INTRODUCTION TO RCPP:
FROM SIMPLE EXAMPLES TO MACHINE LEARNING

PRE-CONFERENCE TUTORIAL

Dirk Eddelbuettel

useR! 2017

July 4, 2017

Ketchum Trading; Debian and R Projects
Overview
HIGH-LEVEL MOTIVATION: THREE MAIN QUESTIONS

- Why? Several reasons discussed next
- How? Rcpp details, usage, tips, ...
- What? We will cover examples.
Why R?
A Simple Example

xx <- faithful[, "eruptions"]
fit <- density(xx)
plot(fit)
A Simple Example

density.default(x = xx)

N = 272 Bandwidth = 0.3348
xx <- faithful[, "eruptions"]
fit1 <- density(xx)
fit2 <- replicate(10000, {
 x <- sample(xx, replace=TRUE);
 density(x, from=min(fit1$x), to=max(fit1$x))$y
})
fit3 <- apply(fit2, 1, quantile, c(0.025, 0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x, rev(fit1$x)), c(fit3[1,], rev(fit3[2,])), col='grey', border=F)
lines(fit1)
density.default(x = xx)

N = 272 Bandwidth = 0.3348
R enables us to

- work interactively
- explore and visualize data
- access, retrieve and/or generate data
- summarize and report into pdf, html, ...

making it the key language for statistical computing, and a preferred environment for many data analysts.
So Why R?

R has always been extensible via

- C via a bare-bones interface described in *Writing R Extensions*
- Fortran which is also used internally by R
- Java via rJava by Simon Urbanek
- C++ but essentially at the bare-bones level of C

So while *in theory* this always worked – it was tedious *in practice*
Why R? : Programming with Data from 1977 to 2016

Chambers (2008), opens Chapter 11 *Interfaces I: Using C and Fortran*:

Since the core of R is in fact a program written in the C language, it’s not surprising that the most direct interface to non-R software is for code written in C, or directly callable from C. All the same, including additional C code is a serious step, with some added dangers and often a substantial amount of programming and debugging required. You should have a good reason.
Chambers (2008), opens Chapter 11 *Interfaces I: Using C and Fortran*:

Since the core of R is in fact a program written in the C language, it’s not surprising that the most direct interface to non-R software is for code written in C, or directly callable from C. All the same, including additional C code is a serious step, with some added dangers and often a substantial amount of programming and debugging required. You should have a good reason.
Chambers proceeds with this rough map of the road ahead:

- Against:
 - It’s more work
 - Bugs will bite
 - Potential platform dependency
 - Less readable software

- In Favor:
 - New and trusted computations
 - Speed
 - Object references
Why Extend R?

The Why? boils down to:

- **speed**: Often a good enough reason for us ... and a focus for us in this workshop.
- **new things**: We can bind to libraries and tools that would otherwise be unavailable in R
- **references**: Chambers quote from 2008 foreshadowed the work on *Reference Classes* now in R and built upon via Rcpp Modules, Rcpp Classes (and also RcppR6)
Algorithm Interface 5/9/76

ABC: general (FORTRAN) algorithm
XABC: FORTRAN subroutine to provide interface between ABC to language and/or utility programs

XABC (INSTR, OUTSTR)

Input INSTR →

"X" "Y"

Pointers/Values
Argument Names or Black

OUTSTR →

"B"

Pointers/Values
Types (Nodes)
Result Names

Note: Names are meaningful to Algorithm, not necessarily to language.
R offers us the best of both worlds:

- **Compiled** code with
 - Access to proven libraries and algorithms in C/C++/Fortran
 - Extremely high performance (in both serial and parallel modes)

- **Interpreted** code with
 - A high-level language made for *Programming with Data*
 - An interactive workflow for data analysis
 - Support for rapid prototyping, research, and experimentation
And Why C++?

• Asking Google leads to tens of million of hits.
• **Wikipedia**: C++ is a statically typed, free-form, multi-paradigm, compiled, general-purpose, powerful programming language
• C++ is industrial-strength, vendor-independent, widely-used, and *still evolving*
• In science & research, one of the most frequently-used languages: If there is something you want to use / connect to, it probably has a C/C++ API
• As a widely used language it also has good tool support (debuggers, profilers, code analysis)
Scott Meyers: View C++ as a federation of languages

- C provides a rich inheritance and interoperability as Unix, Windows, ... are all build on C.
- Object-Oriented C++ (maybe just to provide endless discussions about exactly what OO is or should be)
- Templated C++ which is mighty powerful; template meta programming unequalled in other languages.
- The Standard Template Library (STL) is a specific template library which is powerful but has its own conventions.
- C++11 and C++14 (and beyond) add enough to be called a fifth language.

NB: Meyers original list of four languages appeared years before C++11.
Why C++?

- Mature yet current
- Strong performance focus:
 - You don’t pay for what you don’t use
 - Leave no room for another language between the machine level and C++
- Yet also powerfully abstract and high-level
- C++11 + C++14 are a big deal giving us new language features
- While there are complexities, Rcpp users are mostly shielded
INTERLUDE
Chambers (2008) Software For Data Analysis
Chapters 10 and 11 devoted to *Interfaces I: C and Fortran* and *Interfaces II: Other Systems*.
Chambers (2016) Extending R
An entire book about this with *concrete* Python, Julia and C++ code and examples
Chambers 2016, Chapter 1

- *Everything that exists in R is an object*
- *Everything happens in R is a function call*
- *Interfaces to other software are part of R*
Chambers 2016, Chapter 4

The fundamental lesson about programming in the large is that requires a correspondingly broad and flexible response. In particular, no single language or software system os likely to be ideal for all aspects. Interfacing multiple systems is the essence. Part IV explores the design of of interfaces from R.
Why Rcpp? Some Tweets
Using #Rcpp to leverage the speed of C++ with the ease and clarity of R. Thanks, @eddelbuettel
Love that my reaction almost every time I rewrite R code in Rcpp is "holy shit that's fast" thanks @eddelbuettel & @romain_francois #rstats
Thanks to @eddelbuettel's Rcpp and @hadleywickham AdvancedR Rcpp chapter I just sped things up 750x. You both rock.
Rich FitzJohn
@rgfitzjohn

Writing some code using #rstats plain C API and realising/remembering quite how much work Rcpp saves - thanks @eddelbuettel
"Rcpp is one of the 3 things that changed how I write Rstats code". @hadleywickham at #EARL2014
@eddelbuettel @romain_francois Have I emphasized how much I ❤️ Rcpp?
boB Rudis
@hrbrmstr

Gosh, Rcpp is the bee's knees (cc: @eddelbuettel) #rstats

9:08 AM - 18 Feb 2016
The rise of Rcpp #rstats
"It's easier to make an error if I am not using Rcpp"
-- @GaborCsardi, right now in the (wicked) R Hub presentation
Key points

- *Easy to learn* as it really does not have to be that complicated – we will see numerous few examples
- *Easy to use* as it avoids build and OS system complexities thanks to the R infrastructure
- *Expressive* as it allows for *vectorised* C++ using *Rcpp Sugar*
- *Seamless* access to all R objects: vector, matrix, list, S3/S4/RefClass, Environment, Function, ...
- *Speed gains* for a variety of tasks Rcpp excels precisely where R struggles: loops, function calls, ...
- *Extensions* greatly facilitates access to external libraries using eg *Rcpp modules*
Who Uses Rcpp?

Growth of Rcpp usage on CRAN

- **Number of CRAN packages using Rcpp (left axis)**
- **Percentage of CRAN packages using Rcpp (right axis)**

Data current as of June 17, 2017.
CRAN PROPORTION

```r
db <- tools::CRAN_package_db()  # R 3.4.0 or later
dim(db)

## [1] 10926 65

## all Rcpp reverse depends
(c(n_rcpp <- length(tools::dependsOnPkg("Rcpp", recursive=FALSE,
                                    installed=db)),
    n_compiled <- table(db[, "NeedsCompilation"])[["yes"]]))

## [1] 1069 2919

## Rcpp percentage of packages with compiled code
n_rcpp / n_compiled

## [1] 0.3662213
```
Speed
Five different ways to compute $1/(1+x)$:

\begin{verbatim}
f <- function(n, x=1) for(i in 1:n) x <- 1/(1+x)
g <- function(n, x=1) for(i in 1:n) x <- (1/(1+x))
h <- function(n, x=1) for(i in 1:n) x <- (1+x)^(-1)
j <- function(n, x=1) for(i in 1:n) x <- {1/{1+x}}
k <- function(n, x=1) for(i in 1:n) x <- 1/{1+x}
library(rbenchmark)
N <- 1e5
benchmark(f(N, 1), g(N, 1), h(N, 1), j(N, 1), k(N, 1), order="relative")
\end{verbatim}
Speed Example 1 (Due to Christian Robert)

<table>
<thead>
<tr>
<th></th>
<th>test</th>
<th>replications</th>
<th>elapsed</th>
<th>relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f(N, 1)</td>
<td>100</td>
<td>0.555</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>g(N, 1)</td>
<td>100</td>
<td>0.556</td>
<td>1.002</td>
</tr>
<tr>
<td>5</td>
<td>k(N, 1)</td>
<td>100</td>
<td>0.572</td>
<td>1.031</td>
</tr>
<tr>
<td>4</td>
<td>j(N, 1)</td>
<td>100</td>
<td>0.597</td>
<td>1.076</td>
</tr>
<tr>
<td>3</td>
<td>h(N, 1)</td>
<td>100</td>
<td>0.666</td>
<td>1.200</td>
</tr>
</tbody>
</table>
Adding a C++ variant is easy:

```cpp
double m(int n, double x) {
    for (int i=0; i<n; i++)
        x = 1 / (1+x);
    return x;
}
```

(We will learn more about `cppFunction()` later).
Speed Example 1 (due to Christian Robert)

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Replications</th>
<th>Elapsed</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f(N, 1)</td>
<td>100</td>
<td>0.554</td>
<td>7.486</td>
</tr>
<tr>
<td>2</td>
<td>g(N, 1)</td>
<td>100</td>
<td>0.541</td>
<td>7.311</td>
</tr>
<tr>
<td>3</td>
<td>h(N, 1)</td>
<td>100</td>
<td>0.761</td>
<td>10.284</td>
</tr>
<tr>
<td>4</td>
<td>j(N, 1)</td>
<td>100</td>
<td>0.629</td>
<td>8.500</td>
</tr>
<tr>
<td>5</td>
<td>k(N, 1)</td>
<td>100</td>
<td>0.582</td>
<td>7.865</td>
</tr>
</tbody>
</table>

Example 6

| | m(N, 1) | 100 | 0.074 | 1.000 |
Consider a function defined as

\[f(n) \] such that

\[
\begin{align*}
 &\begin{cases}
 n & \text{when } n < 2 \\
 f(n - 1) + f(n - 2) & \text{when } n \geq 2
 \end{cases}
\end{align*}
\]
R implementation and use:

```r
f <- function(n) {
  if (n < 2) return(n)
  return(f(n-1) + f(n-2))
}

## Using it on first 11 arguments
sapply(0:10, f)
```

```
[1]  0  1  1  2  3  5  8 13 21 34 55
```
Speed Example 2 (due to StackOverflow)

Timing:

```r
library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]
```

```markdown
## test replications elapsed relative
## 1 f(10) 100 0.011 1.000
## 2 f(15) 100 0.115 10.455
## 3 f(20) 100 1.388 126.182
```
int g(int n) {
 if (n < 2) return(n);
 return(g(n-1) + g(n-2));
}

deployed as

Rcpp::cppFunction("int g(int n) {
 if (n < 2) return(n);
 return(g(n-1) + g(n-2)); }")
sapply(0:10, g)

[1] 0 1 1 2 3 5 8 13 21 34 55
Speed Example 2 (due to StackOverflow)

Timing:

```r
Rcpp::cppFunction("int g(int n) {
  if (n < 2) return(n);
  return(g(n-1) + g(n-2)); }")

library(rbenchmark)
benchmark(f(20), g(20), order="relative")[,1:4]
```

```markdown
## test replications elapsed relative
## 2 g(20) 100 0.008 1.00
## 1 f(20) 100 1.258 157.25
```

A nice gain of a few orders of magnitude.
Run-time performance is just one example.

Time to code is another metric.

We feel quite strongly that helps you code more succinctly, leading to fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++ development quite nicely (eg the compiler error message parsing is very helpful) and also helps with package building.
What Next?
- C++ Basics
- Debugging
- Best Practices

and then on to Rcpp itself
Need to compile and link

```c
#include <cstdio>

int main(void) {
    printf("Hello, world!\n");
    return 0;
}
```
Or streams output rather than `printf`

```cpp
#include <iostream>

int main(void) {
    std::cout << "Hello, world!" << std::endl;
    return 0;
}
```


`g++ -o` will compile and link

We will now look at an examples with explicit linking.
#include <cstdio>

#define MATHLIB_STANDALONE
#include <Rmath.h>

int main(void) {
 printf("N(0,1) 95th percentile %9.8f\n", qnorm(0.95, 0.0, 1.0, 1, 0));
}

We may need to supply:

- *header location* via `-I`,
- *library location* via `-L`,
- *library* via `-llibraryname`

```
g++  -I/usr/include -c qnorm_rmath.cpp
```
```
g++  -o qnorm_rmath qnorm_rmath.o  -L/usr/lib  -lRmath
```
Statically Typed

- R is dynamically typed: `x <- 3.14; x <- "foo"` is valid.
- In C++, each variable must be declared before first use.
- Common types are `int` and `long` (possibly with `unsigned`), `float` and `double`, `bool`, as well as `char`.
- No standard string type, though `std::string` is close.
- All these variables types are scalars which is fundamentally different from R where everything is a vector.
- `class` (and `struct`) allow creation of composite types; classes add behaviour to data to form `objects`.
- Variables need to be declared, cannot change
C++ is a Better C

- control structures similar to what R offers: `for`, `while`, `if`, `switch`
- functions are similar too but note the difference in positional-only matching, also same function name but different arguments allowed in C++
- pointers and memory management: very different, but lots of issues people had with C can be avoided via STL (which is something Rcpp promotes too)
- sometimes still useful to know what a pointer is ...
This is a second key feature of C++, and it does it differently from S3 and S4.

```cpp
struct Date {
    unsigned int year;
    unsigned int month;
    unsigned int day
};

struct Person {
    char firstname[20];
    char lastname[20];
    struct Date birthday;
    unsigned long id;
};
```
Object-orientation in the C++ sense matches data with code operating on it:

```cpp
class Date {
private:
    unsigned int year
    unsigned int month;
    unsigned int date;
public:
    void setDate(int y, int m, int d);
    int getDay();
    int getMonth();
    int getYear();
}
```
The STL promotes *generic* programming.

For example, the sequence container types `vector`, `deque`, and `list` all support

- `push_back()` to insert at the end;
- `pop_back()` to remove from the front;
- `begin()` returning an iterator to the first element;
- `end()` returning an iterator to just after the last element;
- `size()` for the number of elements;

but only `list` has `push_front()` and `pop_front()`.

Other useful containers: `set`, `multiset`, `map` and `multimap`.
Traversal of containers can be achieved via *iterators* which require suitable member functions `begin()` and `end()`:

```cpp
std::vector<double>::const_iterator si;

for (si = s.begin(); si != s.end(); si++)
    std::cout << *si << std::endl;
```
Another key STL part are *algorithms*:

```cpp
double sum = accumulate(s.begin(), s.end(), 0);
```

Some other STL algorithms are:

- **find** finds the first element equal to the supplied value
- **count** counts the number of matching elements
- **transform** applies a supplied function to each element
- **for_each** sweeps over all elements, does not alter
- **inner_product** inner product of two vectors
Template programming provides a ‘language within C++’: code gets evaluated during compilation.

One of the simplest template examples is

```cpp
template <typename T>
const T& min(const T& x, const T& y) {
    return y < x ? y : x;
}
```

This can now be used to compute the minimum between two `int` variables, or `double`, or in fact any `admissible type` providing an `operator<()` for less-than comparison.
Another template example is a class squaring its argument:

```cpp
template <typename T>
class square : public std::unary_function<T,T> {
public:
    T operator()(T t) const {
        return t*t;
    }
};
```

which can be used along with STL algorithms:

```cpp
transform(x.begin(), x.end(), square);
```
Books by Meyers are excellent

I also like the (free) C++ Annotations

C++ FAQ

Resources on StackOverflow such as

- general info and its links, eg
- booklist
Some tips:

- Generally painful, old-school `printf()` still pervasive
- Debuggers go along with compilers: `gdb` for `gcc` and `g++`; `lldb` for the clang / llvm family
- Extra tools such as `valgrind` helpful for memory debugging
- “Sanitizer” (ASAN/UBSAN) in newer versions of `g++` and `clang++`
Version control: `git` or `svn` highly recommended

Editor: *in the long-run*, recommended to learn productivity tricks for one editor: emacs, vi, eclipse, RStudio, ...
Rcpp Usage
Basic Usage: `evalCpp()`

`evalCpp()` evaluates a single C++ expression. Includes and dependencies can be declared.

This allows us to quickly check C++ constructs.

```r
library(Rcpp)
evalCpp("2 + 2")  # simple test
```

```r
## [1] 4
```

```r
evalCpp("std::numeric_limits<double>::max()")
```

```r
## [1] 1.797693e+308
```
cppFunction() creates, compiles and links a C++ file, and creates an R function to access it.

```cpp
int exampleCpp11() {
    auto x = 10;
    return x;
}
```

```r
# same identifier as C++ function
exampleCpp11()
```
sourceCpp() is the actual workhorse behind evalCpp() and cppFunction(). It is described in more detail in the package vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package inline, but provides even more ease-of-use, control and helpers – freeing us from boilerplate scaffolding.

A key feature are the plugins and dependency options: other packages can provide a plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen, RcppGSL).
Rcpp Gallery
The *Rcpp Gallery* at http://gallery.rcpp.org provides over one-hundred ready-to-run and documented examples. It is built on a blog-alike backend in a repository hosted at GitHub. You can clone the repository, or just download examples one-by-one.
Simple Examples
A basic looped version:

```cpp
#include <Rcpp.h>
#include <numeric>    // for std::partial_sum
using namespace Rcpp;
// [[Rcpp::export]]

NumericVector cumsum1(NumericVector x) {
    double acc = 0;    // init an accumulator var
    NumericVector res(x.size());    // init result vector
    for (int i = 0; i < x.size(); i++){
        acc += x[i];
        res[i] = acc;
    }
    return res;
}
```
An STL variant:

```cpp
#include <Rcpp.h>
#include <numeric>  // for std::partial_sum
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector cumsum2(NumericVector x) {
  // initialize the result vector
  NumericVector res(x.size());
  std::partial_sum(x.begin(), x.end(),
                   res.begin());
  return res;
}
```
Sugar:

```cpp
// [[Rcpp::export]]
NumericVector cumsum3(NumericVector x) {
    return cumsum(x); // compute + return result
}
```
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector callFunction(NumericVector x, Function f) {
 NumericVector res = f(x);
 return res;
}
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector positives(NumericVector x) {
 return x[x > 0];
}

// [[Rcpp::export]]
List first_three(List x) {
 IntegerVector idx = IntegerVector::create(0, 1, 2);
 return x[idx];
}

// [[Rcpp::export]]
List with_names(List x, CharacterVector y) {
 return x[y];
}
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::mat matrixSubset(arma::mat M) {
 // logical conditionL where is transpose larger?
 arma::umat a = trans(M) > M;
 arma::mat N = arma::conv_to<arma::mat>::from(a);
 return N;
}

// [[Rcpp::export]]
arma::vec matrixSubset2(arma::mat M) {
 arma::mat Z = M * M.t();
 arma::vec v = Z.elem(arma::find(Z >= 100));
 return v;
}
Boost
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>
#include <boost/math/common_factor.hpp>

// [[Rcpp::export]]
int computeGCD(int a, int b) {
 return boost::math::gcd(a, b);
}

// [[Rcpp::export]]
int computeLCM(int a, int b) {
 return boost::math::lcm(a, b);
}
```cpp
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>
#include <boost/lexical_cast.hpp>
using boost::lexical_cast;
using boost::bad_lexical_cast;

// [[Rcpp::export]]
std::vector<double> lexicalCast(std::vector<std::string> v) {
    std::vector<double> res(v.size());
    for (int i=0; i<v.size(); i++) {
        try {
            res[i] = lexical_cast<double>(v[i]);
        } catch (bad_lexical_cast &) {
            res[i] = NA_REAL;
        }
    }
    return res;
}

// R> lexicalCast(c("1.23", ".4", "1000", "foo", "42", "pi/4")
// [1] 1.23 0.40 1000.00 NA 42.00 NA
```
// [[Rcpp::depends(BH)]]
#include <Rcpp.h>

// One include file from Boost
#include <boost/date_time/gregorian/gregorian_types.hpp>

using namespace boost::gregorian;

// [[Rcpp::export]]
Rcpp::Date getIMMDate(int mon, int year) {
 // compute third Wednesday of given month / year
 date d = nth_day_of_the_week_in_month(nth_day_of_the_week_in_month::third, Wednesday, mon).get_date(year);
 date::ymd_type ymd = d.year_month_day();
 return Rcpp::Date(ymd.year, ymd.month, ymd.day);
}
```cpp
#include <Rcpp.h>
#include <boost/foreach.hpp>
using namespace Rcpp;
// [[Rcpp::depends(BH)]]

// the C-style upper-case macro name is a bit ugly
#define foreach BOOST_FOREACH

// [[Rcpp::export]]
NumericVector square( NumericVector x ) {

    // elem is a reference to each element in x
    // we can re-assign to these elements as well
    foreach( double& elem, x ) {
        elem = elem*elem;
    }

    return x;
}
```
NB: Use `Sys.setenv("PKG_LIBS"="-lboost_regex")`

```cpp
// boost.org/doc/libs/1_53_0/libs/regex/example/snippets/credit_card_example.cpp
#include <Rcpp.h>
#include <string>
#include <boost/regex.hpp>

bool validate_card_format(const std::string& s) {
    static const boost::regex e("(\d{4}[- \]){3}\d{4}");
    return boost::regex_match(s, e);
}

// [[Rcpp::export]]
std::vector<bool> regexDemo(std::vector<std::string> s) {
    int n = s.size();
    std::vector<bool> v(n);
    for (int i=0; i<n; i++)
        v[i] = validate_card_format(s[i]);
    return v;
}
```
XPtr
Consider two functions modifying a given Armadillo vector:

```c++
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

using namespace arma;
using namespace Rcpp;

vec fun1_cpp(const vec& x) { // a first function
    vec y = x + x;
    return (y);
}

vec fun2_cpp(const vec& x) { // and a second function
    vec y = 10*x;
    return (y);
}
```
Using `typedef` to declare `funcPtr` as an interface to a function taking and returning a vector — and defining a function returning a function pointer given a string argument.

```cpp
typedef vec (*funcPtr)(const vec& x);

// [[Rcpp::export]]
XPtr<funcPtr> putFunPtrInXPtr(std::string fstr) {
    if (fstr == "fun1")
        return XPtr<funcPtr>(new funcPtr(&fun1_cpp));
    else if (fstr == "fun2")
        return XPtr<funcPtr>(new funcPtr(&fun2_cpp));
    else
        // runtime err.: NULL no XPtr
        return XPtr<funcPtr>(R_NilValue);
}
```
Next we create a function calling the supplied function on a given vector by ‘unpacking’ the function pointer:

```cpp
// [[Rcpp::export]]
vec callViaXPtr(const vec x, SEXP xpsexp) {
    XPtr<funcPtr> xpfun(xpsexp);
    funcPtr fun = *xpfun;
    vec y = fun(x);
    return (y);
}
```
Putting it together:

```r
# this gets us a function
fun <- putFunPtrInXPtr("fun1")
# and pass it down to C++ to
# have it applied on given vector
callViaXPtr(1:4, fun)
```

This mechanism is generic and can be used for objective functions, gradients, samplers, … to operate at C++ speed on user-supplied C++ functions.
PLUGINS
setup plugins environment

```r
.plugins <- new.env()
```

built-in C++11 plugin

```r
.plugins[['cpp11']] <- function() {
  if (getRversion() >= "3.1")
    list(env = list(USE_CXX1X = "yes"))
  else if (.Platform$OS.type == "windows")
    list(env = list(PKG_CXXFLAGS = "-std=c++0x"))
  else
    list(env = list(PKG_CXXFLAGS = "-std=c++11"))
}
```

built-in OpenMP++11 plugin

```r
.plugins[['openmp']] <- function() {
  list(env = list(PKG_CXXFLAGS="-fopenmp", PKG_LIBS="-fopenmp"))
}
```

register a plugin

```r
registerPlugin <- function(name, plugin) {
  .plugins[[name]] <- plugin
}
```
#include <Rcpp.h>

// Enable C++11 via this plugin
// [[Rcpp::plugins("cpp11")]]

// [[Rcpp::export]]
int useAuto() {
 auto val = 42; // val will be of type int
 return val;
}
#include <Rcpp.h>

// [[Rcpp::plugins("cpp11")]]

// [[Rcpp::export]]
std::vector<std::string> useInitLists() {
 std::vector<std::string> vec = {
 "larry", "curly", "moe"};
 return vec;
}
```cpp
#include <Rcpp.h>

// [[Rcpp::plugins("cpp11")]]

// [[Rcpp::export]]
int simpleProd(std::vector<int> vec) {
    int prod = 1;
    for (int &x : vec) {
        prod *= x;  // access each elem., comp. prod
    }
    return prod;
}
```
```cpp
#include <Rcpp.h>

// [[Rcpp::plugins("cpp11")]]

// [[Rcpp::export]]
std::vector<double>
transformEx(const std::vector<double>& x) {
    std::vector<double> y(x.size());
    std::transform(x.begin(), x.end(), y.begin(),
                    [](double x) { return x*x; } );
    return y;
}
```
We start with (somewhat boring/made-up) slow double-loop:

```cpp
#include <Rcpp.h>

// [[Rcpp::export]]
double long_computation(int nb) {
    double sum = 0;
    for (int i = 0; i < nb; ++i) {
        for (int j = 0; j < nb; ++j) {
            sum += R::dnorm(i+j, 0.0, 1.0, 0);
        }
    }
    return sum + nb;
}
```
// [[Rcpp::plugins("openmp")]]
#include <Rcpp.h>

// [[Rcpp::export]]
double long_computation_omp(int nb, int threads=1) {
#ifdef _OPENMP
 if (threads > 0) omp_set_num_threads(threads);
 REprintf("Number of threads=%i\n", omp_get_max_threads());
#endif

double sum = 0;
#pragma omp parallel for schedule(dynamic)
 for (int i = 0; i < nb; ++i) {
 double thread_sum = 0;
 for (int j = 0; j < nb; ++j) {
 thread_sum += R::dlnorm(i+j, 0.0, 1.0, 0);
 }
 sum += thread_sum;
 }

return sum + nb;
}
Even on my laptop gains can be seen:

```r
R> sourceCpp("code/openmpEx.cpp")
R> system.time(long_computation(1e4))
  user  system elapsed
22.436   0.000  22.432
R> system.time(long_computation_omp(1e4, 4))
Number of threads=4
  user  system elapsed
25.432   0.076   7.046
```
RcppParallel
```cpp
#include <Rcpp.h>
using namespace Rcpp;

#include <cmath>
#include <algorithm>

// [[Rcpp::export]]
NumericMatrix matrixSqrt(NumericMatrix orig) {
    // allocate the matrix we will return
    NumericMatrix mat(orig.nrow(), orig.ncol());
    // transform it
    std::transform(orig.begin(), orig.end(), mat.begin(), ::sqrt);
    // return the new matrix
    return mat;
}
```
// [Rcpp::depends(RcppParallel)]
#include <RcppParallel.h>
using namespace RcppParallel;

struct SquareRoot : public Worker {
 const RMatrix<double> input; // source matrix
 RMatrix<double> output; // destination matrix

 // initialize with source and destination
 SquareRoot(const NumericMatrix input, NumericMatrix output)
 : input(input), output(output) {}

 // take the square root of the range of elements requested
 void operator() (std::size_t begin, std::size_t end) {
 std::transform(input.begin() + begin,
 input.begin() + end,
 output.begin() + begin,
 ::sqrt);
 }
};
// [[Rcpp::export]]
NumericMatrix parallelMatrixSqrt(NumericMatrix x) {

 // allocate the output matrix
 NumericMatrix output(x.nrow(), x.ncol());

 // SquareRoot functor (pass input and output matrixes)
 SquareRoot squareRoot(x, output);

 // call parallelFor to do the work
 parallelFor(0, x.length(), squareRoot);

 // return the output matrix
 return output;
}
APPLICATIONS
Overview
As of late June 2017, around 1069 packages on CRAN are using Rcpp

Single biggest “application” is the RcppArmadillo package for linear algebra with around 350

RcppEigen another important package used by around 100 packages including lme4 and RStan

RcppGSL offers vector and matrix classes for the GSL, a popular scientific library
RcppArmadillo
Armadillo
C++ linear algebra library

About License FAQ API Docs Speed Authors Download

• Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use

• The syntax (API) is deliberately similar to Matlab

• Integer, floating point and complex numbers are supported, as well as a subset of trigonometric and statistics functions

• Various matrix decompositions are provided through optional integration with LAPACK, or one of its high performance drop-in replacements (such as the multi-threaded Intel MKL, or AMD ACML, or OpenBLAS libraries)

• A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries; this is automatically accomplished through template meta-programming

• Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities

• The library is open-source software, and is distributed under a license that is useful in both open-source and commercial/proprietary contexts

• Primarily developed at NICTA (Australia) by Conrad Sanderson, with contributions from around the world

• Download latest version
What is Armadillo?

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use.
- The syntax is deliberately similar to Matlab.
- Integer, floating point and complex numbers are supported.
- A delayed evaluation approach is employed (at compile-time) to combine several operations into one and reduce (or eliminate) the need for temporaries.
- Useful for conversion of research code into production environments, or if C++ has been decided as the language of choice, due to speed and/or integration capabilities.
Armadillo Highlights

- Provides integer, floating point and complex vectors, matrices, cubes and fields with all the common operations.
- Very good documentation and examples
 - website,
 - technical report (Sanderson, 2010)
 - CSDA paper (Sanderson and Eddelbuettel, 2014)
 - JOSS paper (Sanderson and Curtin, 2016).
- Modern code, building upon and extending from earlier matrix libraries.
- Responsive and active maintainer, frequent updates.
- Used eg by MLPACK, see Curtin et al (JMLR, 2013)
RcppArmadillo Highlights

- Template-only builds—no linking, and available wherever R and a compiler work (but Rcpp is needed)
- Easy to use, just add `LinkingTo: RcppArmadillo, Rcpp` to `DESCRIPTION` (i.e. no added cost beyond Rcpp)
- Really easy from R via Rcpp and automatic converters
- Frequently updated, widely used
#include <Rcpp.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]

arma::vec getEigenValues(arma::mat M) {
 return arma::eig_sym(M);
}

Example: Eigen values

Rcpp::sourceCpp("code/arma_eigenvalues.cpp")

M <- cbind(c(1,-1), c(-1,1))
genericEigenValues(M)

[1,] 0
[2,] 2

eigen(M)$values

[1] 2 0
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// another simple example: outer product of a vector,
// returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {
 arma::mat m = x * x.t();
 return m;
}

// and the inner product returns a scalar
// // [[Rcpp::export]]

double rcpparma_innerproduct(const arma::colvec & x) {
 double v = arma::as_scalar(x.t() * x);
 return v;
}
Background

- Implementations of `fastLm()` have been a staple during development of Rcpp
- First version was in response to a question by Ivo Welch on r-help.
- Request was for a fast function to estimate parameters – and their standard errors – from a linear model,
- It used GSL functions to estimate $\hat{\beta}$ as well as its standard errors $\hat{\sigma}$ – as `lm.fit()` in R only returns the former.
- It has since been reimplemented for RcppArmadillo and RcppEigen
#include <RcppArmadillo.h>

extern "C" SEXP fastLm(SEXP Xs, SEXP ys) {

try {
 Rcpp::NumericVector yr(ys); // creates Rcpp vector from SEXP
 Rcpp::NumericMatrix Xr(Xs); // creates Rcpp matrix from SEXP
 int n = Xr.nrow(), k = Xr.ncol();
 arma::mat X(Xr.begin(), n, k, false); // reuses memory, avoids extra copy
 arma::colvec y(yr.begin(), yr.size(), false);

 arma::colvec coef = arma::solve(X, y); // fit model y ~ X
 arma::colvec res = y - X*coef; // residuals
 double s2 = std::inner_product(res.begin(), res.end(), res.begin(), 0.0)/(n - k);
 arma::colvec std_err = // std.errors of coefficients
 arma::sqrt(s2*arma::diagvec(arma::pinv(arma::trans(X)*X)));

 return Rcpp::List::create(Rcpp::Named("coefficients") = coef,
 Rcpp::Named("stderr") = std_err,
 Rcpp::Named("df.residual") = n - k);
} catch(std::exception &ex) {
 forward_exception_to_r(ex);
} catch(...) {
 ::Rf_error("c++ exception (unknown reason)");
}
return R_NilValue; // -Wall
}
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp;
using namespace arma;

// [[Rcpp::export]]
List fastLm(NumericVector yr, NumericMatrix Xr) {
 int n = Xr.nrow(), k = Xr.ncol();
 mat X(Xr.begin(), n, k, false);
 colvec y(yr.begin(), yr.size(), false);

 colvec coef = solve(X, y);
 colvec resid = y - X*coef;

 double sig2 = as_scalar(trans(resid)*resid/(n-k));
 colvec stderrest = sqrt(sig2 * diagvec(inv(trans(X)*X)));

 return List::create(Named("coefficients") = coef,
 Named("stderr") = stderrest,
 Named("df.residual") = n - k);
}
/ **Current Version**

```cpp
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

// [[Rcpp::export]]
Rcpp::List fastLm(const arma::mat& X, const arma::colvec& y) {
    int n = X.n_rows, k = X.n_cols;

    arma::colvec coef = arma::solve(X, y);
    arma::colvec resid = y - X*coef;

    double sig2 = arma::as_scalar(arma::trans(resid)*resid/(n-k));
    arma::colvec sterr = arma::sqrt(sig2 *
                            arma::diagvec(arma::pinv(arma::trans(X)*X)));

    return Rcpp::List::create(Rcpp::Named("coefficients") = coef,
                               Rcpp::Named("stderr") = sterr,
                               Rcpp::Named("df.residual") = n - k);
}
```
arma::colvec y = Rcpp::as<arma::colvec>(ys);
arma::mat X = Rcpp::as<arma::mat>(Xs);

Convenient, yet incurs an additional copy. Next variant uses two steps, but only a pointer to objects is copied:

Rcpp::NumericVector yr(ys);
Rcpp::NumericMatrix Xr(Xs);
int n = Xr.nrow(), k = Xr.ncol();
arma::mat X(Xr.begin(), n, k, false);
arma::colvec y(yr.begin(), yr.size(), false);

Better if performance is a concern. But now RcppArmadillo has efficient const references too.
edd@don:~$ Rscript ~/git/rcpparmadillo/inst/examples/fastLm.r

<table>
<thead>
<tr>
<th>test</th>
<th>replications</th>
<th>relative</th>
<th>elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 fLmConstRef(X, y)</td>
<td>5000</td>
<td>1.000</td>
<td>0.245</td>
</tr>
<tr>
<td>2 fLmTwoCasts(X, y)</td>
<td>5000</td>
<td>1.045</td>
<td>0.256</td>
</tr>
<tr>
<td>4 fLmSEXP(X, y)</td>
<td>5000</td>
<td>1.094</td>
<td>0.268</td>
</tr>
<tr>
<td>1 fLmOneCast(X, y)</td>
<td>5000</td>
<td>1.098</td>
<td>0.269</td>
</tr>
<tr>
<td>6 fastLmPureDotCall(X, y)</td>
<td>5000</td>
<td>1.118</td>
<td>0.274</td>
</tr>
<tr>
<td>8 lm.fit(X, y)</td>
<td>5000</td>
<td>1.673</td>
<td>0.410</td>
</tr>
<tr>
<td>5 fastLmPure(X, y)</td>
<td>5000</td>
<td>1.763</td>
<td>0.432</td>
</tr>
<tr>
<td>7 fastLm(frm, data = trees)</td>
<td>5000</td>
<td>30.612</td>
<td>7.500</td>
</tr>
<tr>
<td>9 lm(frm, data = trees)</td>
<td>5000</td>
<td>30.796</td>
<td>7.545</td>
</tr>
</tbody>
</table>

continued below
<table>
<thead>
<tr>
<th>test</th>
<th>replications</th>
<th>relative</th>
<th>elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>fLmTwoCasts(X, y)</td>
<td>50000</td>
<td>1.000</td>
<td>2.327</td>
</tr>
<tr>
<td>fLmSEXP(X, y)</td>
<td>50000</td>
<td>1.049</td>
<td>2.442</td>
</tr>
<tr>
<td>fLmConstRef(X, y)</td>
<td>50000</td>
<td>1.050</td>
<td>2.444</td>
</tr>
<tr>
<td>fLmOneCast(X, y)</td>
<td>50000</td>
<td>1.150</td>
<td>2.677</td>
</tr>
<tr>
<td>fastLmPureDotCall(X, y)</td>
<td>50000</td>
<td>1.342</td>
<td>3.123</td>
</tr>
<tr>
<td>fastLmPure(X, y)</td>
<td>50000</td>
<td>1.988</td>
<td>4.627</td>
</tr>
<tr>
<td>lm.fit(X, y)</td>
<td>50000</td>
<td>2.141</td>
<td>4.982</td>
</tr>
</tbody>
</table>
Simulating a VAR(1) system of k variables:

$$X_t = X_{t-1}B + E_t$$

where X_t is a row vector of length k, B is a k by k matrix and E_t is a row of the error matrix of k columns.

We use $k = 2$ for this example.
parameter and error terms used throughout

a <- matrix(c(0.5, 0.1, 0.1, 0.5), nrow=2)
e <- matrix(rnorm(10000), ncol=2)

Let’s start with the R version

rSim <- function(coeff, errors) {
 simdata <- matrix(0, nrow(errors), ncol(errors))
 for (row in 2:nrow(errors)) {
 simdata[row,] = coeff %*% simdata[(row-1),] + errors[row,]
 }
 return(simdata)
}

rData <- rSim(a, e) # generated by R
arma::mat rcppSim(const arma::mat& coeff,
 const arma::mat& errors) {
 int m = errors.n_rows;
 int n = errors.n_cols;
 arma::mat simdata(m,n);
 simdata.row(0) = arma::zeros<arma::mat>(1,n);
 for (int row=1; row<m; row++) {
 simdata.row(row) = simdata.row(row-1) * coeff +
 errors.row(row);
 }
 return simdata;
}
Rcpp::sourceCpp("code/arma_var1.cpp")
rbenchmark::benchmark(rSim(a,e), rcppSim(a, e))[,1:4]

test replications elapsed relative
2 rcppSim(a, e) 100 0.018 1.000
1 rSim(a, e) 100 0.888 49.333
The position of an object is estimated based on past values of 6×1 state vectors X and Y for position, V_X and V_Y for speed, and A_X and A_Y for acceleration.

Position updates as a function of the speed

$$X = X_0 + V_X dt \quad \text{and} \quad Y = Y_0 + V_Y dt,$$

which is updated as a function of the (unobserved) acceleration:

$$V_X = V_{X,0} + A_X dt \quad \text{and} \quad V_Y = V_{Y,0} + A_Y dt.$$
% Copyright 2010 The MathWorks, Inc.
function y = kalmanfilter(z)
dt=1;

% Initialize state transition matrix
A=[1 0 dt 0 0 0; 0 1 0 dt 0 0;... % [x], [y]
 0 0 1 0 dt 0; 0 0 0 1 0 dt;... % [Vx], [Vy]
 0 0 0 1 0 ; 0 0 0 0 0 1]; % [Ax], [Ay]
H = [1 0 0 0 0 0; 0 1 0 0 0 0]; % Init. measurement mat
Q = eye(6);
R = 1000 * eye(2);
persistent x_est p_est % Init. state cond.
if isempty(x_est)
 x_est = zeros(6, 1); % x_est=[x,y,Vx,Vy,Ax,Ay]'
p_est = zeros(6, 6);
end

x_prd = A * x_est; % Predicted state and covariance
p_prd = A * p_est * A' + Q;

S = H * p_prd' * H' + R; % Estimation
B = H * p_prd';
klm_gain = (S \ B)';

% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;
y = H * x_est; % Compute the estimated measurements
end % of the function
function Y = kalmanM(pos)
 dt=1;

 %% Initialize state transition matrix
 A=[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1];
 % [x]
 % [y]
 % [Vx]
 % [Vy]
 % [Ax]
 % [Ay]

 H = [1 0 0 0 0; 0 1 0 0];
 % Initialize measurement matrix

 Q = eye(6);
 R = 1000 * eye(2);

 x_est = zeros(6,1);
 % x_est=[x,y,Vx,Vy,Ax,Ay]'

 numPts = size(pos,1);
 Y = zeros(numPts,2);

 for idx = 1:numPts
 z = pos(idx,:);
 x_prd = A * x_est;
 % Predicted state and covariance
 p_prd = A * p_est * A' + Q;
 S = H * p_prd' * H' + R;
 % Estimation
 B = H * p_prd';
 klm_gain = (S \ B)';
 x_est = x_prd + klm_gain * (z - H * x_prd);
 % Estimated state and covariance
 p_est = p_prd - klm_gain * H * p_prd;
 Y(idx,:) = H * x_est;
 % Compute the estimated measurements
 end
end % of the function
FirstKalmanR <- function(pos) {
 kalmanfilter <- function(z) {
 dt <- 1
 A <- matrix(c(1, 0, dt, 0, 0, 0, 0, 1, 0, dt, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), # x, y
 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, dt, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), # Vx, Vy
 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, dt, 0, 0, 0, 0, 0, 0, 0, 0, 0), # Ax, Ay
 6, 6, byrow=TRUE)
 H <- matrix(c(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
 2, 6, byrow=TRUE)
 Q <- diag(6)
 R <- 1000 * diag(2)
 xprd <- A %*% xest # predicted state and covariance
 pprd <- A %*% pest %*% t(A) + Q
 S <- H %*% t(pprd) %*% t(H) + R # estimation
 B <- H %*% t(pprd)
 kalmangen <- t(solve(S, B)) ## estimated state and covariance, assign to vars in parent env
 xest <<- xprd + kalmangen %*% (z - H %*% xprd)
 pest <<- pprd - kalmangen %*% H %*% pprd
 y <- H %*% xest # compute the estimated measurements
 }
 xest <- matrix(0, 6, 1)
 pest <- matrix(0, 6, 6)
 N <- nrow(pos)
 y <- matrix(NA, N, 2)
 for (i in 1:N) y[i,] <- kalmanfilter(t(pos[i,, drop=FALSE]))
 invisible(y)
}
Improved in R

```
KalmanR <- function(pos) {
  kalmanfilter <- function(z) {
    xprd <- A %*% xest # predicted state and covariance
    pprd <- A %*% pest %*% t(A) + Q
    S <- H %*% t(pprd) %*% t(H) + R # estimation
    B <- H %*% t(pprd)
    kalmangain <- t(solve(S, B))
    xest <- xprd + kalmangain %*% (z - H %*% xprd) # est. state and covariance
    pest <- pprd - kalmangain %*% H %*% pprd # ass. to vars in parent env
    y <- H %*% xest # compute the estimated measurements
  }
  dt <- 1
  A <- matrix(c(1, 0, dt, 0, 0, 0, 0, 1, 0, dt, 0, 0, 0, 1, 0, 0, 0, 1), 6, 6, byrow=TRUE)
  H <- matrix(c(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1), 2, 6, byrow=TRUE)
  Q <- diag(6)
  R <- 1000 * diag(2)
  N <- nrow(pos)
  Y <- matrix(NA, N, 2)
  xest <- matrix(0, 6, 1)
  pest <- matrix(0, 6, 6)
  for (i in 1:N) Y[i,] <- kalmanfilter(t(pos[i,], drop=FALSE))
  invisible(Y)
}
```
AND NOW IN C++

// [[Rcpp::depends(RcppArmadillo)]]

#include <RcppArmadillo.h>

using namespace arma;

class Kalman {
private:
 mat A, H, Q, R, xest, pest;
 double dt;

public:
 // constructor, sets up data structures
 Kalman() : dt(1.0) {
 A.eye(6,6);
 A(0,2) = A(1,3) = A(2,4) = A(3,5) = dt;
 H.zeros(2,6);
 H(0,0) = H(1,1) = 1.0;
 Q.eye(6,6);
 R = 1000 * eye(2,2);
 xest.zeros(6,1);
 pest.zeros(6,6);
 }

 // cont. below
// continued
// sole member function: estimate model
mat estimate(const mat & Z) {
 unsigned int n = Z.n_rows, k = Z.n_cols;
 mat Y = zeros(n, k);
 mat xprd, pprd, S, B, kalmangain;
 colvec z, y;

 for (unsigned int i = 0; i<n; i++) {
 z = Z.row(i).t();
 // predicted state and covariance
 xprd = A * xest;
 pprd = A * pest * A.t() + Q;
 // estimation
 S = H * pprd.t() * H.t() + R;
 B = H * pprd.t();
 kalmangain = (solve(S, B)).t();
 // estimated state and covariance
 xest = xprd + kalmangain * (z - H * xprd);
 pest = pprd - kalmangain * H * pprd;
 // compute the estimated measurements
 y = H * xest;
 Y.row(i) = y.t();
 }
 return Y;
}
And now in C++

And the call:

```cpp
// [[Rcpp::export]]
mat KalmanCpp(mat Z) {
    Kalman K;
    mat Y = K.estimate(Z);
    return Y;
}
```
library(rbenchmark)
Rcpp::sourceCpp("code/kalman.cpp")
source("code/kalman.R")
p <- as.matrix(read.table("code/pos.txt",
 header=FALSE,
 col.names=c("x","y")))
benchmark(KalmanR(p), FirstKalmanR(p), KalmanCpp(p),
 order="relative", replications=500)[,1:4]

test replications elapsed relative
3 KalmanCcpp(p) 500 3.910 1.000
1 KalmanR(p) 500 17.999 4.603
2 FirstKalmanR(p) 500 18.270 4.673
Sparse Matrix Case Study

A nice example for work on R objects.

```r
library(Matrix)
i <- c(1,3:8)
j <- c(2,9,6:10)
x <- 7 * (1:7)
A <- sparseMatrix(i, j, x = x)
A
```

```
## 8 x 10 sparse Matrix of class "dgCMatrix"
##
## [1,] . 7 . . . . . . . .
## [2,] . . . . . . . . . .
## [3,] . . . . . . . . 14 .
## [4,] . . . 21 . . . .
## [5,] . . . 28 . . . .
## [6,] . . . 35 . . . .
## [7,] . . . . . . . 42 .
## [8,] . . . . . . . . 49
```
Sparse Matrix

\[\text{str}(A) \]

```r
## Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
## ..@ i : int [1:7] 0 3 4 5 2 6 7
## ..@ p : int [1:11] 0 0 1 1 1 2 3 4 6 ...
## ..@ Dim : int [1:2] 8 10
## ..@ Dimnames:List of 2
## .. ..$ : NULL
## .. ..$ : NULL
## ..@ x : num [1:7] 7 21 28 35 14 42 49
## ..@ factors : list()
```

Note how the construction was in terms of \(<i, j, x> \), yet the representation is in terms of \(<i, p, x> \) – CSC format.
```cpp
#include <RcppArmadillo.h>

using namespace Rcpp;
using namespace arma;

// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
sp_mat armaEx(S4 mat, bool show) {
    IntegerVector dims = mat.slot("Dim");
    arma::urowvec i = Rcpp::as<arma::urowvec>(mat.slot("i"));
    arma::urowvec p = Rcpp::as<arma::urowvec>(mat.slot("p"));
    arma::vec x = Rcpp::as<arma::vec>(mat.slot("x"));

    int nrow = dims[0], ncol = dims[1];
    arma::sp_mat res(i, p, x, nrow, ncol);
    if (show) Rcpp::Rcout << res << std::endl;
    return res;
}
```
Sparse Matrix

Rcpp::sourceCpp('code/arma_sparse.cpp')
B <- armaEx(A, TRUE)

[matrix size: 8x10; n_nonzero: 7; density: 8.75%]
##
(0, 1) 7.0000
(3, 5) 21.0000
(4, 6) 28.0000
(5, 7) 35.0000
(2, 8) 14.0000
(6, 8) 42.0000
(7, 9) 49.0000
Overview
Among the 1000+ CRAN packages using Rcpp, several wrap Machine Learning libraries.

Here are three:

- RcppShark based on Shark
- RcppMLPACK based on MLPACK
- dlib based on DLib
High-level:

- Written by Ryan Curtin et al, Georgia Tech
- Uses Armadillo, and like Armadillo, “feels right”
- Qiang Kou created ‘RcppMLPACK v1’, it is on CRAN
- “Simple” packaging by embedding, copy of MLPACK now stale
High-level:

- A few of us are trying to update RcppMLPACK to ‘v2’
- Instead of embedding, an external library is used
- This makes deployment a little trickier on Windows and macOS
- MLPACK uses Boost, this created issues with (older) RStudio builds
List of Algorithms:

- Collaborative filtering (with many decomposition techniques)
- Decision stumps (one-level decision trees)
- Density estimation trees
- Euclidean minimum spanning tree calculation
- Gaussian mixture models
- Hidden Markov models
- Kernel Principal Components Analysis (optionally with sampling)
- k-Means clustering (with several accelerated algorithms)
- Least-angle regression (LARS/LASSO)
- Linear regression (simple least-squares)
- Local coordinate coding
- Locality-sensitive hashing for approximate nearest neighbor search
- Logistic regression
- Max-kernel search
- Naive Bayes classifier
- Nearest neighbor search with dual-tree algorithms
- Neighborhood components analysis
- Non-negative matrix factorization
- Perceptrons
- Principal components analysis (PCA)
- RADICAL (independent components analysis)
- Range search with dual-tree algorithms
- Rank-approximate nearest neighbor search
- Sparse coding with dictionary learning
```cpp
#include "RcppMLPACK.h"

using namespace mlpack::kmeans;
using namespace Rcpp;

// [[Rcpp::depends(RcppMLPACK)]]
// [[Rcpp::export]]
List cppKmeans(const arma::mat& data, const int& clusters) {

    arma::Col<size_t> assignments;
    KMeans<> k; // Initialize with the default arguments.
    k.Cluster(data, clusters, assignments);

    return List::create()
        (Named("clusters") = clusters,
         Named("result")  = assignments);
}
```
Timing

Table 1: Benchmarking result

<table>
<thead>
<tr>
<th>Test</th>
<th>Replications</th>
<th>Elapsed</th>
<th>Relative</th>
<th>User.self</th>
<th>Sys.self</th>
</tr>
</thead>
<tbody>
<tr>
<td>mlKmeans(t(wine), 3)</td>
<td>100</td>
<td>0.028</td>
<td>1.000</td>
<td>0.028</td>
<td>0.000</td>
</tr>
<tr>
<td>kmeans(wine, 3)</td>
<td>100</td>
<td>0.947</td>
<td>33.821</td>
<td>0.484</td>
<td>0.424</td>
</tr>
</tbody>
</table>

Table taken 'as is' from RcppMLPACK vignette.
#include <RcppMLPACK.h> // MLPACK, Rcpp and RcppArmadillo

// particular algorithm used here
#include <mlpack/methods/linear_regression/linear_regression.hpp>

// [[Rcpp::export]]
Rcpp::List linearRegression(arma::mat& matX,
 arma::vec& vecY,
 const double lambda = 0.0,
 const bool intercept = true) {

 matX = matX.t();
 mlpack::regression::LinearRegression lr(matX, vecY, lambda, intercept);
 arma::vec parameters = lr.Parameters();
 arma::vec fittedValues(vecY.n_elem);
 lr.Predict(matX, fittedValues);

 return Rcpp::List::create(Rcpp::Named("parameters") = parameters,
 Rcpp::Named("fitted") = fittedValues);
}
suppressMessages(library(utils))
library(RcppMLPACK)
data("trees", package="datasets")
X <- with(trees, cbind(log(Girth), log(Height)))
y <- with(trees, log(Volume))
lmfit <- lm(y ~ X)
summary(fitted(lmfit))

mlfit <- with(trees, linearRegression(X, y))
summary(mlfit)

all.equal(unname(fitted(lmfit)), c(mlfit[["fitted"]]))

[1] TRUE
RcppMLPACK: Logistic Regression Example

```cpp
#include <RcppMLPACK.h>  // MLPACK, Rcpp and RcppArmadillo
#include <mlpack/methods/logistic_regression/logistic_regression.hpp>  // algo use here

// [[Rcpp::export]]
Rcpp::List logisticRegression(
    const arma::mat& train,
    const arma::irowvec& labels,
    const Rcpp::Nullable<Rcpp::NumericMatrix>& test = R_NilValue) {

    // MLPACK wants Row<size_t> which is an unsigned representation that R does not have
    arma::Row<size_t> labelsur, resultsur;

    // TODO: check that all values are non-negative
    labelsur = arma::conv_to<arma::Row<size_t>>::from(labels);

    // Initialize with the default arguments. TODO: support more arguments>
    mlpack::regression::LogisticRegression<> lrc(train, labelsur);
    arma::vec parameters = lrc.Parameters();

    Rcpp::List return_val;
    if (test.isNotNull()) {
        arma::mat test2 = Rcpp::as<arma::mat>(test);
        lrc.Classify(test2, resultsur);
        arma::vec results = arma::conv_to<arma::vec>::from(resultsur);
        return_val = Rcpp::List::create(Rcpp::Named("parameters") = parameters,
                                        Rcpp::Named("results") = results);
    } else {
        return_val = Rcpp::List::create(Rcpp::Named("parameters") = parameters);
    }
    return return_val;
}
```
suppressMessages(library(utils))
library(RcppMLPACK)
example(logisticRegression)

##
lgstcR> data(trainSet)
##
lgstcR> mat <- t(trainSet[, -5]) ## train data, transpose and removing class labels
##
lgstcR> lab <- trainSet[, 5] ## class labels for train set
##
lgstcR> logisticRegression(mat, lab)
$parameters
##
lgstcR> testMat <- t(testSet[, -5]) ## test data
##
lgstcR> logisticRegression(mat, lab, testMat)
$parameters
##
$results
[1] 0 0 0 1 1 1 1
#include "RcppMLPACK.h"

using namespace Rcpp;
using namespace mlpack;
using namespace mlpack::neighbor;
using namespace mlpack::metric;
using namespace mlpack::tree;

// [[Rcpp::depends(RcppMLPACK)]]
// [[Rcpp::export]]
List nn(const arma::mat& data, const int k) {
 // using a test from MLPACK 1.0.10 file src/mlpack/tests/allknn_test.cpp
 CoverTree<LMetric<2>, FirstPointIsRoot, NeighborSearchStat<NearestNeighborSort> > tree =
 CoverTree<LMetric<2>, FirstPointIsRoot, NeighborSearchStat<NearestNeighborSort> >(data);

 NeighborSearch<NearestNeighborSort, LMetric<2>,
 CoverTree<LMetric<2>, FirstPointIsRoot, NeighborSearchStat<NearestNeighborSort> >,
 NeighborSearchStat<NearestNeighborSort>, LMetric<2>,
 CoverTree<LMetric<2>, FirstPointIsRoot, NeighborSearchStat<NearestNeighborSort> > >
 coverTreeSearch(&tree, data, true);

 arma::Mat<size_t> coverTreeNeighbors;
 arma::mat coverTreeDistances;
 coverTreeSearch.Search(k, coverTreeNeighbors, coverTreeDistances);

 return List::create(Named("clusters") = coverTreeNeighbors,
 Named("result") = coverTreeDistances);
}
More
Questions?

Contact

http://dirk.eddelbuettel.com

dirk@eddelbuettel.com

@eddelbuettel