ta ;
12 f o r ( i n t im = 0; im < nz ; im++) {
13 data = &(REAL( a ) [ im∗nx∗ny ] ) ; rda ta = &(REAL( res ) [ im∗nx∗ny ] ) ;
14 f o r ( x = 0 ; x < nx ; x++)
15 f o r ( y = 0 ; y < ny ; y++) {
16 d2 = ( x−cx )∗( x−cx ) + ( y−cy )∗( y−cy ) ;
17 rda ta [ x + y∗nx ] = data [ x + y∗nx ] ∗ exp(−d2 / sigma2 ) ;
18 }
19 }
20 UNPROTECT( np ro tec t ) ;
21 r e t u r n res ;
22 "
23 funx <− c f u nc t i o n ( s igna tu re ( a=" ar ray " , s= " numeric " , cent re=" numeric " ) , code )
24
25 x <− ar ray ( r u n i f (50∗50) , c (50 ,50 ,1) )
26 res <− funx ( a=x , s=10 , cent re=c (25 ,15) ) ## ac tua l c a l l o f compiled f u n c t i o n
27 i f ( i n t e r a c t i v e ( ) ) image ( res [ , , 1 ] )
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Compiled Code: inline cont.

We can revisit the earlier distribution of determinants example.
If we keep it very simple and pre-allocate the temporary vector in R ,
the example becomes

1 code <− "
2 i f ( isNumeric ( vec ) ) {
3 i n t ∗pv = INTEGER( vec ) ;
4 i n t n = leng th ( vec ) ;
5 i f ( n = 10000) {
6 i n t i = 0 ;
7 f o r ( i n t a = 0; a < 9; a++)
8 f o r ( i n t b = 0; b < 9; b++)
9 f o r ( i n t c = 0 ; c < 9; c++)

10 f o r ( i n t d = 0; d < 9; d++)
11 pv [ i ++] = a∗b − c∗d ;
12 }
13 }
14 r e t u r n ( vec ) ;
15 "
16

17 funx <− c f un c t i o n ( s igna tu re ( vec=" numeric " ) , code )
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Compiled Code: inline cont.

We can use the inlined function in a new function to be timed:
dd.inline <- function() {

x <- integer(10000)
res <- funx(vec=x)
tabulate(res)

}
> mean(replicate(100, system.time(dd.inline())["elapsed"]))

[1] 0.00051

Even though it uses the simplest algorithm, pre-allocates memory in
R and analyses the result in R , it is still more than twice as fast as
the previous best solution.

The script dd.inline.r runs this example.
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Compiled Code: Rcpp

Rcpp makes it easier to interface C++ and R code.

Using the .Call interface, we can use features of the C++ language
to automate the tedious bits of the macro-based C-level interface to R.

One major advantage of using .Call is that vectors (or matrices)
can be passed directly between R and C++ without the need for
explicit passing of dimension arguments. And by using the C++ class
layers, we do not need to directly manipulate the SEXP objects.

So let us rewrite the ’distribution of determinant’ example one more
time.
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Rcpp example

The simplest version can be set up as follows:

1 #include <Rcpp . hpp>
2
3 RcppExport SEXP dd_ rcpp (SEXP v ) {
4 SEXP r l = R_ Ni lVa lue ; / / Use th is when noth ing i s re tu rned
5
6 RcppVector< int > vec ( v ) ; / / vec parameter viewed as vec to r o f doubles
7 i n t n = vec . s ize ( ) , i = 0 ;
8
9 for ( i n t a = 0; a < 9; a++)

10 for ( i n t b = 0; b < 9; b++)
11 for ( i n t c = 0; c < 9; c++)
12 for ( i n t d = 0; d < 9; d++)
13 vec ( i ++) = a∗b − c∗d ;
14
15 RcppResultSet rs ; / / Bu i ld r e s u l t se t re tu rned as l i s t to R
16 rs . add ( " vec " , vec ) ; / / vec as named element w i th name ’ vec ’
17 r l = rs . ge tRe tu rnL i s t ( ) ; / / Get the l i s t to be re turned to R.
18
19 return r l ;
20 }

but it is actually preferable to use the exception-handling feature of
C++ as in the slightly longer next version.
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Rcpp example cont.

1 #include <Rcpp . hpp>
2
3 RcppExport SEXP dd_ rcpp (SEXP v ) {
4 SEXP r l = R_ Ni lVa lue ; / / Use th is when there i s noth ing to be re turned .
5 char∗ exceptionMesg = NULL ; / / msg var i n case of e r r o r
6
7 t ry {
8 RcppVector< int > vec ( v ) ; / / vec parameter viewed as vec to r o f doubles .
9 i n t n = vec . s ize ( ) , i = 0 ;

10 for ( i n t a = 0; a < 9; a++)
11 for ( i n t b = 0; b < 9; b++)
12 for ( i n t c = 0; c < 9; c++)
13 for ( i n t d = 0; d < 9; d++)
14 vec ( i ++) = a∗b − c∗d ;
15
16 RcppResultSet rs ; / / Bu i ld r e s u l t se t to be re turned as a l i s t to R.
17 rs . add ( " vec " , vec ) ; / / vec as named element w i th name ’ vec ’
18 r l = rs . ge tRe tu rnL i s t ( ) ; / / Get the l i s t to be re turned to R.
19 } catch ( s td : : except ion& ex ) {
20 exceptionMesg = copyMessageToR ( ex . what ( ) ) ;
21 } catch ( . . . ) {
22 exceptionMesg = copyMessageToR ( " unknown reason " ) ;
23 }
24
25 i f ( exceptionMesg ! = NULL)
26 e r r o r ( exceptionMesg ) ;
27
28 return r l ;
29 }
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Rcpp example cont.

We can create a shared library from the source file as follows:
PKG_CPPFLAGS=‘r -e’Rcpp:::CxxFlags()’‘ \

R CMD SHLIB dd.rcpp.cpp \
‘r -e’Rcpp:::LdFlags()’‘

g++ -I/usr/share/R/include \
-I/usr/lib/R/site-library/Rcpp/lib \
-fpic -g -O2 \
-c dd.rcpp.cpp -o dd.rcpp.o

g++ -shared -o dd.rcpp.so dd.rcpp.o \
-L/usr/lib/R/site-library/Rcpp/lib \
-lRcpp -Wl,-rpath,/usr/lib/R/site-library/Rcpp/lib \
-L/usr/lib/R/lib -lR

Note how we let the Rcpp package tell us where header and library
files are stored.
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Rcpp example cont.

We can then load the file using dyn.load and proceed as in the
inline example.
dyn.load("dd.rcpp.so")

dd.rcpp <- function() {
x <- integer(10000)
res <- .Call("dd_rcpp", x)
tabulate(res$vec)

}

mean(replicate(100,system.time(dd.rcpp())["elapsed"])))

[1] 0.00047

This beats the inline example by a neglible amount which is
probably due to some overhead the in the easy-to-use inlining.

The file dd.rcpp.sh runs the full Rcpp example.
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Basic Rcpp usage

Rcpp eases data transfer from R to C++, and back. We always
convert to and from SEXP, and return a SEXP to R.

The key is that we can consider this to be a ’variant’ type permitting
us to extract using appropriate C++ classes. We pass data from R via
named lists that may contain different types:

list(intnb=42, fltnb=6.78, date=Sys.Date(),
txt="some thing", bool=FALSE)

by initialising a RcppParams object and extracting as in
RcppParams param(inputsexp);
int nmb = param.getIntValue("intnb");
double dbl = param.getIntValue("fltnb");
string txt = param.getStringValue("txt");
bool flg = param.getBoolValue("bool";
RcppDate dt = param.getDateValue("date");
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Basic Rcpp usage (cont.)

Similarly, we can constructs vectors and matrics of double, int, as
well as vectors of types string and date and datetime. The key is
that we never have to deal with dimensions and / or memory
allocations — all this is shielded by C++ classes.

Similarly, for the return, we declare an object of type
RcppResultSet and use the add methods to insert named
elements before coverting this into a list that is assigned to the
returned SEXP.

Back in R, we access them as elements of a standard R list by
position or name.
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Another Rcpp example

Let us revisit the lm() versus lm.fit() example. How fast could
compiled code be? Let’s wrap a GNU GSL function.

1 #include <cs td io >
2 extern "C" {
3 #include <gs l / gs l _ m u l t i f i t . h>
4 }
5 #include <Rcpp . h>
6
7 RcppExport SEXP gs l _ m u l t i f i t (SEXP Xsexp , SEXP Ysexp ) {
8 SEXP r l =R_ Ni lVa lue ;
9 char ∗exceptionMesg=NULL;

10
11 t ry {
12 RcppMatrixView <double> Xr ( Xsexp ) ;
13 RcppVectorView<double> Yr ( Ysexp ) ;
14
15 i n t i , j , n = Xr . dim1 ( ) , k = Xr . dim2 ( ) ;
16 double chisq ;
17
18 gs l _ mat r i x ∗X = gs l _ mat r i x _ a l l o c ( n , k ) ;
19 gs l _ vec to r ∗y = gs l _ vec to r _ a l l o c ( n ) ;
20 gs l _ vec to r ∗c = gs l _ vec to r _ a l l o c ( k ) ;
21 gs l _ mat r i x ∗cov = gs l _ mat r i x _ a l l o c ( k , k ) ;
22 for ( i = 0 ; i < n ; i ++) {
23 for ( j = 0 ; j < k ; j ++)
24 gs l _ mat r i x _set (X, i , j , Xr ( i , j ) ) ;
25 gs l _ vec to r _set ( y , i , Yr ( i ) ) ;
26 }

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2009 Tutorial



Why Measure Vector Ra BLAS/GPUs Compile Parallel Automation Overview Inline Rcpp RInside Debug

Another Rcpp example (cont.)

27 gs l _ m u l t i f i t _ l i n e a r _workspace ∗work = gs l _ m u l t i f i t _ l i n e a r _ a l l o c ( n , k ) ;
28 gs l _ m u l t i f i t _ l i n e a r (X, y , c , cov , &chisq , work ) ;
29 gs l _ m u l t i f i t _ l i n e a r _ f r ee ( work ) ;
30
31 RcppMatrix <double> CovMat ( k , k ) ;
32 RcppVector<double> Coef ( k ) ;
33 for ( i = 0 ; i < k ; i ++) {
34 for ( j = 0 ; j < k ; j ++)
35 CovMat ( i , j ) = gs l _ mat r i x _get ( cov , i , j ) ;
36 Coef ( i ) = gs l _ vec to r _get ( c , i ) ;
37 }
38 gs l _ mat r i x _ f r ee (X) ;
39 gs l _ vec to r _ f r ee ( y ) ;
40 gs l _ vec to r _ f r ee ( c ) ;
41 gs l _ mat r i x _ f r ee ( cov ) ;
42
43 RcppResultSet rs ;
44 rs . add ( " coef " , Coef ) ;
45 rs . add ( " covmat " , CovMat ) ;
46
47 r l = rs . ge tRe tu rnL i s t ( ) ;
48
49 } catch ( s td : : except ion& ex ) {
50 exceptionMesg = copyMessageToR ( ex . what ( ) ) ;
51 } catch ( . . . ) {
52 exceptionMesg = copyMessageToR ( " unknown reason " ) ;
53 }
54 i f ( exceptionMesg ! = NULL)
55 Rf_ e r r o r ( exceptionMesg ) ;
56 return r l ;
57 }
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Another Rcpp example (cont.)

lm lm.fit lm via C

Comparison of R and linear model fit routines

tim
e 

in
 s

ec
on

ds

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

longley (16 x 7 obs)
simulated (1000 x 50)

Source: Our calculations

The small longley
example exhibits less
variability between methods,
but the larger data set
shows the gains more
clearly.

The lm.fit() approach
appears unchanged
between longley and the
larger simulated data set.
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Another Rcpp example (cont.)

lm lm.fit lm via C

Comparison of R and linear model fit routines

re
gr
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nd
s

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

longley (16 x 7 obs)
simulated (1000 x 50)

Source: Our calculations

By inverting the times to see
how many ’regressions per
second’ we can fit, the
merits of the compiled code
become clearer.

One caveat, measurements
depends critically on the
size of the data as well as
the cpu and libraries that are
used.
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Revisiting profiling

We can also use the preceding example to illustrate how to profile
subroutines.
We can add the following to the top of the function:
ProfilerStart("/tmp/ols.profile");
for (unsigned int i=1; i<10000; i++) {

and similarly
}
ProfilerStop();
at end before returning. If we then call this function just once from R
as in
print(system.time(invisible(val <- .Call("gsl_multifit", X, y))))

we can then call the profiling tools on the output:
google-pprof --gv /usr/bin/r /tmp/ols.profile
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Revisiting profiling

/usr/bin/r
Total samples: 47
Focusing on: 47
Dropped nodes with <= 0 abs(samples)
Dropped edges with <= 0 samples

gsl_multifit
1 (2.1%)

of 44 (93.6%)

_init
1 (2.1%)

of 44 (93.6%)

1

gsl_multifit_linear
0 (0.0%)

of 30 (63.8%)

30

gsl_multifit_linear_free
1 (2.1%)

of 2 (4.3%)

2

RcppResultSet
add
0 (0.0%)

of 2 (4.3%)

2

gs l_vector_free
0 (0.0%)

of 2 (4.3%)

1
gs l_vector_alloc

0 (0.0%)
of 1 (2.1%)

1

gsl_matrix_set
1 (2.1%)

1

strlen
1 (2.1%)

1

RcppMatrix
RcppMatrix

0 (0.0%)
of 1 (2.1%)

1

RcppResultSet
~RcppResultSet

1 (2.1%)

1

gsl_vector_get
1 (2.1%)

1

RcppResultSet
getReturnLis t

0 (0.0%)
of 1 (2.1%)

1

__libc_start_main
0 (0.0%)

of 44 (93.6%)

44

Rf_applyClosure
0 (0.0%)

of 44 (93.6%)

Rf_eval
0 (0.0%)

of 44 (93.6%)

176

Rf_allocS4Object
0 (0.0%)

of 44 (93.6%)

44

Rf_set_iconv
0 (0.0%)

of 44 (93.6%)

44

176 44

880

call_S
0 (0.0%)

of 44 (93.6%)

44

Rf_usemethod
0 (0.0%)

of 44 (93.6%)

44

R_isMethodsDispatchOn
0 (0.0%)

of 44 (93.6%)

44

44

44

44

R_tryEval
0 (0.0%)

of 44 (93.6%)

44

R_ToplevelExec
0 (0.0%)

of 44 (93.6%)

44

44

44

gsl_multifit_linear_svd
2 (4.3%)

of 30 (63.8%)

30

gsl_linalg_SV_decomp_mod
1 (2.1%)

of 23 (48.9%)

23

gsl_linalg_balance_columns
1 (2.1%)

of 2 (4.3%)

2

gsl_matrix_memcpy
1 (2.1%)

1

gsl_blas_ddot
1 (2.1%)

1

cblas_ddot
1 (2.1%)

1

gsl_linalg_SV_decomp
7 (14.9%)

of 14 (29.8%)

14

gsl_linalg_householder_transform
3 (6.4%)

of 5 (10.6%)

3

gsl_linalg_householder_hm
3 (6.4%)

1

cblas_daxpy
1 (2.1%)

1

gsl_linalg_householder_hm1
1 (2.1%)

1

ATL_daxpy
1 (2.1%)

1

gsl_matrix_column
1 (2.1%)

1

gsl_linalg_bidiag_decomp
0 (0.0%)

of 5 (10.6%)

5

gsl_vector_subvector
2 (4.3%)

1

gsl_linalg_bidiag_unpack2
0 (0.0%)

of 1 (2.1%)

1

2 1

gsl_linalg_householder_mh
2 (4.3%)

2

1

__ieee754_hypot
1 (2.1%)

1

ATL_dscal
1 (2.1%)

1

1

Rf_setAttrib
1 (2.1%)

of 2 (4.3%)

Rf_dimgets
0 (0.0%)

of 1 (2.1%)

1

ATL_daxpy_xp1yp1aXbX
2 (4.3%)

free
2 (4.3%)

Rf_allocMatrix
0 (0.0%)

of 1 (2.1%)

1

RcppMatrix
cMatrix
0 (0.0%)

of 1 (2.1%)

1

R_alloc
1 (2.1%)

of 2 (4.3%)

Rf_allocVector
0 (0.0%)

of 1 (2.1%)

1

1
gsl_block_free

0 (0.0%)
of 1 (2.1%)

1

gsl_block_alloc
1 (2.1%)

1

1

malloc
0 (0.0%)

of 1 (2.1%)

1

1

1

_int_malloc
1 (2.1%)

1

Rf_coerceVector
1 (2.1%)

ATL_dnrm2_xp1yp0aXbX
1 (2.1%)

1

1

1

1
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Rcpp and package building

Two tips for easing builds with Rcpp:

For command-line use, a shortcut is to copy Rcpp.h to
/usr/local/include, and libRcpp.so to /usr/local/lib.
The earlier example reduces to

R CMD SHLIB dd.rcpp.cpp

as header and library will be found in the default locations.

For package building, we can have a file src/Makevars with
# compile flag providing header directory
PKG_CXXFLAGS=‘Rscript -e ’Rcpp:::CxxFlags()’‘
# link flag providing libary and path
PKG_LIBS=‘Rscript -e ’Rcpp:::LdFlags()’‘

See help(Rcpp-package) for more details.
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RInside and bringing R to C++

Sometimes we may want to go the other way and add R to and
existing C++ project.

This can be simplified using RInside:

1 #include " RInside . h " / / for the embedded R v ia RInside
2 #include "Rcpp . h " / / for the R / Cpp i n t e r f a c e
3
4 i n t main ( i n t argc , char ∗argv [ ] ) {
5
6 RInside R( argc , argv ) ; / / create an embedded R ins tance
7
8 std : : s t r i n g t x t = " Hel lo , wor ld ! \ n " ; / / assign a standard C++ s t r i n g to ’ t x t ’
9 R. assign ( t x t , " t x t " ) ; / / assign s t r i n g var to R v a r i a b l e ’ t x t ’

10
11 std : : s t r i n g e v a l s t r = " cat ( t x t ) " ;
12 R. parseEvalQ ( e v a l s t r ) ; / / eval the i n i t s t r i n g , i gno r i ng any re tu rns
13
14 e x i t ( 0 ) ;
15 }
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RInside and bringing R to C++ (cont)

1 #include " RInside . h " / / for the embedded R v ia RInside
2 #include "Rcpp . h " / / for the R / Cpp i n t e r f a c e used for t r a n s f e r
3
4 std : : vector < std : : vector < double > > crea teMat r i x ( const i n t n ) {
5 s td : : vector < std : : vector < double > > mat ;
6 for ( i n t i =0; i <n ; i ++) {
7 s td : : vector <double> row ;
8 for ( i n t j =0; j <n ; j ++) row . push_back ( ( i∗10+ j ) ) ;
9 mat . push_back ( row ) ;

10 }
11 return ( mat ) ;
12 }
13
14 i n t main ( i n t argc , char ∗argv [ ] ) {
15 const i n t mdim = 4;
16 std : : s t r i n g e v a l s t r = " cat ( ’ Running l s ( ) \ n ’ ) ; p r i n t ( l s ( ) ) ; \
17 cat ( ’ Showing M\ n ’ ) ; p r i n t (M) ; ca t ( ’ Showing colSums ( ) \ n ’ ) ; \
18 Z <− colSums (M) ; p r i n t (Z ) ; Z" ; ## re tu rns Z
19 RInside R( argc , argv ) ;
20 SEXP ans ;
21 std : : vector < std : : vector < double > > myMatrix = c rea teMat r i x (mdim) ;
22
23 R. assign ( myMatrix , "M" ) ; / / assign STL mat r i x to R ’ s ’M ’ var
24 R. parseEval ( eva l s t r , ans ) ; / / eval the i n i t s t r i n g −− Z i s now i n ans
25 RcppVector<double > vec ( ans ) ; / / now vec conta ins Z v ia ans
26 vector <double > v = vec . s t l V e c t o r ( ) ; / / conver t RcppVector to STL vec to r
27
28 f o r ( unsigned i n t i =0; i < v . s ize ( ) ; i ++)
29 std : : cout << " In C++ element " << i << " i s " << v [ i ] << std : : endl ;
30 e x i t ( 0 ) ;
31 }

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2009 Tutorial

http://www.r-project.org


Why Measure Vector Ra BLAS/GPUs Compile Parallel Automation Overview Inline Rcpp RInside Debug

Debugging example: valgrind

Analysis of compiled code is mainly undertaken with a debugger like
gdb, or a graphical frontend like ddd.

Another useful tool is valgrind which can find memory leaks. We
can illustrate its use with a recent real-life example.

RMySQL had recently been found to be leaking memory when
database connections are being established and closed. Given how
RPostgreSQL shares a common heritage, it seemed like a good
idea to check.
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Debugging example: valgrind

We create a small test script which opens and closes a connection to
the database in a loop and sends a small ’select’ query. We can run
this in a way that is close to the suggested use from the ’R
Extensions’ manual:
R -d "valgrind -tool=memcheck -leak-check=full"
-vanilla < valgrindTest.R
which creates copious output, including what is on the next slide.

Given the source file and line number, it is fairly straightforward to
locate the source of error: a vector of pointers was freed without
freeing the individual entries first.
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Debugging example: valgrind

The state before the fix:
[...]
#==21642== 2,991 bytes in 299 blocks are definitely lost in loss record 34 of 47
#==21642== at 0x4023D6E: malloc (vg_replace_malloc.c:207)
#==21642== by 0x6781CAF: RS_DBI_copyString (RS-DBI.c:592)
#==21642== by 0x6784B91: RS_PostgreSQL_createDataMappings (RS-PostgreSQL.c:400)
#==21642== by 0x6785191: RS_PostgreSQL_exec (RS-PostgreSQL.c:366)
#==21642== by 0x40C50BB: (within /usr/lib/R/lib/libR.so)
#==21642== by 0x40EDD49: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40F00DC: (within /usr/lib/R/lib/libR.so)
#==21642== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40F0186: (within /usr/lib/R/lib/libR.so)
#==21642== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40F16E6: Rf_applyClosure (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40ED99A: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642==
#==21642== LEAK SUMMARY:
#==21642== definitely lost: 3,063 bytes in 301 blocks.
#==21642== indirectly lost: 240 bytes in 20 blocks.
#==21642== possibly lost: 9 bytes in 1 blocks.
#==21642== still reachable: 13,800,378 bytes in 8,420 blocks.
#==21642== suppressed: 0 bytes in 0 blocks.
#==21642== Reachable blocks (those to which a pointer was found) are not shown.
#==21642== To see them, rerun with: --leak-check=full --show-reachable=yes
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Debugging example: valgrind

The state after the fix:
[...]
#==3820==
#==3820== 312 (72 direct, 240 indirect) bytes in 2 blocks are definitely lost in loss record 14 of 45
#==3820== at 0x4023D6E: malloc (vg_replace_malloc.c:207)
#==3820== by 0x43F1563: nss_parse_service_list (nsswitch.c:530)
#==3820== by 0x43F1CC3: __nss_database_lookup (nsswitch.c:134)
#==3820== by 0x445EF4B: ???
#==3820== by 0x445FCEC: ???
#==3820== by 0x43AB0F1: getpwuid_r@@GLIBC_2.1.2 (getXXbyYY_r.c:226)
#==3820== by 0x43AAA76: getpwuid (getXXbyYY.c:116)
#==3820== by 0x4149412: (within /usr/lib/R/lib/libR.so)
#==3820== by 0x412779D: (within /usr/lib/R/lib/libR.so)
#==3820== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==3820== by 0x40F00DC: (within /usr/lib/R/lib/libR.so)
#==3820== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==3820==
#==3820== LEAK SUMMARY:
#==3820== definitely lost: 72 bytes in 2 blocks.
#==3820== indirectly lost: 240 bytes in 20 blocks.
#==3820== possibly lost: 0 bytes in 0 blocks.
#==3820== still reachable: 13,800,378 bytes in 8,420 blocks.
#==3820== suppressed: 0 bytes in 0 blocks.
#==3820== Reachable blocks (those to which a pointer was found) are not shown.
#==3820== To see them, rerun with: --leak-check=full --show-reachable=yes

showing that we recovered 3000 bytes.
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Embarassingly parallel

Several R packages on CRAN provide the ability to execute code in
parallel:

NWS
Rmpi
snow (using MPI, PVM, NWS or sockets)
papply
taskPR
multicore

A recent paper by Schmidberger, Morgan, Eddelbuettel, Yu, Tierney
and Mansmann (JSS, 2009) provides a survey of this field.
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NWS Intro

NWS, or NetWorkSpaces, is an alternative to MPI (which we discuss
below). Based on Python, it may be easier to install (in case
administrator rights are unavailable) and use than MPI. It is
accessible from R, Python and Matlab. It is also cross-platform.
NWS is available via Sourceforge as well as CRAN. An introductory
article (focussing on Python) appeared last summer in Dr. Dobb’s.
On Debian and Ubuntu, installing the python-nwsserver package
on at least the server node, and installing r-cran-nws on each
client is all that is needed. Other system may need to install the
twisted framework for Python first.
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NWS data store example

A simple example, adapted from one of the package demos:
ws <- netWorkSpace(’r place’) # create a ’value store’
nwsStore(ws, ’x’, 1) # place a value (as fifo)

cat(nwsListVars(ws), "\n") # we can list
nwsFind(ws, ’x’) # and lookup
nwsStore(ws, ’x’, 2) # and overwrite
cat(nwsListVars(ws), "\n") # now see two entries

cat(nwsFetch(ws, ’x’), ’\n’) # we can fetch
cat(nwsFetch(ws, ’x’), ’\n’) # we can fetch
cat(nwsListVars(ws), ’\n’) # and none left

cat(nwsFetchTry(ws,’x’,’no go’),’\n’) # can’t fetch

The script nwsVariableStore.r contains this and a few more
commands.
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NWS sleigh example

The NWS component sleigh is an R class that makes it very easy to
write simple parallel programs. Sleigh uses the master/worker
paradigm: The master submits tasks to the workers, who may or may
not be on the same machine as the master.
# create a sleigh object on two nodes using ssh
s <- sleigh(nodeList=c("joe", "ron"), launch=sshcmd)

# execute a statement on each worker node
eachWorker(s, function() x <<- 1)

# get system info from each worker
eachWorker(s, Sys.info)

# run a lapply-style funct. over each list elem.
eachElem(s, function(x) {x+1}, list(1:10))

stopSleigh(s)

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2009 Tutorial

http://www.r-project.org


Why Measure Vector Ra BLAS/GPUs Compile Parallel Automation Explicitly Res.Management Implicitly Example

NWS sleigh cont.

Also of note is the extended caretNWS version of caret by Max
Kuhn, and described in a recent Journal of Statistical Software article.

caret (short for ’Classification and Regression Training’) provides a
consistent interface for dozens of modern regression and
classification techniques.

caretNWS uses nws and sleigh to execeute embarassingly parallel
task: bagging, boosting, cross-validation, bootstrapping, . . . This is all
done ’behind the scenes’ and thus easy to deploy.

Schmidberger et al find NWS to be competitive with the other parallel
methods for non-degenerate cases where the ratio between
communication and computation is balanced.
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Rmpi

Rmpi is a CRAN package that provides an interface between R and
the Message Passing Interface (MPI), a standard for parallel
computing. (c.f. Wikipedia for more and links to the Open MPI and
MPICH2 projects for implementations).

The preferred implementation for MPI is now Open MPI. However, the
older LAM implementation can be used on those platforms where
Open MPI is unavailable. There is also an alternate implementation
called MPICH2. Lastly, we should also mention the similar Parallel
Virtual Machine (PVM) tool; see its Wikipedia page for more.

Rmpi allows us to use MPI directly from R and comes with several
examples. However, we will focus on the higher-level usage via snow.
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MPI Example

Let us look at the MPI variant of the ’Hello, World!’ program:

1 #include < s t d i o . h>
2 #include " mpi . h "
3

4 i n t main ( i n t argc , char∗∗ argv )
5 {
6 i n t rank , s ize , nameLen ;
7 char processorName [ MPI_MAX_PROCESSOR_NAME] ;
8

9 MPI_ I n i t (&argc , &argv ) ;
10 MPI_Comm_ rank ( MPI_COMM_WORLD, &rank ) ;
11 MPI_Comm_ s ize (MPI_COMM_WORLD, &s ize ) ;
12

13 MPI_Get_processor_name( processorName , &nameLen ) ;
14

15 p r i n t f ( " Hel lo , rank %d , s ize %d on processor %s \ n " ,
16 rank , s ize , processorName ) ;
17

18 MPI_ F i n a l i z e ( ) ;
19 return 0;
20 }
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MPI Example: cont.

We can compile the previous example via
$ mpicc -o mpiHelloWorld mpiHelloWorld.c

If it it has been copied across several Open MPI-equipped hosts, we
can execute it N times on the M listed hosts via:
$ orterun -H ron,joe,tony,mccoy -n 8 /tmp/mpiHelloWorld

Hello, rank 0, size 8 on processor ron
Hello, rank 4, size 8 on processor ron
Hello, rank 7, size 8 on processor mccoy
Hello, rank 3, size 8 on processor mccoy
Hello, rank 2, size 8 on processor tony
Hello, rank 5, size 8 on processor joe
Hello, rank 6, size 8 on processor tony
Hello, rank 1, size 8 on processor joe

Notice how the order of execution is indeterminate.
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MPI Example: cont.

Besides orterun (which replaces the mpirun command used by
other MPI imnplementations), Open MPI also supplies ompi_info to
query parameter settings.

Open MPi has very fine-grained configuration options that permit e.g.
attaching particular jobs to particular cpus or cores.

Detailed documentation is provided at the web site
http://www.openmpi.org.

We will concentrate on using MPI via the Rmpi package.
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Rmpi

Rmpi, a CRAN package by Hao Yu, wraps many of the MPI API calls
for use by R.

The preceding example can be rewritten in R as

1 # ! / usr / b in / env r
2

3 l i b r a r y ( Rmpi ) # c a l l s MPI_ I n i t
4

5 rk <− mpi .comm. rank ( 0 )
6 sz <− mpi .comm. s ize ( 0 )
7 name <− mpi . get . processor . name ( )
8 cat ( " Hel lo , rank " , rk , " s i ze " , sz , " on " , name, " \ n " )
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Rmpi: cont.

$ orterun -H ron,joe,tony,mccoy -n 8 \
/tmp/mpiHelloWorld.r

Hello, rank 4 size 8 on ron
Hello, rank 0 size 8 on ron
Hello, rank 3 size 8 on mccoy
Hello, rank 7 size 8 on mccoy
Hello, rank Hello, rank 21 size 8 on joe
size 8 on tony
Hello, rank 6 size 8 on tony
Hello, rank 5 size 8 on joe
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Rmpi: cont.

We can also exectute this as a one-liner using r (which we discuss
later):
$ orterun -n 8 -H ron,joe,tony,mccoy \

r -lRmpi -e’cat("Hello", \
mpi.comm.rank(0), "of", \
mpi.comm.size(0), "on", \
mpi.get.processor.name(), "\n");
mpi.quit()’

Hello 4 of 8 on ron
Hello 3 of 8 on mccoy
Hello 7 of 8 on mccoy
Hello 0 of 8 on ron
HelloHello 2 of 8 on tony
Hello 1 of 8 on joe

Hello 5 of 8 on joe
6 of 8 on tony
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Rmpi: cont.

Rmpi offers a large number functions, mirroring the rich API provided
by MPI.

Rmpi also offers extensions specific to working with R and its objects,
including a set of apply-style functions to spread load across the
worker nodes.

However, we will use Rmpi mostly indirectly via snow.
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snow

The snow package by Tierney et al provides a convenient abstraction
directly from R.

It can be used to initialize and use a compute cluster using one of the
available methods direct socket connections, MPI, PVM, or (since the
most recent release), NWS. We will focus on MPI.

A simple example:
cl <- makeCluster(4, "MPI")
print(clusterCall(cl, function() \

Sys.info()[c("nodename","machine")]))
stopCluster(cl)

which we can as a one-liner as shown on the next slide.
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snow: Example

$ orterun -n 1 -H ron,joe,tony,mccoy r -lsnow,Rmpi \
-e’cl <- makeCluster(4, "MPI"); \

res <- clusterCall(cl, \
function() Sys.info()["nodename"]); \

print(do.call(rbind,res)); \
stopCluster(cl); mpi.quit()’

4 slaves are spawned successfully. 0 failed.
nodename

[1,] "joe"
[2,] "tony"
[3,] "mccoy"
[4,] "ron"

Note that we told orterun to start on only one node – as snow then
starts four instances (which are split evenly over the four given hosts).
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snow: Example cont.

The power of snow lies in the ability to use the apply-style paradigm
over a cluster of machines:
params <- c("A", "B", "C", "D", "E", "F", "G", "H")
cl <- makeCluster(4, "MPI")
res <- parSapply(cl, params, \

FUN=function(x) myBigFunction(x))

will ’unroll’ the parameters params one-each over the function
argument given, utilising the cluster cl. In other words, we will be
running four copies of myBigFunction() at once.

So the snow package provides a unifying framework for parallelly
executed apply functions.

We will come back to more examples with snow below.
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papply, biopara and taskPR

We saw that Rmpi and NWS have apply-style functions, and that
snow provides a unified layer. papply is another CRAN package that
wraps around Rmpi to distribute processing of apply-style functions
across a cluster.

However, using the Open MPI-based Rmpi package, I was not able to
get papply to actually successfully distribute – and retrieve – results
across a cluster. So snow remains the preferred wrapper.

biopara is another package to distribute load across a cluster using
direct socket-based communication. We consider snow to be a more
general-purpose package for the same task.

taskPR uses the MPI protocol directly rather than via Rmpi. It is
however hard-wired to use LAM and failed to launch under the Open
MPI-implementation.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2009 Tutorial



Why Measure Vector Ra BLAS/GPUs Compile Parallel Automation Explicitly Res.Management Implicitly Example

slurm resource management and queue system

Once the number of compute nodes increases, it becomes important
to be able to allocate and manage resources, and to queue and batch
jobs. A suitable tool is slurm, an open-source resource manager for
Linux clusters.
Paraphrasing from the slurm website:

it allocates exclusive and/or non-exclusive access to resources
(computer nodes) to users;
it provides a framework for starting, executing, and monitoring
(typically parallel) work on a set of allocated nodes.
it arbitrates contention for resources by managing a queue of
pending work.

Slurm is being developed by a consortium including LLNL, HP, Bull,
and Linux Networks.
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slurm example

Slurm is rather rich in features; we will only scratch the surface here.

Slurm can use many underlying message passing / communications
protocols, and MPI is well supported.

In particular, Open MPI works well with slurm. That is an advantage
inasmuch as it permits use of Rmpi.
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slurm example

A simple example:
$ srun -N 2 r -lRmpi -e’cat("Hello", \

mpi.comm.rank(0), "of", \
mpi.comm.size(0), "on", \
mpi.get.processor.name(), "\n")’

Hello 0 of 1 on ron
Hello 0 of 1 on joe
$ srun -n 4 -N 2 -O r -lRmpi -e’cat("Hello", \
mpi.comm.rank(0), "of", \

mpi.comm.size(0), "on", \
mpi.get.processor.name(), "\n")’

Hello 0 of 1 on ron
Hello 0 of 1 on ron
Hello 0 of 1 on joe
Hello 0 of 1 on joe
This shows how to overcommit jobs per node, and provides an
example where we set the number of worker instances on the
command-line.
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slurm example

Additional coomand-line tools of interest are salloc, sbatch,
scontrol, squeue, scancel and sinfo. For example, to see the
status of a compute cluster:
$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug* up infinite 2 idle mccoy,ron

This shows two idle nodes in a partition with the default name ’debug’.

The sview graphical user interface combines the functionality of a
few of the command-line tools.

A more complete example will be provided below.
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Using all those cores

Multi-core hardware is now a default, and the number of cores per
cpus will only increase. It is therefore becoming more important for
software to take advantage of these features.

Two recent (and still ’experimental’) packages by Luke Tierney are
addressing this question:

pnmath uses OpenMP compiler directives for parallel code;
pnmath0 uses pthreads and implements the same interface.

They can be found at
http://www.stat.uiowa.edu/~luke/R/experimental/

More recently, Simon Urbanek released the ’multicore’ package
which provides parallel execution of R code on machines with
multiple cores or cpu. All jobs share the full state of R when spawned,
no data or code needs to be initialized. This make the actual
spawning very fast since no new R instance needs to be started.
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pnmath and pnmath0

Both pnmath and pnmath0 provide parallelized vector math functions
and support routines.

Upon loading either package, a number of vector math functions are
replaced with versions that are parallelized using OpenMP. The
functions will be run using multiple threads if their results will be long
enough for the parallel overhead to be outweighed by the parallel
gains. On load a calibration calculation is carried out to asses the
parallel overhead and adjust these thresholds.

Profiling is probably the best way to assess the possible usefulness.
As a quick illustrations, we compute the qtukey function on a
eight-core machine:
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pnmath and pnmath0 illustration

$ r -e’N=1e3;print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
66.590 0.000 66.649

$ r -lpnmath -e’N=1e3; \
print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
67.580 0.080 9.938

$ r -lpnmath0 -e’N=1e3; \
print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
68.230 0.010 9.983

The 6.7-fold reduction in ’elapsed’ time shows that the multithreaded version
takes advantage of the 8 available cores at a sub-linear fashion as some
communications overhead is involved.

These improvements will likely be folded into future R versions.
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multicore

The multicore package provides two main interfaces:

mclapply, a parallel / multicore version of lapply
the functions parallel and collect to launch parallel
execution and gather results at end

For setups in which a sufficient number of cores is available without
requiring network traffic, multicore is likely to be a very compelling
package.

Given that future cpu generation will offer 16, 32 or more cores, this
package may become increasingly popular.

One thing to note is that ’anything but Windows’ is required to take
advantage of multicore.
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Scripting example for R and slurm

Being able to launch numerous R jobs in a parallel environments is
helped by the ability to ’script’ R.

Several simple methods existed to start R:
R CMD BATCH file.R

echo “commands” | R -no-save

R -no-save < file.R > file.Rout

These are suitable for one-off scripts, but may be too fragile for
distributed computing.
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Use scripting with r

The r command of the littler package (as well as R’s Rscript)
provide more robust alternatives.

r can also be used four different ways:
r file.R

echo “commands” | r

r -lRmpi -e ’cat("Hello",
mpi.get.processor.name())’

and shebang-style in script files: #!/usr/bin/r

It is the last point that is of particular interest in this HPC context.
Also of note is the availability of the getopt package on CRAN.
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slurm and snow

Having introduced snow, slurm and r, we would like to combine
them.

However, there is are problems:
snow has a master/worker paradigm yet slurm launches its
nodes symmetrically,
slurm’s srun has limits in spawning jobs
with srun, we cannot communicate the number of nodes
’dynamically’ into the script: snow’s cluster creation needs a
hardwired number of nodes
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slurm and snow solution

snow solves the master / worker problem by auto-discovery upon
startup. The package contains two internal files RMPISNOW and
RMPISNOWprofile that use a combination of shell and R code to
determine the node idendity allowing it to switch to master or worker
functionality.

We can reduce the same problem to this for our R script:
mpirank <- mpi.comm.rank(0)
if (mpirank == 0) { # are we the master ?

makeMPIcluster()
} else { # or are we a slave ?

sink(file="/dev/null")
slaveLoop(makeMPImaster())
q()

}
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slurm and snow solution

For example

1 # ! / usr / b in / env r
2

3 suppressMessages ( l i b r a r y ( Rmpi ) )
4 suppressMessages ( l i b r a r y ( snow ) )
5

6 mpirank <− mpi .comm. rank ( 0 )
7 i f ( mpirank == 0) {
8 cat ( " Launching master , mpi rank=" , mpirank , " \ n " )
9 makeMPIcluster ( )

10 } else { # or are we a slave ?
11 cat ( " Launching s lave with , mpi rank=" , mpirank , " \ n " )
12 sink ( f i l e =" / dev / n u l l " )
13 slaveLoop ( makeMPImaster ( ) )
14 mpi . f i n a l i z e ( )
15 q ( )
16 }
17

18 s topC lus te r ( c l )

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2009 Tutorial



Why Measure Vector Ra BLAS/GPUs Compile Parallel Automation Explicitly Res.Management Implicitly Example

slurm and snow solution

The example creates
$ orterun -H ron,joe,tony,mccoy -n 4 mpiSnowSimple.r

Launching slave 2
Launching master 0
Launching slave 1
Launching slave 3

and we see that N − 1 workers are running with one instance running
as the coordinating manager node.
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salloc for snow

The other important aspect is to switch to salloc (which will call
orterun) instead of srun.
We can either supply the hosts used using the -w switch, or rely on
the slurm.conf file.
But importantly, we can govern from the call how many instances we
want running (and have neither the srun limitation requiring
overcommitting nor the hard-coded snow cluster-creation size):
$ salloc -w ron,mccoy orterun -n 7 mpiSnowSimple.r

We ask for a slurm allocation on the given hosts, and instruct Open
MPI to run seven instances.
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salloc for snow

1 # ! / usr / b in / env r
2

3 suppressMessages ( l i b r a r y ( Rmpi ) )
4 suppressMessages ( l i b r a r y ( snow ) )
5

6 mpirank <− mpi .comm. rank ( 0 )
7 i f ( mpirank == 0) {
8 cat ( " Launching master , mpi rank=" , mpirank , " \ n " )
9 makeMPIcluster ( )

10 } else { # or are we a slave ?
11 cat ( " Launching s lave with , mpi rank=" , mpirank , " \ n " )
12 sink ( f i l e =" / dev / n u l l " )
13 slaveLoop ( makeMPImaster ( ) )
14 mpi . f i n a l i z e ( )
15 q ( )
16 }
17

18 ## a t r i v i a l main body , but note how getMPIc lus te r ( ) lea rns from the
19 ## launched c l u s t e r how many nodes are a v a i l a b l e
20 c l <− getMPIc lus te r ( )
21 c lus terEva lQ ( c l , options ( " d i g i t s . secs " =3) ) ## use m i l l i second g r a n u l a r i t y
22 res <− c l u s t e r C a l l ( c l , function ( ) paste ( format ( Sys . time ( ) ) , Sys . i n f o ( ) [ "

nodename" ] ) )
23 pr in t (do . c a l l ( rbind , res ) )
24 s topC lus te r ( c l )
25 mpi . quit ( )

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2009 Tutorial



Why Measure Vector Ra BLAS/GPUs Compile Parallel Automation Explicitly Res.Management Implicitly Example

salloc for snow

$ salloc -w ron,joe,tony orterun -n 7 /tmp/mpiSnowSimple.r

salloc: Granted job allocation 39
Launching slave with, mpi rank= 5
Launching slave with, mpi rank= 2
Launching slave with, mpi rank= 6
Launching master, mpi rank= 0
Launching slave with, mpi rank= 3
Launching slave with, mpi rank= 1
Launching slave with, mpi rank= 4

[,1]
[1,] "2009-06-25 20:51:20.536 joe"
[2,] "2009-06-25 20:51:33.747 tony"
[3,] "2009-06-25 20:51:20.522 ron"
[4,] "2009-06-25 20:51:20.544 joe"
[5,] "2009-06-25 20:51:33.766 tony"
[6,] "2009-06-25 20:51:20.537 ron"
salloc: Relinquishing job allocation 39
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A complete example

cl <- NULL
mpirank <- mpi.comm.rank(0)
if (mpirank == 0) {

cl <- makeMPIcluster()
} else { # or are we a slave?

sink(file="/dev/null")
slaveLoop(makeMPImaster())
mpi.finalize(); q()

}
clusterEvalQ(cl, library(RDieHarder))
res <- parLapply(cl, c("mt19937","mt19937_1999",

"mt19937_1998", "R_mersenne_twister"),
function(x) {

dieharder(rng=x, test="operm5",
psamples=100, seed=12345)

})
stopCluster(cl)
print( do.call(rbind, lapply(res, function(x) { x[[1]] } )))
mpi.quit()
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A complete example cont.

This uses RDieHarder to test four Mersenne-Twister
implementations at once.

A simple analysis shows the four charts and prints the four p-values:
pdf("/tmp/snowRDH.pdf")
lapply(res, function(x) plot(x))
dev.off()

print( do.call(rbind,
lapply(res, function(x) { x[[1]] } )))
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A complete example cont.

$ salloc -w ron,joe orterun -n 5 snowRDieharder.r

salloc: Granted job allocation 10
[,1]

[1,] 0.1443805247
[2,] 0.0022301018
[3,] 0.0001014794
[4,] 0.0061524281
sall: Relinquishing job allocation 10
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Example summary

We have seen
how littler can help us script R tasks
how Rmpi, snow and slurm can interact nicely
a complete example using RDieHarder to illustrate these
concepts
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littler

Both r (from the littler package) and Rscript (included with R)
allow us to write simple scripts for repeated tasks.
#!/usr/bin/env r
# a simple example to install one or more packages
if (is.null(argv) | length(argv)<1) {

cat("Usage: installr.r pkg1 [pkg2 pkg3 ...]\n")
q()

}
## adjust as necessary, see help(’download.packages’)
repos <- "http://cran.us.r-project.org"
lib.loc <- "/usr/local/lib/R/site-library"
install.packages(argv, lib.loc,

repos, dependencies=TRUE)

If saved as install.r, we can call it via
$ install.r ff bigmemory

The getopt package makes it a lot easier for r to support
command-line options.
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Rscript

Rscript can be used in a similar fashion.

Previously we had to use
$ R --slave < cmdfile.R
$ cat cmdfile.R | R --slave
$ R CMD BATCH cmdfile.R

or some shell-script varitions around this theme.

By providing r and Rscript, we can now write ’R scripts’ that are
executable. This allows for automation in cron jobs, Makefile, job
queues, ...
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RPy

RPy packages provides access to R from Python:

1 from rpy import ∗
2 set_ d e f a u l t _mode(NO_CONVERSION) # avoid automat ic convers ion
3 r . l i b r a r y ( " nnet " )
4 model = r ( " Fxy~x+y " )
5 df = r . data_ frame ( x = r . c (0 ,2 ,5 ,10 ,15)
6 , y = r . c (0 ,2 ,5 ,8 ,10)
7 , Fxy = r . c (0 ,2 ,5 ,8 ,10) )
8 NNModel = r . nnet ( model , data = df
9 , s i ze =10 , decay =1e−3

10 , l i n e o u t =True , sk ip=True
11 , maxi t =1000 , Hess =True )
12 XG = r . expand_ g r i d ( x = r . seq (0 ,7 ,1 ) , y = r . seq (0 ,7 ,1 ) )
13 x = r . seq (0 ,7 ,1 )
14 y = r . seq (0 ,7 ,1 )
15

16 set_ d e f a u l t _mode(BASIC_CONVERSION) # automat ic conv . back on
17 f i t = r . p r e d i c t (NNModel ,XG)
18 pr in t f i t
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Wrapping up

In this tutorial session, we covered
profiling and tools for visualising profiling output
gaining speed using vectorisation
gaining speed using Ra and just-in-time compilation
how to link R to compiled code using tools like inline and Rcpp
how to embed R in C++ programs
running R code in parallel using MPI, nws, snow, ...
scripting and automation using littler
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Wrapping up

Further questions ?

Two good resources are
the mailing list r-sig-hpc on HPC with R,
and the HighPerformanceComputing task view on CRAN.

Scripts are at http://dirk.eddelbuettel.com/code/hpcR/.

Lastly, don’t hesitate to email me at edd@debian.org
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