An Example-Driven Hands-On Introduction to Rcpp

Dr. Dirk Eddelbuettel
dirk.eddelbuettel@R-Project.org
edd@debian.org
@eddelbuettel

useR! 2014
Pre-conference Tutorial
UCLA, 30 June 2014
Outline

1. Why
 - R
 - C++
 - Vision
 - Features
Why R?
Programming with Data

Thanks to John Chambers for sending me high-resolution scans of the covers of his books.
Why R?
Succinct and expressive

```r
xx <- faithful[, "eruptions"]
fit <- density(xx)
plot(fit)
```

```
density.default(x = xx)
N = 272   Bandwidth = 0.3348
Density
```
The example was posted by Greg Snow on r-help a few years ago.
Why R?

Interactive

R enables us to

- work interactively
- explore and visualize data
- access, retrieve and/or generate data
- summarize and report into pdf, html, ...

making it a preferred environment for many data analysts.
Why R?

Extensible

R has always been extensible via

- **C** via a bare-bones interface described in *Writing R Extensions*
- **Fortran** which is also used internally by R
- **Java** via *rJava* by S Urbanek
- **C++** but essentially at the bare-bones level of C

So ’in theory’ this worked – yet tedious ’in practice’.
Why C++?

- Asking Google [currently] leads to 64,200,000 hits.
- Wikipedia: *C++ is a statically typed, free-form, multi-paradigm, compiled, general-purpose, powerful programming language.*
- C++ is industrial-strength, vendor-independent, widely-used, and *still evolving*.
- In science & research, one of the most frequently-used languages: If there is something you want to use / connect to, it probably has a C/C++ API.
- As a widely used language it also has good tool support (debuggers, profilers, code analysis).
Why C++?

Scott Meyers: “View C++ as a federation of languages”

- **C** provides a rich inheritance and interoperability as Unix, Windows, ... are all built on C.
- **Object-Oriented C++** just to provide endless discussions about exactly what OO is or should be.
- **Templated C++** which is mighty powerful; template meta programming unequalled in other languages.
- **The STL** which is a specific template library which is powerful but has its own conventions.
- **C++11** adds enough to be called a fifth language.
Why C++?

- Mature yet current
- Strong performance focus:
 - "You don’t pay for what you don’t use"
 - "Leave no room for a language between the machine level and C++"
- Yet also powerfully abstract and high-level
- C++11 and beyond are a big deal giving us new language features
- While there are complexities, Rcpp users are mostly shielded
Source: John Chambers, personal communication.
Interface Vision

- Use trusted numerical libraries (mostly/exclusively written in Fortran)
- Provide environment which statistician could use more easily
- Enable interactive and iterative data exploration
- Make it extensibility for research into statistical methods
R offers us the best of both worlds:

Compiled code with
- Access to proven libraries and algorithms in C/C++/Fortran
- Extremely high performance (in both serial and parallel modes)

Interpreted code with
- An accessible high-level language made for *Programming with Data*
- An interactive workflow for data analysis
- Support for rapid prototyping, research, and experimentation
Why Rcpp?

Easy to learn it really does not have to be that complicated – we will look at a few examples

Easy to use as it avoids build and OS system complexities thanks to the R infrastructure

Expressive it allows for vectorised C++ using Rcpp Sugar

Seamless access to all R objects: vector, matrix, list, S3/S4/RefClass, Environment, Function, ...

Speed gains for a variety of tasks Rcpp excels precisely where R struggles: loops, function calls, ...

Extensions greatly facilitates access to external libraries using eg Rcpp modules
Outline

2. What
 - R API
 - C++
What can Rcpp do?
Everything evolves around `.Call`

At the C++ level:

```cpp
SEXP foo(SEXP a, SEXP b, SEXP c, ...)
```

and at the R level:

```r
res <- .Call("foo", a, b, c, ..., PACKAGE="mypkg")
```
#include <R.h>
#include <Rdefines.h>

SEXP convolve2(SEXP a, SEXP b) {
 int i, j, na, nb, nab;
 double *xa, *xb, *xab;
 SEXP ab;

 PROTECT(a = AS_NUMERIC(a));
 PROTECT(b = AS_NUMERIC(b));
 na = LENGTH(a); nb = LENGTH(b); nab = na + nb - 1;
 PROTECT(ab = NEW_NUMERIC(nab));
 xa = NUMERIC_POINTER(a); xb = NUMERIC_POINTER(b);
 xab = NUMERIC_POINTER(ab);
 for(i = 0; i < nab; i++) xab[i] = 0.0;
 for(i = 0; i < na; i++)
 for(j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];
 UNPROTECT(3);
 return(ab);
}
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector convolveCpp(NumericVector a, NumericVector b) {
 int na = a.size(), nb = b.size();
 int nab = na + nb - 1;
 NumericVector xab(nab);

 for (int i = 0; i < na; i++)
 for (int j = 0; j < nb; j++)
 xab[i + j] += a[i] * b[j];

 return xab;
}
What can Rcpp do?
Seamless interchange of R objects

- Any R object can be passed down to C++ code: vectors, matrices, list, ...
- But also functions, environments and more.
- This includes S3 and S4 objects as well as Reference Classes.
- Object attributes can be accessed directly.
- Objects can be created at the C++ level, and the R garbage collector *does the right thing* as if were an R-created object.
Why What When Where How Examples Arma Doc

R API C++

What can Rcpp do?
Seamless use of RNGs

```r
cppFunction('NumericVector r1(int n) {
    NumericVector x(n);
    for (int i=0; i<n; i++) x[i] = R::runif(0,1);
    return(x);
}
')
```

```r
cppFunction('NumericVector r2(int n) { return runif(n,0,1); }')
```


```
set.seed(42); runif(5)
```

[1] 0.9148 0.9371 0.2861 0.8304 0.6417

```r
cppFunction('NumericVector r1(int n) {
    NumericVector x(n);
    for (int i=0; i<n; i++) x[i] = R::runif(0,1);
    return(x);
}
')
```

```r
cppFunction('NumericVector r2(int n) { return runif(n,0,1); }')
```

```r
cppFunction('NumericVector r1(int n) {
    NumericVector x(n);
    for (int i=0; i<n; i++) x[i] = R::runif(0,1);
    return(x);
}
')
```

```r
cppFunction('NumericVector r2(int n) { return runif(n,0,1); }')
```


```
set.seed(42); r1(5)
```

[1] 0.9148 0.9371 0.2861 0.8304 0.6417

```r
cppFunction('NumericVector r2(int n) { return runif(n,0,1); }')
```

```r
cppFunction('NumericVector r1(int n) {
    NumericVector x(n);
    for (int i=0; i<n; i++) x[i] = R::runif(0,1);
    return(x);
}
')
```

```r
cppFunction('NumericVector r2(int n) { return runif(n,0,1); }')
```

```r
cppFunction('NumericVector r1(int n) {
    NumericVector x(n);
    for (int i=0; i<n; i++) x[i] = R::runif(0,1);
    return(x);
}
')
```

```r
cppFunction('NumericVector r2(int n) { return runif(n,0,1); }')
```


```
set.seed(42); r1(5)
```

[1] 0.9148 0.9371 0.2861 0.8304 0.6417

```r
cppFunction('NumericVector r2(int n) { return runif(n,0,1); }')
```


```
set.seed(42); r2(5)
```

[1] 0.9148 0.9371 0.2861 0.8304 0.6417

Dirk Eddelbuettel
Example-driven Intro to Rcpp
What can Rcpp do?
Sugar: R version

```r
piR <- function(N) {
    x <- runif(N)
    y <- runif(N)
    d <- sqrt(x^2 + y^2)
    return(4 * sum(d <= 1.0) / N)
}
```
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {
 NumericVector x = runif(N);
 NumericVector y = runif(N);
 NumericVector d = sqrt(x*x + y*y);
 return 4.0 * sum(d <= 1.0) / N;
}
3 When

- A First Example
- A Second Example
Consider a function defined as

\[
\begin{align*}
f(n) \quad &\text{such that} \quad \begin{cases}
n \quad &\text{when} \quad n < 2 \\
f(n - 1) + f(n - 2) \quad &\text{when} \quad n \geq 2
\end{cases}
\end{align*}
\]
When do we use Rcpp?
Easy speedup: Simple R Implementation

```r
fibR <- function(n) {
  if (n < 2) return(n)
  return(fibR(n-1) + fibR(n-2))
}

## Using it on first 11 arguments
sapply(0:10, fibR)
```

```r
# [1]  0  1  1  2  3  5  8 13 21 34 55
```
When do we use Rcpp?

Easy speedup: Timing R Implementation

```r
benchmark(fibR(10), fibR(15), fibR(20)) [,1:4]

## test  replications elapsed relative
## 1 fibR(10) 100 0.019 1.00
## 2 fibR(15) 100 0.216 11.37
## 3 fibR(20) 100 2.306 121.37
```
When do we use Rcpp?
Easy speedup: C++ Implementation

```r
cppFunction("
  int fibCpp(int n) {
    if (n < 2) return(n);
    return(fibCpp(n-1) + fibCpp(n-2));
  }")

## Using it on first 11 arguments
sapply(0:10, fibCpp)

## [1] 0 1 1 2 3 5 8 13 21 34 55
```
When do we use Rcpp?
Easy speedup: Putting it all together

```r
fibR <- function(n) {
  if (n<2) return(n)
  return(fibR(n-1) + fibR(n-2))
}
cppFunction('int fibCpp(int n) {
  if (n<2) return n;
  return fibCpp(n-2) + fibCpp(n-1);
}"
benchmark(fibR(25), fibCpp(25), order="relative")[,1:4]
```

```r
## test  replications elapsed  relative
## 2 fibCpp(25) 100 0.111 1.0
## 1 fibR(25) 100 25.633 230.9
```
Let’s consider a simple possible VAR(1) system of \(k \) variables.

For \(k = 2 \):

\[
 X_t = X_{t-1} B + E_t
\]

where \(X_t \) is a row vector of length 2, \(B \) is a 2 by 2 matrix and \(E_t \) is a row of the error matrix of 2 columns.
When do we use Rcpp?
Easy speedup:: VAR(1) Simulation

In R code, given both the coefficient and error matrices (revealing k and $n)$:

```r
rSim <- function(B,E) {
  X <- matrix(0, nrow(E), ncol(E))
  for (r in 2:nrow(E)) {
    X[r,] = X[r-1,] %*% B + E[r,]
  }
  return(X)
}
```

Dirk Eddelbuettel
Example-driven Intro to Rcpp
When do we use Rcpp?
Easy speedup: VAR(1) Simulation

```r
cppFunction('arma::mat cppSim(arma::mat B, arma::mat E) {
  int m = E.n_rows; int n = E.n_cols;
  arma::mat X(m,n);
  X.row(0) = arma::zeros<arma::mat>(1,n);
  for (int r=1; r<m; r++) {
    X.row(r) = X.row(r-1) * B + E.row(r);
  }
  return X; }
', depends="RcppArmadillo")

a <- matrix(c(0.5,0.1,0.1,0.5),nrow=2)
e <- matrix(rnorm(10000),ncol=2)
benchmark(cppSim(a,e), rSim(a,e),
  order="relative")[,1:4]
```

test replications elapsed relative
1 cppSim(a, e) 100 0.231 1.00
2 rSim(a, e) 100 2.583 11.18
Sometimes speed is not the only reason

C and C++ provide a enormous amount of libraries and APIs we may want to use

Easy to provide access to as \texttt{Rcpp} eases data transfer to/from R

\textit{Rcpp modules} can make it even easier
Where
Where is Rcpp being used?
Numbers as of June 2014

Rcpp is

- used by 229 packages on CRAN
- used by another 27 package on BioConductor
- cited 105 times (Google Scholar count for 2011 JSS paper)
Where is Rcpp being used?

Several well-known packages

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
<th>Authors</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amelia</td>
<td>Gary King et al: Multiple Imputation; uses Rcpp and RcppArmadillo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>forecast</td>
<td>Rob Hyndman et al: (Automated) Time-series forecasting; uses Rcpp and RcppArmadillo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RStan</td>
<td>Andrew Gelman et al: Bayesian models / MCMC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rugarch</td>
<td>Alexios Ghalanos: Sophisticated financial models; using Rcpp and RcppArmadillo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lme4</td>
<td>Doug Bates et al: Hierarchical/Mixed Linear Models; uses Rcpp and RcppEigen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dplyr, bigviz, ...</td>
<td>Hadley Wickham: Data munging; high-dim. visualization for 10-100 million obs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

How
- Setup
- evalCpp
- cppFunction
- sourceCpp
- skeleton
How do we use Rcpp?
Uses only standard R tools to build packages

Depending on the platform, one needs

Windows the Rtools kit for Windows, properly installed – see CRAN, the Installation manual and many tutorials; the installr package may help

OS X the Xcode command-line tools (plus possibly the Fortran compiler) – see Simon’s pages

Linux generally just work out of the box

Several environments can be used to work with Rcpp – RStudio is very popular.

No additional requirements for Rcpp beyond being able to compile R packages.
How do we use Rcpp?

Easy to test

```r
## evaluate a C++ expression, retrieve result
evalCpp("2 + 2")

## [1] 4

## a little fancier
evalCpp("std::numeric_limits<double>::max()")

## [1] 1.798e+308

## create ad-hoc R function 'square'
cppFunction('int square(int x) { return x*x; }')
square(7L)

## [1] 49
```
How do we use Rcpp?

Basic Usage: `evalCpp`

`evalCpp()` evaluates a single C++ expression. Includes and dependencies can be declared. This allows us to quickly check C++ constructs.

```r
evalCpp("2 * M_PI")
```

[1] 6.283
cppFunction() creates, compiles and links a C++ file, and creates an R function to access it.

```r
cppFunction("  
    int useCpp11() {
        auto x = 10;
        return x;
    }", plugins=c("cpp11"))
useCpp11()  # same identifier as C++ function
```

[1] 10
How do we use Rcpp?

Basic Usage: `sourceCpp()`

`sourceCpp()` is the actual workhorse behind `evalCpp()` and `cppFunction()`. It is described in more detail in the package vignette Rcpp-attributes.

A key feature are the plugins and dependency options: other packages can provide a plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen, RcppGSL).

We have also provided plugins for other compiler features. These allow to enable support for C++11 (and beyond), as well as for OpenMP.
How do we use Rcpp?

Basic Usage: `Rcpp.package.skeleton()`

- To create a complete and working package, the `Rcpp.package.skeleton()` function can be used.
- It extends the base R function `package.skeleton()` and supports the same set of options.
- For **Rcpp** use is also supports (via additional options) **Rcpp Modules** and **Rcpp Attributes** both of which can be included with working examples.
- The vignette **Rcpp-package** has complete details.
How do we use Rcpp?
RStudio makes it very easy: Single File
The following file gets created:

```cpp
#include <Rcpp.h>
using namespace Rcpp;

// Below is a simple example of exporting a C++ function to R.
// You can source this function into an R session using the
// Rcpp::sourceCpp function (or via the Source button on the
// editor toolbar)

// For more on using Rcpp click the Help button on the editor
// toolbar

// [[Rcpp::export]]
int timesTwo(int x) {
  return x * 2;
}
```

Dirk Eddelbuettel

Example-driven Intro to Rcpp
How do we use Rcpp?

RStudio makes it very easy: Package
Outline

Examples
- CumSum
- R Fun
- Boost
- Subset
- CtoC++
- xts
- XPtr
Cumulative Sum

http://gallery.rcpp.org/articles/vector-cumulative-sum/

A basic looped version:

```cpp
#include <Rcpp.h>
#include <numeric>  // for std::partial_sum
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector cumsum1(NumericVector x) {
    double acc = 0;
    NumericVector res(x.size());
    for (int i = 0; i < x.size(); i++){
        acc += x[i];
        res[i] = acc;
    }
    return res;
}
```

Dirk Eddelbuettel
Example-driven Intro to Rcpp
An STL variant:

```cpp
// [[Rcpp::export]]
NumericVector cumsum2(NumericVector x){
    // initialize the result vector
    NumericVector res(x.size());
    std::partial_sum(x.begin(), x.end(),
                     res.begin());
    return res;
}
```
Cumulative Sum

http://gallery.rcpp.org/articles/vector-cumulative-sum/

Or just **Rcpp** sugar:

```r
// [[Rcpp::export]]
NumericVector cumsum3(NumericVector x) {
  return cumsum(x);  // compute + return result vector
}
```

Of course, all results are the same.

```r
cppFunction('NumericVector cumsum3(NumericVector x) {
  return cumsum(x); }')
x <- 1:10
all.equal(cumsum(x), cumsum3(x))
```

[1] TRUE
Calling an R function from C++

http://gallery.rcpp.org/articles/r-function-from-c++/

```cpp
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector callFunction(NumericVector x, Function f) {
    NumericVector res = f(x);
    return res;
}

/*** R

callFunction(x, fivenum)

*/
```

Dirk Eddelbuettel
Example-driven Intro to Rcpp
Using Boost via BH: Greatest Common Denominator

http://gallery.rcpp.org/articles/a-first-boost-example/

```cpp
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>
#include <boost/math/common_factor.hpp>

// [[Rcpp::export]]
int computeGCD(int a, int b) {
    return boost::math::gcd(a, b);
}

// [[Rcpp::export]]
int computeLCM(int a, int b) {
    return boost::math::lcm(a, b);
}
```

Dirk Eddelbuettel
Example-driven Intro to Rcpp
/ **Using Boost via BH: Lexical Cast**

http://gallery.rcpp.org/articles/a-second-boost-example/

```cpp
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>
#include <boost/lexical_cast.hpp>
using boost::lexical_cast;
using boost::bad_lexical_cast;

// [[Rcpp::export]]
std::vector<double> lexicalCast(std::vector<std::string> v) {
    std::vector<double> res(v.size());
    for (int i=0; i<v.size(); i++) {
        try{
            res[i] = lexical_cast<double>(v[i]);
        }
        catch(bad_lexical_cast &){
            res[i] = NA_REAL;
        }
    }
    return res;
}

// R> lexicalCast(c("1.23", ".4", "1000", "foo", "42", "pi/4")
// [1] 1.23 0.40 1000.00 NA 42.00 NA
```

Dirk Eddelbuettel
Example-driven Intro to Rcpp
Using Boost via BH: Date Calculations

http://gallery.rcpp.org/articles/using-boost-with-bh/

```cpp
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>

// One include file from Boost
#include <boost/date_time/gregorian/gregorian_types.hpp>

using namespace boost::gregorian;

// [[Rcpp::export]]
Rcpp::Date getIMMDate(int mon, int year) {
    // compute third Wednesday of given month / year
    date d = nth_day_of_the_week_in_month::third,
        nth_day_of_the_week_in_month::third,
        Wednesday, mon).get_date(year);
    date::ymd_type ymd = d.year_month_day();
    return Rcpp::Date(ymd.year, ymd.month, ymd.day);
}
```
#include <Rcpp.h>
#include <boost/foreach.hpp>

using namespace Rcpp;

// [[Rcpp::depends(BH)]]

// the C-style upper-case macro name is a bit ugly
#define foreach BOOST_FOREACH

// [[Rcpp::export]]
NumericVector square(NumericVector x) {

 // elem is a reference to each element in x
 // we can re-assign to these elements as well
 foreach(double& elem, x) {
 elem = elem*elem;
 }

 return x;
}

C++11 now has something similar in a smarter for loop.
Using Boost via BH: Regular Expressions
http://gallery.rcpp.org/articles/boost-regular-expressions

NB: Needs `Sys.setenv("PKG_LIBS"="-lboost_regex")` to link.

```cpp
#include <Rcpp.h>
#include <string>
#include <boost/regex.hpp>

bool validate_card_format(const std::string& s) {
    static const boost::regex e("(\d{4}[- ]){3}\d{4}");
    return boost::regex_match(s, e);
}

// [[Rcpp::export]]
std::vector<bool> regexDemo(std::vector<std::string> s) {
    int n = s.size();
    std::vector<bool> v(n);
    for (int i=0; i<n; i++)
        v[i] = validate_card_format(s[i]);
    return valid;
}
```
New / improved in Rcpp 0.11.1:

```cpp
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector positives(NumericVector x) {
    return x[x > 0];
}

// [[Rcpp::export]]
List first_three(List x) {
    IntegerVector idx = IntegerVector::create(0, 1, 2);
    return x[idx];
}

// [[Rcpp::export]]
List with_names(List x, CharacterVector y) {
    return x[y];
}
```
The job of `split_indices()` is simple: given a vector `x` of integers, it returns a list where the `i`-th element of the list is an integer vector containing the positions of `x` equal to `i`.

I will spare you the C API version.
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
std::vector<std::vector<int>> split_indices(IntegerVector x, int n = 0) {
 if (n < 0) stop("n must be a pos. int.");

 std::vector<std::vector<int>> ids(n);

 int nx = x.size();
 for (int i = 0; i < nx; ++i) {
 if (x[i] > n) {
 ids.resize(x[i]);
 }
 ids[x[i] - 1].push_back(i + 1);
 }

 return ids;
}
Creating xts objects in C++

http://gallery.rcpp.org/articles/creating-xts-from-c++/

#include <Rcpp.h>

using namespace Rcpp;

NumericVector createXts(int sv, int ev) {
 IntegerVector ind = seq(sv, ev); // values
 NumericVector dv(ind);
 dv = dv * 86400; // date(time)s == reals
 dv.attr("tzone") = "UTC";
 dv.attr("tclass") = "Date";

 NumericVector xv(ind); // data has same index
 xv.attr("dim") = IntegerVector::create(ev-sv+1,1);
 xv.attr("index") = dv;
 CharacterVector cls = CharacterVector::create("xts","zoo");
 xv.attr("class") = cls;
 xv.attr(".indexCLASS") = "Date";
 // ... some more attributes ...

 return xv;
}
Consider two simple functions modifying a given Armadillo vector:

```cpp
#include <RcppArmadillo.h>

using namespace arma;
using namespace Rcpp;

vec fun1_cpp(const vec& x) { // a first function
    vec y = x + x;
    return (y);
}

vec fun2_cpp(const vec& x) { // and a second function
    vec y = 10*x;
    return (y);
}
```
Function Pointers

http://gallery.rcpp.org/articles/passing-cpp-function-pointers/

Using a **typedef** to declare an interface to a function taking and returning a vector — and a function returning a function pointer given a string argument

```cpp
typedef vec (*funcPtr)(const vec& x);

// [[Rcpp::export]]
XPtr<funcPtr> putFunPtrInXPtr(std::string fstr) {
    if (fstr == "fun1")
        return (XPtr<funcPtr>(new funcPtr(&fun1_cpp)));
    else if (fstr == "fun2")
        return (XPtr<funcPtr>(new funcPtr(&fun2_cpp)));
    else
        // runtime err.: NULL no XPtr
        return XPtr<funcPtr>(R_NilValue);
}
```
We then create a function calling the supplied function on a given vector by ‘unpacking’ the function pointer:

```cpp
// [[Rcpp::export]]
vec callViaXPtr(const vec x, SEXP xpsexp) {
    XPtr<funcPtr> xpfun(xpsexp);
    funcPtr fun = *xpfun;
    vec y = fun(x);
    return (y);
}
```
get us a function
```
fun <- putFunPtrInXPtr("fun1")
```
and pass it down to C++ to
have it applied on given vector
```
callViaXPtr(1:4, fun)
```

````
## [,1]
## [1,] 2
## [2,] 4
## [3,] 6
## [4,] 8
```

Could use same mechanism for user-supplied functions, gradients, or samplers, ...
Outline

7 Armadillo
- Overview
- Users
- Examples
- Case Study: FastLM
- Case Study: Kalman Filter
- Case Study: Sparse Matrices
Armadillo

C++ linear algebra library

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.

- The syntax (API) is deliberately similar to Matlab.

- Integer, floating point and complex numbers are supported, as well as a subset of trigonometric and statistics functions.

- Various matrix decompositions are provided through optional integration with LAPACK, or one of its high performance drop-in replacements (such as the multi-threaded Intel MKL, or AMD ACML, or OpenBLAS libraries).

- A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries, this is automatically accomplished through template meta-programming.

- Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.

- The library is open-source software, and is distributed under a license that is useful in both open-source and commercial/proprietary contexts.

- Primarily developed at NICTA (Australia) by Conrad Sanderson, with contributions from around the world.

- Download latest version
Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.

The syntax is deliberately similar to Matlab.

Integer, floating point and complex numbers are supported.

A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries.

Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.
What is Armadillo?
From arma.sf.net and slightly edited

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between **speed and ease of use**.

- The syntax is **deliberately similar to Matlab**.

- **Integer, floating point and complex numbers** are supported.

- A **delayed evaluation approach** is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries.

- Useful for conversion of research code into **production environments**, or if C++ has been decided as the language of choice, due to **speed** and/or integration capabilities.
Armadillo highlights

- Provides integer, floating point and complex vectors, matrices and fields (3d) with all the common operations.
- Very good documentation and examples at website http://arma.sf.net, a technical report (Sanderson, 2010)
- Modern code, building upon and extending from earlier matrix libraries.
- Responsive and active maintainer, frequent updates.
- Used by MLPACK; cf Curtin et al (JMLR, 2013)
RcppArmadillo highlights

- Template-only builds—no linking, and available wherever R and a compiler work (but Rcpp is needed)!
- Easy with R packages: just add LinkingTo: RcppArmadillo, Rcpp to DESCRIPTION (i.e., no added cost beyond Rcpp)
- Data exchange really seamless from R via Rcpp
- Frequently updated; documentation includes Eddelbuettel and Sanderson (CSDA, 2014).
Well-known packages using RcppArmadillo

- **Amelia** by Gary King et al: Multiple Imputation from cross-section, time-series or both;
- **forecast** by Rob Hyndman et al: Time-series forecasting including state space and automated ARIMA modeling;
- **rugarch** by Alexios Ghalanos: Sophisticated financial time series models;
- **gRbase** by Søren Højsgaard: Graphical modeling
```
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::vec getEigenValues(arma::mat M) {
    return arma::eig_sym(M);
}
```
```r
set.seed(42); X <- matrix(rnorm(4*4), 4, 4)
Z <- X %*% t(X); getEigenValues(Z)
```

```r
## [,1]
## [1,] 0.3319
## [2,] 1.6856
## [3,] 2.4099
## [4,] 14.2100
```

R gets the same results (in reverse)
and also returns the eigenvectors.
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::mat mvrnormArma(int n, arma::vec mu, arma::mat sigma) {
 arma::mat Y = arma::randn(n, sigma.n_cols);
 return arma::repmat(mu, 1, n).t() +
 Y * arma::chol(sigma);
}
Implementations of ‘fastLm()’ have been a staple all along the development of Rcpp

The very first version was in response to a question by Ivo Welch on r-help.

The request was for a fast function to estimate parameters – and their standard errors – from a linear model,

It used GSL functions to estimate \(\hat{\beta} \) as well as its standard errors \(\hat{\sigma} \) – as \texttt{lm.fit()} in R only returns the former.

It had since been reimplemented for RcppArmadillo and RcppEigen.
#include <RcppArmadillo.h>

extern "C" SEXP fastLm(SEXP Xs, SEXP ys) {

 try {
 Rcpp::NumericVector yr(ys);
 Rcpp::NumericMatrix Xr(Xs);
 int n = Xr.nrow(), k = Xr.ncol();
 arma::mat X(Xr.begin(), n, k, false);
 arma::colvec y(yr.begin(), yr.size(), false);

 arma::colvec coef = arma::solve(X, y);
 arma::colvec res = y - X*coef;
 double s2 = std::inner_product(res.begin(), res.end(), res.begin(), 0.0)/(n - k);
 arma::colvec std_err = arma::sqrt(s2*arma::diagvec(arma::pinv(arma::trans(X)*X)));

 return Rcpp::List::create(Rcpp::Named("coefficients") = coef,
 Rcpp::Named("stderr") = std_err,
 Rcpp::Named("df.residual") = n - k);
 }

 catch(std::exception &ex) {
 forward_exception_to_r(ex);
 }
 catch(...) {
 ::Rf_error("c++ exception (unknown reason)");
 }

 return R_NilValue; // -Wall
}
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

using namespace Rcpp; using namespace arma;

// [[Rcpp::export]]
List fastLm(NumericVector yr, NumericMatrix Xr) {
 int n = Xr.nrow(), k = Xr.ncol();
 mat X(Xr.begin(), n, k, false);
 colvec y(yr.begin(), yr.size(), false);

 colvec coef = solve(X, y);
 colvec resid = y - X*coef;

 double sig2 = as_scalar(trans(resid)*resid/(n-k));
 colvec stderrest = sqrt(sig2 * diagvec(inv(trans(X)*X)));

 return List::create(Named("coefficients") = coef,
 Named("stderr") = stderrest,
 Named("df.residual") = n - k);
}
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp;
using namespace arma;

// [[Rcpp::export]]
List fastLm(const arma::mat& X, const arma::colvec& y) {
 int n = X.n_rows, k = X.n_cols;
 colvec coef = solve(X, y);
 colvec resid = y - X*coef;

 double sig2 = as_scalar(trans(resid)*resid/(n-k));
 colvec stderrest = sqrt(sig2 * diagvec(inv(trans(X)*X)));

 return List::create(Named("coefficients") = coef,
 Named("stderr") = stderrest,
 Named("df.residual") = n - k);
}
Faster Linear Model with FastLm
Note on as<>() casting with Armadillo

```cpp
arma::colvec y = Rcpp::as<arma::colvec>(ys);
arma::mat X = Rcpp::as<arma::mat>(Xs);
```

Convenient, yet incurs an additional copy. Next variant uses two steps, but only a pointer to objects is copied:

```cpp
Rcpp::NumericVector yr(ys);
Rcpp::NumericMatrix Xr(Xs);
int n = Xr.nrow(), k = Xr.ncol();
arma::mat X(Xr.begin(), n, k, false);
arma::colvec y(yr.begin(), yr.size(), false);
```

Preferable if performance is a concern. Since last fall RcppArmadillo has efficient `const references` too.
Faster Linear Model with FastLm
Performance comparison

Running the script included in the **RcppArmadillo** package:

edd@max:~/svn/rcpp/pkg/RcppArmadillo/inst/examples$ r fastLm.r

```
Loading required package: Rcpp

test replications relative elapsed
2 fLmTwoCasts(X, y) 5000 1.000 0.188
3 fLmConstRef(X, y) 5000 1.000 0.188
1 fLmOneCast(X, y) 5000 1.005 0.189
5 fastLmPureDotCall(X, y) 5000 1.064 0.200
4 fastLmPure(X, y) 5000 2.000 0.376
7 lm.fit(X, y) 5000 2.691 0.506
6 fastLm(frm, data = trees) 5000 35.596 6.692
8 lm(frm, data = trees) 5000 44.883 8.438
```
edd@max:~/svn/rcpp/pkg/RcppArmadillo/inst/examples$
The position of an object is estimated based on past values of 6×1 state vectors X and Y for position, V_X and V_Y for speed, and A_X and A_Y for acceleration.

Position updates as a function of the speed:

\[
X = X_0 + V_X dt \quad \text{and} \quad Y = Y_0 + V_Y dt,
\]

which is updated as a function of the (unobserved) acceleration:

\[
V_x = V_{X,0} + A_X dt \quad \text{and} \quad V_y = V_{Y,0} + A_Y dt.
\]
% Copyright 2010 The MathWorks, Inc.

function y = kalmanfilter(z)

% #codegen

dt = 1;
% Initialize state transition matrix
A = [1 0 dt 0 0 0; 0 1 0 dt 0 0; 0 0 1 0 dt 0; 0 0 0 1 0 dt; 0 0 0 0 1 0];
H = [1 0 0 0 0 0; 0 1 0 0 0 0];
Q = eye(6);
R = 1000 * eye(2);
persistent x_est p_est
if isempty(x_est)
 x_est = zeros(6, 1);
 p_est = zeros(6, 6);
end
% Predicted state and covariance
x_prd = A * x_est;
p_prd = A * p_est * A' + Q;
% Estimation
S = H * p_prd' * H' + R;
B = H * p_prd';
klm_gain = (S \ B)';
% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;
% Compute the estimated measurements
y = H * x_est;
end

Plus a simple wrapper function calling this function.
Kalman Filter: In R
Easy enough – first naive solution

FirstKalmanR <- function(pos) {

kf <- function(z) {
 dt <- 1

 A <- matrix(c(1, 0, dt, 0, 0, 0, # x
 0, 1, 0, dt, 0, 0, # y
 0, 0, 1, 0, dt, 0, # Vx
 0, 0, 0, 1, 0, dt, # Vy
 0, 0, 0, 0, 1, 0, # Ax
 0, 0, 0, 0, 0, 1), # Ay
 6, 6, byrow=TRUE)

 H <- matrix(c(1, 0, 0, 0, 0, 0,
 0, 1, 0, 0, 0, 0), 2, 6, byrow=TRUE)

 Q <- diag(6)
 R <- 1000 * diag(2)

 N <- nrow(pos)
 y <- matrix(NA, N, 2)

 # predicted state and covariance
 xprd <- A %*% xest
 pprd <- A %*% pest %*% t(A) + Q

 ## estimation
 S <- H %*% t(pprd) %*% t(H) + R
 B <- H %*% t(pprd)
 # kalmangain <- (S \ B)'
 kg <- t(solve(S, B))

 # est. state and cov, assign to vars in parent env
 xest <<- xprd + kg %*% (z-H%*%xprd)
 pest <<- pprd - kg %*% H %*% pprd

 # compute the estimated measurements
 y <<- H %*% xest

 for (i in 1:N) {
 y[i,] <- kf(t(pos[i,drop=FALSE]))
 }

 invisible(y)
}

estimation
S <- H %*% t(pprd) %*% t(H) + R
B <- H %*% t(pprd)
kalmangain <- (S \ B)'
kg <- t(solve(S, B))

est. state and cov, assign to vars in parent env
xest <<- xprd + kg %*% (z-H%*%xprd)
pest <<- pprd - kg %*% H %*% pprd

compute the estimated measurements
y <<- H %*% xest

xest <<- matrix(0, 6, 1)
pest <<- matrix(0, 6, 6)

for (i in 1:N) {
 y[i,] <- kf(t(pos[i,drop=FALSE]))
}

invisible(y)
Kalman Filter: In R
Easy enough – with some minor refactoring

KalmanR <- function(pos) {

kf <- function(z) {
 ## predicted state and covariance
 xprd <- A %*% xest
 pprd <- A %*% pest %*% t(A) + Q

 ## estimation
 S <- H %*% t(pprd) %*% t(H) + R
 B <- H %*% t(pprd)
 kg <- (S %*% B)

 ## estimated state and covariance
 ## assigned to vars in parent env
 xest <<- xprd + kg %*% (z-H%*%xprd)
 pest <<- pprd - kg %*% H %*% pprd

 ## compute the estimated measurements
 y <- H %*% xest
}

for (i in 1:N) {
 y[i,] <- kf(t(pos[i,,drop=FALSE]))
}
invisible(y)

A <- matrix(c(1, 0, dt, 0, 0, 0, 0, 1, 0, dt, 0, 0, # x
 0, 0, 1, 0, dt, 0, 0, # y
 0, 0, 0, 1, 0, dt, # Vx
 0, 0, 0, 0, 1, 0, # Ax
 0, 0, 0, 0, 0, 1, # Ay
 6, 6, byrow=TRUE)

H <- matrix(c(1, 0, 0, 0, 0, 0,
 0, 1, 0, 0, 0, 0),
 2, 6, byrow=TRUE)

Q <- diag(6)
R <- 1000 * diag(2)

N <- nrow(pos)
y <- matrix(NA, N, 2)

for (i in 1:N) {
 y[i,] <- kf(t(pos[i,,drop=FALSE]))
}
 invisible(y)

Dirk Eddelbuettel
Example-driven Intro to Rcpp
Kalman Filter: In C++
Using a simple class

//
#include <Rcpp.h>

using namespace arma;

class Kalman {
private:
 mat A, H, Q, R, xest, pest;
 double dt;

public:
 // constructor, sets up data structures
 Kalman() : dt(1.0) {
 A.eye(6, 6);
 A(0, 2) = A(1, 3) = dt;
 A(2, 4) = A(3, 5) = dt;
 H.zeros(2, 6);
 H(0, 0) = H(1, 1) = 1.0;
 Q.eye(6, 6);
 R = 1000 * eye(2, 2);
 xest.zeros(6, 1);
 pest.zeros(6, 6);
 }

 // sole member func.: estimate model
 mat estimate(const mat & Z) {
 unsigned int n = Z.n_rows,
 k = Z.n_cols;
 mat Y = zeros(n, k);
 mat xprd, pprd, S, B, kg;
 colvec z, y;

 for (unsigned int i = 0; i < n; i++) {
 z = Z.row(i).t();
 // predicted state and covariance
 xprd = A * xest;
 pprd = A * pest * A.t() + Q;
 // estimation
 S = H * pprd.t() * H.t() + R;
 B = H * pprd.t();
 kg = (solve(S, B).t());
 // estimated state and covariance
 xest = xprd + kg * (z - H * xprd);
 pest = pprd - kg * H * pprd;
 // compute estimated measurements
 y = H * xest;
 Y.row(i) = y.t();
 }
 return Y;
 }
};

Dirk Eddelbuettel
Example-driven Intro to Rcpp
Given the code from the previous slide, we just add

```cpp
// [[Rcpp::export]]
mat KalmanCpp(mat Z) {
    Kalman K;
    mat Y = K.estimate(Z);
    return Y;
}
```
Even byte-compiled 'better' R version is 66 times slower:

```r
R> FirstKalmanRC <- cmpfun(FirstKalmanR)
R> KalmanRC <- cmpfun(KalmanR)
R>
R> stopifnot(identical(KalmanR(pos), KalmanRC(pos)),
+     all.equal(KalmanR(pos), KalmanCpp(pos)),
+     identical(FirstKalmanR(pos), FirstKalmanRC(pos)),
+     all.equal(KalmanR(pos), FirstKalmanR(pos))
R>
R> res <- benchmark(KalmanR(pos), KalmanRC(pos),
+                    FirstKalmanR(pos), FirstKalmanRC(pos),
+                    KalmanCpp(pos),
+                    columns = c("test", "replications",
+                       "elapsed", "relative"),
+                    order="relative",
+                    replications=100)
R>
R> print(res)
```

```
  test replications elapsed relative
 5  KalmanCpp(pos)     100   0.087  1.0000
 2  KalmanRC(pos)     100   5.774 66.3678
 1  KalmanR(pos)      100   6.448 74.1149
 4 FirstKalmanRC(pos) 100   8.153 93.7126
 3 FirstKalmanR(pos)  100   8.901 102.3103
```
Kalman Filter: Figure

Last but not least we can redo the plot as well.

Object Trajectory and Kalman Filter Estimate

- Trajectory
- Estimate
A nice example for work on R objects.

```r
i <- c(1,3:8)
j <- c(2,9,6:10)
x <- 7 * (1:7)
A <- sparseMatrix(i, j, x = x)
A
```

```
## 8 x 10 sparse Matrix of class "dgCMatrix"
##
## [1,] . 7 . . . . . . . .
## [2,] . . . . . . . . . .
## [3,] . . . . . . . 14 .
## [4,] . . . . . 21 . . . .
## [5,] . . . . . . 28 . . .
## [6,] . . . . . . . 35 . .
## [7,] . . . . . . . . 42 .
## [8,] . . . . . . . . . 49
```
Sparse Matrices

Representation in R

```r
str(A)
```

```r
## Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
##   ..@ i : int [1:7] 0 3 4 5 2 6 7
##   ..@ p : int [1:11] 0 0 1 1 1 1 2 3 4 6 ...
##   ..@ Dim : int [1:2] 8 10
##   ..@ Dimnames:List of 2
##   .. ..$ : NULL
##   .. ..$: NULL
##   ..@ x : num [1:7] 7 21 28 35 14 42 49
##   ..@ factors : list()
```

Note how the construction was in terms of \(<i, j, x> \), yet the representation in in terms of \(<i, p, x> \) – CSC format.
Sparse Matrices
C++ access

```cpp
#include <RcppArmadillo.h>

using namespace Rcpp;
using namespace arma;

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
sp_mat armaEx(S4 mat, bool show) {
    IntegerVector dims = mat.slot("Dim");
    arma::urowvec i = Rcpp::as<arma::urowvec>(mat.slot("i"));
    arma::urowvec p = Rcpp::as<arma::urowvec>(mat.slot("p"));
    arma::vec x = Rcpp::as<arma::vec>(mat.slot("x"));

    int nrow = dims[0], ncol = dims[1];
    arma::sp_mat res(i, p, x, nrow, ncol);
    if (show) Rcpp::Rcout << res << std::endl;
    return res;
}
```
sourceCpp('code/sparseEx.cpp')

i <- c(1,3:8)
j <- c(2,9,6:10)
x <- 7 * (1:7)
A <- sparseMatrix(i, j, x = x)
B <- armaEx(A, TRUE)

[matrix size: 8x10; n_nonzero: 7; density: 8.75%]
##
(0, 1) 7.0000
(3, 5) 21.0000
(4, 6) 28.0000
(5, 7) 35.0000
(2, 8) 14.0000
(6, 8) 42.0000
(7, 9) 49.0000
Outline

8 Doc
- Basics
- Gallery
- Book
The package comes with **eight pdf vignettes**, and numerous help pages.

The introductory vignettes are now **published** (Rcpp and RcppEigen in *J Stat Software*, RcppArmadillo in *Comp. Stat. & Data Anal.*).

The **rcpp-devel** list is *the* recommended resource, generally very helpful, and fairly low volume.

StackOverflow has over 500 posts too.

Several blog posts introduce/discuss features.
What Else?

Rcpp Gallery: 80+ working and detailed examples