
Rcpp: Seamless R and C++ Integration

Dirk Eddelbuettel
Debian Project

Romain François
R Enthusiasts

Abstract

The Rcpp package simplifies integrating C++ code with R. It provides a consistent
C++ class hierarchy that maps various types of R objects (vectors, matrices, functions,
environments, . . .) to dedicated C++ classes. Object interchange between R and C++ is
managed by simple, flexible and extensible concepts which include broad support for C++
Standard Template Library idioms. C++ code can both be compiled, linked and loaded
on the fly, or added via packages. Flexible error and exception code handling is provided.
Rcpp substantially lowers the barrier for programmers wanting to combine C++ code
with R.

Keywords: R, C++, foreign function interface, .Call.

1. Introduction

R (R Development Core Team 2011a) is an extensible system. The ‘Writing R Extensions’
manual (R Development Core Team 2011d) describes in detail how to augment R with com-
piled code, focusing mostly on the C language, but also mentioning C++ and Fortran. The R
application programming interface (API) described in ‘Writing R Extensions’ is based on a set
of functions and macros operating on SEXP (pointers to SEXPREC or ‘S expression’ structures,
see the ‘R Language’ manual R Development Core Team 2011c for details) which are the
internal representation of R objects. In this article, we discuss the functionality of the Rcpp
package (Eddelbuettel and François 2011a), which simplifies the usage of C++ code in R.
Combining R and C++ is not a new idea, so we start with a short review of other approaches
and give some historical background on the development of Rcpp.

The Rcpp package provides a consistent API for seamlessly accessing, extending or modifying
R objects at the C++ level. The API is a rewritten and extented version of an earlier API
which we refer to as the ‘classic Rcpp API’. It is still provided in the RcppClassic package
(Eddelbuettel and François 2011c) to ensure compatibility, but its use is otherwise deprecated.
All new development should use the richer second API which is enclosed in the Rcpp C++
namespace, and corresponds to the redesigned code base. This article highlights some of
the key design and implementation choices of the new API: Lightweight encapsulation of R
objects in C++ classes, automatic garbage collection strategy, code inlining, data interchange
between R and C++, and error handling.

Several examples are included to illustrate the benefits of using Rcpp as opposed to the tradi-
tional R API. Many more examples are available within the package, both as explicit examples
and as part of the numerous unit tests. The Rcpp package is available from the Comprehensive
R Archive Network (CRAN) at http://CRAN.R-project.org/package=Rcpp.

http://CRAN.R-project.org/package=Rcpp

2 Rcpp: Seamless R and C++ Integration

This vignette corresponds to the paper published in the Journal of Statistical Software. It is
currently still identical to the published paper. Over time, this vignette version may receive
minor updates. For citations, please use the publication (Eddelbuettel and François 2011b).

This version corresponds to Rcpp version 0.9.6 and was typeset on July 27, 2011.

1.1. Historical context

Rcpp first appeared in 2005 as a contribution (by Dominick Samperi) to the RQuantLib
package (Eddelbuettel and Nguyen 2011) and became a CRAN package in early 2006. Several
releases (all by Samperi) followed in quick succession under the name Rcpp. The package was
then renamed to RcppTemplate; several more releases followed during 2006 under the new
name. However, no further releases were made during 2007, 2008 or most of 2009. Following
a few updates in late 2009, it was withdrawn from CRAN.

Given the continued use of the package, Eddelbuettel decided to revitalize it. New releases,
using the initial name Rcpp, started in November 2008. These included an improved build
and distribution process, additional documentation, and new functionality—while retaining
the existing ‘classic Rcpp’ interface. While not described here, this API will be provided for
the foreseeable future via the RcppClassic package.

Reflecting evolving C++ coding standards (see Meyers 2005), Eddelbuettel and François
started a significant redesign of the code base in 2009. This added numerous new features
several of which are described in this article as well as in multiple vignettes included with the
package. This new API is our current focus, and we intend to both extend and support the
API in future development of the Rcpp package.

1.2. Related work

Integration of C++ and R has been addressed by several authors; the earliest published
reference is probably Bates and DebRoy (2001). An unpublished paper by Java et al. (2007)
expresses several ideas that are close to some of our approaches, though not yet fully fleshed
out. The Rserve package (Urbanek 2003, 2011) acts as a socket server for R. On the server
side, Rserve translates R data structures into a binary serialization format and uses TCP/IP
for transfer. On the client side, objects are reconstructed as instances of Java or C++ classes
that emulate the structure of R objects.

The packages rcppbind (Liang 2008), RAbstraction (Armstrong 2009a) and RObjects (Arm-
strong 2009b) are all implemented using C++ templates. None of them have matured to the
point of a CRAN release. CXXR (Runnalls 2009) approaches this topic from the other direc-
tion: Its aim is to completely refactor R on a stronger C++ foundation. CXXR is therefore
concerned with all aspects of the R interpreter, read-eval-print loop (REPL), and threading;
object interchange between R and C++ is but one part. A similar approach is discussed
by Temple Lang (2009a) who suggests making low-level internals extensible by package de-
velopers in order to facilitate extending R. Temple Lang (2009b), using compiler output for
references on the code in order to add bindings and wrappers, offers a slightly different angle.

1.3. Rcpp use cases

The core focus of Rcpp has always been on helping the programmer to more easily add C++-
based functions. Here, we use ‘function’ in the standard mathematical sense of providing

Dirk Eddelbuettel, Romain François 3

results (output) given a set of parameters or data (input). This was facilitated from the
earliest releases using C++ classes for receiving various types of R objects, converting them
to C++ objects and allowing the programmer to return the results to R with relative ease.

This API therefore supports two typical use cases. First, existing R code may be replaced by
equivalent C++ code in order to reap performance gains. This case is conceptually easy when
there are (built- or run-time) dependencies on other C or C++ libraries. It typically involves
setting up data and parameters—the right-hand side components of a function call—before
making the call in order to provide the result that is to be assigned to the left-hand side.
Second, Rcpp facilitates calling functions provided by other libraries. The use resembles the
first case but with an additional level of abstraction: data and parameters are passed via
Rcpp to a function set-up to call code from an external library.

Apart from this ‘vertical mode’ of calling C++ from R, additional features in the new API
also support a more ‘horizontal mode’ of directly calling Rcpp objects. This was motivated
by the needs of other projects such as RInside (Eddelbuettel and François 2010) for easy
embedding of R in C++ applications and RProtoBuf (François and Eddelbuettel 2011b) to
interface with the Protocol Buffers library. This use will be touched upon in the next section,
but a more detailed discussion is outside the scope of this paper. Lastly, the more recent
additions ‘Rcpp modules’ and ‘Rcpp sugar’ also expand the use cases; see Section 9 below.

2. The Rcpp API

2.1. A first example

We can illustrate the Rcpp API by revisiting the convolution example from the ‘Writing R
Extensions’ manual (R Development Core Team 2011d, Chapter 5). Using Rcpp, this function
can be written as follows:

#include <Rcpp.h>

RcppExport SEXP convolve3cpp(SEXP a, SEXP b) {

Rcpp::NumericVector xa(a);

Rcpp::NumericVector xb(b);

int n_xa = xa.size(), n_xb = xb.size();

int nab = n_xa + n_xb - 1;

Rcpp::NumericVector xab(nab);

for (int i = 0; i < n_xa; i++)

for (int j = 0; j < n_xb; j++)

xab[i + j] += xa[i] * xb[j];

return xab;

}

We can highlight several aspects.

1. Only a single header file Rcpp.h is needed to use the Rcpp API.

4 Rcpp: Seamless R and C++ Integration

2. RcppExport is a convenience macro helping with calling a C function from C++.

3. Given two arguments of type SEXP, a third is returned (as using only SEXP types for
input and output is prescribed by the .Call() interface of the R API).

4. Both inputs are converted to C++ vector types provided by Rcpp (and we have more
to say about these conversions below).

5. The usefulness of these classes can be seen when we query the vectors directly for
their size—using the size() member function—in order to reserve a new result type of
appropriate length, and with the use of the operator[] to extract and set individual
elements of the vector.

6. The computation itself is straightforward embedded looping just as in the original ex-
amples in the ‘Writing R Extensions’ manual (R Development Core Team 2011d).

7. The return conversion from the NumericVector to the SEXP type is also automatic.

We argue that this Rcpp-based usage is much easier to read, write and debug than the C
macro-based approach supported by R itself.

2.2. Rcpp class hierarchy

The Rcpp::RObject class is the basic class of the new Rcpp API. An instance of the RObject

class encapsulates an R object (itself represented by the R type SEXP), exposes methods that
are appropriate for all types of objects and transparently manages garbage collection.

The most important aspect of the RObject class is that it is a very thin wrapper around the
SEXP it encapsulates. The SEXP is indeed the only data member of an RObject. The RObject

class does not interfere with the way R manages its memory and does not perform copies of
the object into a suboptimal C++ representation. Instead, it merely acts as a proxy to the
object it encapsulates so that methods applied to the RObject instance are relayed back to
the SEXP in terms of the standard R API.

The RObject class takes advantage of the explicit life cycle of C++ objects to manage ex-
posure of the underlying R object to the garbage collector. The RObject effectively treats
its underlying SEXP as a resource. The constructor of the RObject class takes the necessary
measures to guarantee that the underlying SEXP is protected from the garbage collector, and
the destructor assumes the responsibility to withdraw that protection.

By assuming the entire responsibility of garbage collection, Rcpp relieves the programmer
from writing boiler plate code to manage the protection stack with PROTECT and UNPROTECT

macros.

The RObject class defines a set of member functions applicable to any R object, regardless
of its type. This ranges from querying properties of the object (isNULL, isObject, isS4),
management of the attributes (attributeNames, hasAttribute, attr) to handling of slots1

(hasSlot, slot).

1Member functions dealing with slots are only applicable to S4 objects; otherwise an exception is thrown.

Dirk Eddelbuettel, Romain François 5

2.3. Derived classes

Internally, an R object must have one type amongst the set of predefined types, commonly
referred to as SEXP types. The ‘R Internals’ manual (R Development Core Team 2011b)
documents these various types. Rcpp associates a dedicated C++ class for most SEXP types,
and therefore only exposes functionality that is relevant to the R object that it encapsulates.

For example Rcpp::Environment contains member functions to manage objects in the asso-
ciated environment. Similarly, classes related to vectors—IntegerVector, NumericVector,
RawVector, LogicalVector, CharacterVector, GenericVector (also known as List) and
ExpressionVector—expose functionality to extract and set values from the vectors.

The following sections present typical uses of Rcpp classes in comparison with the same code
expressed using functions and macros of the R API.

2.4. Numeric vectors

The next code snippet is taken from ‘Writing R Extensions’ (R Development Core Team
2011d, Section 5.9.1). It allocates a numeric vector of two elements and assigns some values
to it using the R API.

SEXP ab;

PROTECT(ab = allocVector(REALSXP, 2));

REAL(ab)[0] = 123.45;

REAL(ab)[1] = 67.89;

UNPROTECT(1);

Although this is one of the simplest examples in ‘Writing R Extensions’, it seems verbose and
yet it is not obvious at first sight what is happening. Memory is allocated by allocVector;
we must also supply it with the type of data (REALSXP) and the number of elements. Once
allocated, the ab object must be protected from garbage collection. Lastly, the REAL macro
returns a pointer to the beginning of the actual array; its indexing does not resemble either
R or C++.

The code can be simplified using the Rcpp::NumericVector class:

Rcpp::NumericVector ab(2);

ab[0] = 123.45;

ab[1] = 67.89;

The code contains fewer idiomatic decorations. The NumericVector constructor is given the
number of elements the vector contains (2), which hides the call to the allocVector in the
original code example. Also hidden is protection of the object from garbage collection, which
is a behavior that NumericVector inherits from RObject. Values are assigned to the first and
second elements of the vector as NumericVector overloads the operator[].

The snippet can also be written more concisely as a single statement using the create static
member function of the NumericVector class:

Rcpp::NumericVector ab = Rcpp::NumericVector::create(123.45, 67.89);

6 Rcpp: Seamless R and C++ Integration

2.5. Character vectors

A second example deals with character vectors and emulates this R code:

R> c("foo", "bar")

Using the traditional R API, the vector can be allocated and filled as such:

SEXP ab;

PROTECT(ab = allocVector(STRSXP, 2));

SET_STRING_ELT(ab, 0, mkChar("foo"));

SET_STRING_ELT(ab, 1, mkChar("bar"));

UNPROTECT(1);

This imposes on the programmer knowledge of PROTECT, UNPROTECT, SEXP, allocVector,
SET_STRING_ELT, and mkChar. Using the Rcpp::CharacterVector class, we can express the
same code more concisely:

Rcpp::CharacterVector ab(2);

ab[0] = "foo";

ab[1] = "bar";

3. R and C++ data interchange

In addition to classes, the Rcpp package contains two functions to perform conversion of C++
objects to R objects and back.

3.1. C++ to R: wrap

The C++ to R conversion is performed by the Rcpp::wrap templated function. It uses
advanced template metaprogramming techniques2 to convert a wide and extensible set of
types and classes to the most appropriate type of R object. The signature of the wrap

template is as follows:

template <typename T> SEXP wrap(const T& object);

The templated function takes a reference to a ‘wrappable’ object and converts this object into
a SEXP, which is what R expects. Currently wrappable types are:

� primitive types: int, double, bool, . . . which are converted into the corresponding
atomic R vectors;

� std::string objects which are converted to R atomic character vectors;

� Standard Template Library (STL) containers such as std::vector<T> or std::map<T>,
as long as the template parameter type T is itself wrappable;

2A discussion of template metaprogramming (Vandevoorde and Josuttis 2003; Abrahams and Gurtovoy
2004) is beyond the scope of this article.

Dirk Eddelbuettel, Romain François 7

� STL maps which use std::string for keys (e.g., std::map<std::string, T>); as long
as the type T is wrappable;

� any type that implements implicit conversion to SEXP through the operator SEXP();

� any type for which the wrap template is fully specialized.

Wrappability of an object type is resolved at compile time using modern techniques of template
meta programming and class traits. The Rcpp-extending vignette in the Rcpp package
discusses in depth how to extend wrap to third-party types. The RcppArmadillo (François,
Eddelbuettel, and Bates 2011) and RcppGSL (François and Eddelbuettel 2011a) packages
feature several examples. The following segment of code illustrates that the design allows
composition:

RcppExport SEXP someFunction() {

std::vector<std::map<std::string,int> > v;

std::map<std::string, int> m1;

std::map<std::string, int> m2;

m1["foo"]=1;

m1["bar"]=2;

m2["foo"]=1;

m2["bar"]=2;

m2["baz"]=3;

v.push_back(m1);

v.push_back(m2);

return Rcpp::wrap(v);

}

In this example, the STL types vector and map are used to create a list of two named
vectors. The member function push_back insert a given element into a vector. This example
is equivalent to the result of this R statement:

list(c(bar = 2L, foo = 1L), c(bar = 2L, baz = 3L, foo = 1L))

3.2. R to C++: as

The reverse conversion from an R object to a C++ object is implemented by variations of the
Rcpp::as template whose signature is:

template <typename T> T as(SEXP x) throw(not_compatible);

It offers less flexibility and currently handles conversion of R objects into primitive types (e.g.,
bool, int, std::string, . . .), STL vectors of primitive types (e.g., std::vector<bool>,
std::vector<double>, . . .) and arbitrary types that offer a constructor that takes a SEXP.
In addition as can be fully or partially specialized to manage conversion of R data structures

8 Rcpp: Seamless R and C++ Integration

to third-party types as can be seen for example in the RcppArmadillo package which eases
transfer of R matrices and vectors to the optimised data structures in the Armadillo linear
algebra library (Sanderson 2010).

3.3. Implicit use of converters

The converters offered by wrap and as provide a very useful framework to implement code
logic in terms of C++ data structures and then explicitly convert data back to R.

In addition, the converters are also used implicitly in various places in the Rcpp API. Consider
the following code that uses the Rcpp::Environment class to interchange data between C++
and R. It accesses a vector x from the global environment, creates an STL map of string types
and pushes this back to R:

Rcpp::Environment global = Rcpp::Environment::global_env();

std::vector<double> vx = global["x"];

std::map<std::string, std::string> map;

map["foo"] = "oof";

map["bar"] = "rab";

global["y"] = map;

In the first part of the example, the code extracts a std::vector<double> from the global
environment. In order to achieve this, the operator[] of Environment uses the proxy pattern
(Meyers 1995) to distinguish between left hand side (LHS) and right hand side (RHS) use.

The output of the operator[] is an instance of the nested class Environment::Binding.
This class defines a templated implicit conversion operator. It is this conversion operator
which allows a Binding object to be assigned to any type that Rcpp::as is able to handle.

In the last part of the example, the LHS use of the Binding instance is implemented through its
assignment operator. This is also templated and uses Rcpp::wrap to perform the conversion
to a SEXP that can be assigned to the requested symbol in the global environment.

The same mechanism is used throughout the API. Examples include access/modification of
object attributes, slots, elements of generic vectors (lists), function arguments, nodes of dotted
pair lists, language calls and more.

4. Function calls

The next example shows how to use Rcpp to emulate the R code rnorm(10L, sd = 100.0).
As shown in Table 1, the code can be expressed in several ways in either Rcpp or the standard
R API. The first version shows the use of the Environment and Function classes by Rcpp.
The second version shows the use of the Language class, which manages calls (LANGSXP).
For comparison, we also show both versions using the standard R API. Finally, we also show
a variant using ‘Rcpp sugar’, a topic which is discussed in Sections 8 and 9 below.

This example illustrates that the Rcpp API permits us to work with code that is easier to
read, write and maintain. More examples are available as part of the documentation included
in the Rcpp package, as well as among its over seven hundred and fifty unit tests.

Dirk Eddelbuettel, Romain François 9

Environment: Using the Rcpp API

Environment stats("package:stats");

Function rnorm = stats["rnorm"];

return rnorm(10,

Named("sd", 100.0));

Environment: Using the R API

SEXP stats = PROTECT(

R_FindNamespace(

mkString("stats")));

SEXP rnorm = PROTECT(

findVarInFrame(stats,

install("rnorm")));

SEXP call = PROTECT(

LCONS(rnorm,

CONS(ScalarInteger(10),

CONS(ScalarReal(100.0),

R_NilValue))));

SET_TAG(CDDR(call),install("sd"));

SEXP res = PROTECT(eval(call,

R_GlobalEnv));

UNPROTECT(4);

return res;

Language: Using the Rcpp API

Language call("rnorm", 10,

Named("sd",100.0));

return call.eval();

Language: Using the R API

SEXP call = PROTECT(

LCONS(install("rnorm"),

CONS(ScalarInteger(10),

CONS(ScalarReal(100.0),

R_NilValue))));

SET_TAG(CDDR(call),install("sd"));

SEXP res = PROTECT(eval(call,

R_GlobalEnv));

UNPROTECT(2);

return res;

Sugar: Using the Rcpp API

RNGScope scope;

return rnorm(10, 0, 100);

Sugar: Using the R API

(not applicable)

Table 1: Rcpp versus the R API: Five ways of calling rnorm(10L, sd = 100) in C/C++.

Note that we have removed the Rcpp:: prefix for readability; this corresponds to adding a directive
using namespace Rcpp; in the code. The versions that use callbacks to R do not require handling
of the state of the random number generator. The version that uses Rcpp sugar requires it, which is
done via the instantiation of the RNGScope variable.

5. Using code ‘inline’

Extending R with compiled code requires a mechanism for reliably compiling, linking, and
loading the code. While using a package is preferable in the long run, it may be too involved
for quick explorations. An alternative is provided by the inline package (Sklyar et al. 2010)

10 Rcpp: Seamless R and C++ Integration

which compiles, links and loads a C, C++ or Fortran function—directly from the R prompt
using simple functions cfunction and cxxfunction. The latter provides an extension which
works particularly well with Rcpp via so-called ‘plugins’ which provide information about
additional header file and library locations.

The use of inline is possible as Rcpp can be installed and updated just like any other R
package using, for examples, the install.packages() function for initial installation as well
as update.packages() for upgrades. So even though R/C++ interfacing would otherwise
require source code, the Rcpp library is always provided ready for use as a pre-built library
through the CRAN package mechanism.3

The library and header files provided by Rcpp for use by other packages are installed along
with the Rcpp package. The LinkingTo: Rcpp directive in the DESCRIPTION file lets R
properly reference the header files. The Rcpp package provides appropriate information for
the -L switch needed for linking via the function Rcpp:::LdFlags(). It can be used by
Makevars files of other packages, and inline makes use of it internally so that all of this is
done behind the scenes without the need for explicitly setting compiler or linker options.

The convolution example provided above can be rewritten for use by inline as shown below.
The function body is provided by the R character variable src, the function header is defined
by the argument signature, and we only need to enable plugin = "Rcpp" to obtain a new
R function fun based on the C++ code in src:

R> src <- '

+ Rcpp::NumericVector xa(a);

+ Rcpp::NumericVector xb(b);

+ int n_xa = xa.size(), n_xb = xb.size();

+

+ Rcpp::NumericVector xab(n_xa + n_xb - 1);

+ for (int i = 0; i < n_xa; i++)

+ for (int j = 0; j < n_xb; j++)

+ xab[i + j] += xa[i] * xb[j];

+ return xab;

+ '

R> fun <- cxxfunction(signature(a = "numeric", b = "numeric"),

+ src, plugin = "Rcpp")

R> fun(1:3, 1:4)

[1] 1 4 10 16 17 12

With one assignment to the R variable src, and one call of the R function cxxfunction

(provided by the inline package), we have created a new R function fun that uses the C++
code we assigned to src—and all this functionality can be used directly from the R prompt
making prototyping with C++ functions straightforward.

3This presumes a platform for which pre-built binaries are provided. Rcpp is available in binary form for
Windows and OS X users from CRAN, and as a .deb package for Debian and Ubuntu users. For other systems,
the Rcpp library is automatically built from source during installation or upgrades.

Dirk Eddelbuettel, Romain François 11

6. Using Standard Template Library algorithms

The STL offers a variety of generic algorithms designed to be used on ranges of elements
(Plauger et al. 2000). A range is any sequence of objects that can be accessed through
iterators or pointers. All Rcpp classes from the new API representing vectors (including
lists) can produce ranges through their member functions begin() and end(), effectively
supporting iterating over elements of an R vector.

The following code illustrates how Rcpp might be used to emulate a simpler4 version of lapply
using the transform algorithm from the STL.

R> src <- '

+ Rcpp::List input(data);

+ Rcpp::Function f(fun);

+ Rcpp::List output(input.size());

+ std::transform(input.begin(), input.end(), output.begin(), f);

+ output.names() = input.names();

+ return output;

+ '

R> cpp_lapply <- cxxfunction(signature(data = "list", fun = "function"),

+ src, plugin = "Rcpp")

We can now use this cpp_lapply function to calculate a summary of each column of the
faithful data set included with R.

R> cpp_lapply(faithful, summary)

$eruptions

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.600 2.163 4.000 3.488 4.454 5.100

$waiting

Min. 1st Qu. Median Mean 3rd Qu. Max.

43.0 58.0 76.0 70.9 82.0 96.0

7. Error handling

Code that uses both R and C++ has to deal with two distinct error handling models. Rcpp
simplifies this and allows both systems to work together.

7.1. C++ exceptions in R

The internals of the R condition mechanism and the implementation of C++ exceptions are
both based on a layer above POSIX jumps. These layers both assume total control over the
call stack and should not be used together without extra precaution. Rcpp contains facilities

4The version of lapply does not allow use of the ellipsis (...).

12 Rcpp: Seamless R and C++ Integration

to combine both systems so that C++ exceptions are caught and recycled into the R condition
mechanism.

Rcpp defines the BEGIN_RCPP and END_RCPP macros that should be used to bracket code that
might throw C++ exceptions.

RcppExport SEXP fun(SEXP x) {

BEGIN_RCPP

int dx = Rcpp::as<int>(x);

if(dx > 10)

throw std::range_error("too big");

return Rcpp::wrap(dx * dx);

END_RCPP

}

The macros are simply defined to avoid code repetition. They expand to simple try/catch
blocks so that the above example becomes:

RcppExport SEXP fun(SEXP x) {

try {

int dx = Rcpp::as<int>(x);

if(dx > 10)

throw std::range_error("too big");

return Rcpp::wrap(dx * dx);

} catch(std::exception& __ex__) {

forward_exception_to_r(__ex__);

} catch(...) {

::Rf_error("c++ exception (unknown reason)");

}

}

Using BEGIN_RCPP and END_RCPP—or the expanded versions—guarantees that the stack is
first unwound in terms of C++ exceptions, before the problem is converted to the standard
R error management system using the function Rf_error of the R API.

The forward_exception_to_r function uses run-time type information to extract informa-
tion about the class of the C++ exception and its message so that dedicated handlers can be
installed on the R side.

R> f <- function(x) .Call("fun", x)

R> tryCatch(f(12), "std::range_error" = function(e) { conditionMessage(e) })

[1] "too big"

R> tryCatch(f(12), "std::range_error" = function(e) { class(e) })

[1] "std::range_error" "C++Error" "error" "condition"

Dirk Eddelbuettel, Romain François 13

A serious limitation of this approach is the lack of support for calling handlers. R calling
handlers are also based on POSIX jumps, and using both calling handlers from the R engine
as well C++ exception forwarding might lead to undetermined results. Future versions of
Rcpp might attempt to to improve this issue.

7.2. R errors in C++

R itself currently does not offer C-level mechanisms to deal with errors. To overcome this
problem, Rcpp uses the Rcpp::Evaluator class to evaluate an R expression in an R-level
tryCatch block. The error, if any, that occurs while evaluating the function is then translated
into an C++ exception that can be dealt with using regular C++ try/catch syntax.

An open (and rather hard) problem, however, is posed by the fact that calls into the C API
offered by R cannot be reliably protected. Such calls can always encounter an error condition
of their own triggering a call to Rf_error which will lead to a sudden death of the program.
In particular, neither C++ class destructors nor catch parts of outer try/catch blocks will
be called. This leaves the potential for memory or resource leakage. So while newly written
code can improve on this situation via use of C++ exception handling, existing code calling
the into R C API cannot be amended just by having an outer layer of exception handling
around it.

8. Performance comparison

In this section, we present several different ways to leverage Rcpp to rewrite the convolution
example from ‘Writing R Extensions’ (R Development Core Team 2011d, Chapter 5) first
discussed in Section 2. As part of the redesign of Rcpp, data copy is kept to the absolute
minimum: The RObject class and all its derived classes are just a container for a SEXP object.
We let R perform all memory management and access data though the macros or functions
offered by the standard R API.

The implementation of the operator[] is designed to be as efficient as possible, using both
inlining and caching, but even this implementation is still less efficient than the reference C
implementation described in R Development Core Team (2011d).

Rcpp follows design principles from the STL, and classes such as NumericVector expose
iterators that can be used for sequential scans of the data. Algorithms using iterators are
usually more efficient than those that operate on objects using the operator[]. The following
version of the convolution function illustrates the use of the NumericVector::iterator.

#include <Rcpp.h>

RcppExport SEXP convolve4cpp(SEXP a, SEXP b) {

Rcpp::NumericVector xa(a), xb(b);

int n_xa = xa.size(), n_xb = xb.size();

Rcpp::NumericVector xab(n_xa + n_xb - 1);

typedef Rcpp::NumericVector::iterator vec_iterator;

vec_iterator ia = xa.begin(), ib = xb.begin();

vec_iterator iab = xab.begin();

14 Rcpp: Seamless R and C++ Integration

for (int i = 0; i < n_xa; i++)

for (int j = 0; j < n_xb; j++)

iab[i + j] += ia[i] * ib[j];

return xab;

}

One of the focuses of recent developments of Rcpp is called ‘Rcpp sugar’, and aims to provide
R-like syntax in C++. While a fuller discussion of Rcpp sugar is beyond the scope of this
article, we have included another version of the convolution algorithm based on Rcpp sugar
for illustrative purposes here:

#include <Rcpp.h>

RcppExport SEXP convolve11cpp(SEXP a, SEXP b) {

Rcpp::NumericVector xa(a), xb(b);

int n_xa = xa.size(), n_xb = xb.size();

Rcpp::NumericVector xab(n_xa + n_xb-1, 0.0);

Rcpp::Range r(0, n_xb-1);

for (int i=0; i<n_xa; i++, r++)

xab[r] += Rcpp::noNA(xa[i]) * Rcpp::noNA(xb);

return xab ;

}

Rcpp sugar allows manipulation of entire subsets of vectors at once, thanks to the Range

class. Rcpp sugar uses techniques such as expression templates, lazy evaluation and loop
unrolling to generate very efficient code. The noNA template function marks its argument
to indicates that it does not contain any missing values—an assumption made implicitly by
other versions—allowing sugar to compute the individual operations without having to test
for missing values.

We have benchmarked the various implementations by averaging over 5000 calls of each func-
tion with a and b containing 200 elements each.5 The timings are summarized in Table 2
below.

The first implementation, written in C and using the traditional R API, provides our base
case. It takes advantage of pointer arithmetics and therefore does not to pay the price of
C++ object encapsulation or operator overloading.

The slowest solution illustrates the price of object encapsulation. Calling an overloaded
operator[] as opposed to using direct pointer arithmetics as in the reference case costs
about 29% in performance.

The next implementation uses iterators rather than indexing. Its performance is indistin-
guishable from the base case. This also shows that the use of C++ may not necessarily imply
any performance penalty. Further, C++ iterators can be used to achieve the performance
of C pointers, but without the potential dangers of direct memory access via pointers.

5The code is contained in the directory inst/examples/ConvolveBenchmarks in the Rcpp package.

Dirk Eddelbuettel, Romain François 15

Implementation Time in millisec. Relative to R API

R API (as benchmark) 218
Rcpp sugar 145 0.67
NumericVector::iterator 217 1.00
NumericVector::operator[] 282 1.29

Table 2: Run-time performance of the different convolution examples.

Finally, the fastest implementation uses Rcpp sugar. It performs significantly better than the
base case. Explicit loop unrolling provides us with vectorization at the C++ level which is
responsible for this particular speedup.

9. On-going development

Rcpp is in very active development: Current work in the package (and in packages such as
RcppArmadillo) focuses on further improving interoperability between R and C++. Two core
themes for on-going development are ‘Rcpp sugar’ as well as ‘Rcpp modules’, both of which
are also discussed in more detail in specific vignettes in the Rcpp package.

‘Rcpp sugar’ offers syntactic sugar at the C++ level, including optimized binary operators and
many R functions such as ifelse, sapply, any, head, tail, and more. The main technique
used in Rcpp sugar is expression templates pioneered by the Blitz++ library (Veldhuizen
1998) and since adopted by projects such as Armadillo (Sanderson 2010). Access to most of
the d/p/q/r-variants of the statistical distribution functions has also been added, enabling
the use of expressions such as dnorm(X, m, s) for a numeric vector X and scalars m and s.
This was shown in Table 1 in Section 4 above where the R expression rnorm(10L, sd = 100)

was rewritten in C++ as rnorm(10, 0, 100). Note that C++ semantics require the second
parameter to be used here, which is different from the R case.

‘Rcpp modules’ allows programmers to expose C++ functions and classes at the R level. This
offers access to C++ code from R using even less interface code than by writing accessor func-
tions. Modules are inspired by the Boost.Python library (Abrahams and Grosse-Kunstleve
2003) which provides similar functionality for Python. C++ classes exposed by Rcpp modules
are shadowed by reference classes which have been introduced in R 2.12.0.

10. Summary

The Rcpp package presented in this paper greatly simplifies integration of compiled C++ code
with R. Rcpp provides a C++ class hierarchy which allows manipulation of R data structures
in C++ using member functions and operators directly related to the type of object being used,
thereby reducing the level of expertise required to master the various functions and macros
offered by the internal R API. The classes assume the entire responsibility of garbage collection
of objects, relieving the programmer from book-keeping operations with the protection stack
and enabling him/her to focus on the underlying problem.

Data interchange between R and C++ code is performed by the wrap() and as() template
functions. They allow the programmer to write logic in terms of C++ data structures,

16 Rcpp: Seamless R and C++ Integration

and facilitate use of modern libraries such as the Standard Template Library (STL) and
its containers and algorithms. The wrap() and as() template functions are extensible by
design. They are also used either explicitly or implicitly throughout the API. By using only
thin wrappers around SEXP objects and adopting C++ idioms such as iterators, the footprint
of the Rcpp API is very lightweight, and does not incur a significant performance penalty.

The Rcpp API offers opportunities to dramatically reduce the complexity of code, which
should lower the initial cost of writing code and improve code readability, maintainability,
and reuse—without incurring noticeable penalties in run-time performance.

Acknowledgments

Detailed comments and suggestions by editors as well as anonymous referees are gratefully
acknowledged. We are also thankful for code contributions by Douglas Bates and John Cham-
bers, as well as for very helpful suggestions by Uwe Ligges, Brian Ripley and Simon Urbanek
concerning the build systems for different platforms. Last but not least, several users provided
very fruitful ideas for new or extended features via the rcpp-devel mailing list.

References

Abrahams D, Grosse-Kunstleve RW (2003). Building Hybrid Systems with Boost.Python.
Boost Consulting. URL http://www.boostpro.com/writing/bpl.pdf.

Abrahams D, Gurtovoy A (2004). C++ Template Metaprogramming: Concepts, Tools and
Techniques from Boost and Beyond. Addison-Wesley, Boston.

Armstrong W (2009a). RAbstraction: C++ abstraction for R objects. Code repository last
updated 2009-07-22., URL http://github.com/armstrtw/rabstraction.

Armstrong W (2009b). RObjects: C++ wrapper for R objects (a better implementation
of RAbstraction. Code repository last updated 2009-11-28., URL http://github.com/

armstrtw/RObjects.

Bates DM, DebRoy S (2001). “C++ Classes for R Objects.” In K Hornik, F Leisch (eds.),
Proceedings of the 2nd International Workshop on Distributed Statistical Computing, March
15–17, 2001, Technische Universität Wien, Vienna, Austria. ISSN 1609-395X, URL http:

//www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/.

Eddelbuettel D, François R (2010). RInside: C++ classes to embed R in C++ applications.
R package version 0.2.3, URL http://CRAN.R-Project.org/package=RInside.

Eddelbuettel D, François R (2011a). Rcpp: Seamless R and C++ Integration. R package
version 0.9.4, URL http://CRAN.R-Project.org/package=Rcpp.

Eddelbuettel D, François R (2011b). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/i08/.

Eddelbuettel D, François R (2011c). RcppClassic: Deprecated ’classic’ Rcpp API. R package
version 0.9.1, URL http://CRAN.R-Project.org/package=RcppClassic.

http://www.boostpro.com/writing/bpl.pdf
http://github.com/armstrtw/rabstraction
http://github.com/armstrtw/RObjects
http://github.com/armstrtw/RObjects
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://CRAN.R-Project.org/package=RInside
http://CRAN.R-Project.org/package=Rcpp
http://www.jstatsoft.org/v40/i08/
http://CRAN.R-Project.org/package=RcppClassic

Dirk Eddelbuettel, Romain François 17

Eddelbuettel D, Nguyen K (2011). RQuantLib: R interface to the QuantLib library. R package
version 0.3.6, URL http://CRAN.R-Project.org/package=RQuantLib.

François R, Eddelbuettel D (2011a). RcppGSL: Rcpp integration for GNU GSL vectors and
matrices. R package version 0.1.1, URL http://CRAN.R-Project.org/package=RcppGSL.

François R, Eddelbuettel D (2011b). RProtoBuf: R Interface to the Protocol Buffers API. R
package version 0.2.3, URL http://CRAN.R-Project.org/package=RProtoBuf.

François R, Eddelbuettel D, Bates D (2011). RcppArmadillo: Rcpp integration for Armadillo
templated linear algebra library. R package version 0.2.18, URL http://CRAN.R-Project.

org/package=RcppArmadillo.

Java JJ, Gaile DP, Manly KE (2007). “R/Cpp: Interface Classes to Simplify Using R Objects
in C++ Extensions.” Unpublished manuscript, University at Buffalo, URL http://sphhp.

buffalo.edu/biostat/research/techreports/UB_Biostatistics_TR0702.pdf.

Liang G (2008). rcppbind: A template library for R/C++ developers. R package version 1.0,
URL http://R-Forge.R-Project.org/projects/rcppbind.

Meyers S (1995). More Effective C++: 35 New Ways to Improve Your Programs and Designs.
Addison-Wesley, Boston. ISBN 020163371X.

Meyers S (2005). Effective C++: 55 Specific Ways to Improve Your Programs and Designs.
3rd edition. Addison-Wesley, Boston. ISBN 978-0321334879.

Plauger P, Stepanov A, Lee M, Musser DR (2000). The C++ Standard Template Library.
Prentice Hall PTR. ISBN 978-0134376332.

R Development Core Team (2011a). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/.

R Development Core Team (2011b). R internals. R Foundation for Statistical Computing,
Vienna, Austria. ISBN 3-900051-14-3, URL http://CRAN.R-Project.org/doc/manuals/

R-ints.html.

R Development Core Team (2011c). R language. R Foundation for Statistical Computing,
Vienna, Austria. ISBN 3-900051-13-5, URL http://CRAN.R-Project.org/doc/manuals/

R-lang.html.

R Development Core Team (2011d). Writing R extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9, URL http://CRAN.R-Project.org/

doc/manuals/R-exts.html.

Runnalls A (2009). “Aspects of CXXR internals.” In Directions in Statistical Computing.
University of Copenhagen, Denmark.

Sanderson C (2010). “Armadillo: An open source C++ Algebra Library for Fast Prototyping
and Computationally Intensive Experiments.” Technical report, NICTA. URL http://

arma.sf.net.

http://CRAN.R-Project.org/package=RQuantLib
http://CRAN.R-Project.org/package=RcppGSL
http://CRAN.R-Project.org/package=RProtoBuf
http://CRAN.R-Project.org/package=RcppArmadillo
http://CRAN.R-Project.org/package=RcppArmadillo
http://sphhp.buffalo.edu/biostat/research/techreports/UB_Biostatistics_TR0702.pdf
http://sphhp.buffalo.edu/biostat/research/techreports/UB_Biostatistics_TR0702.pdf
http://R-Forge.R-Project.org/projects/rcppbind
http://www.R-project.org/
http://CRAN.R-Project.org/doc/manuals/R-ints.html
http://CRAN.R-Project.org/doc/manuals/R-ints.html
http://CRAN.R-Project.org/doc/manuals/R-lang.html
http://CRAN.R-Project.org/doc/manuals/R-lang.html
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://arma.sf.net
http://arma.sf.net

18 Rcpp: Seamless R and C++ Integration

Sklyar O, Murdoch D, Smith M, Eddelbuettel D, François R (2010). inline: Inline C, C++,
Fortran function calls from R. R package version 0.3.8, URL http://CRAN.R-Project.

org/package=inline.

Temple Lang D (2009a). “A modest proposal: an approach to making the internal R system
extensible.” Computational Statistics, 24(2), 271–281.

Temple Lang D (2009b). “Working with meta-data from C/C++ code in R: the RGCCTrans-
lationUnit package.” Computational Statistics, 24(2), 283–293.

Urbanek S (2003). “Rserve: A Fast Way to Provide R Functionality to Applications.” In
K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd International Workshop on
Distributed Statistical Computing, Vienna, Austria. ISSN 1609-395X, URL http://www.

ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/.

Urbanek S (2011). Rserve: Binary R server. R package version 0.6-3, URL http://CRAN.

R-Project.org/package=Rserve.

Vandevoorde D, Josuttis NM (2003). C++ Templates: The Complete Guide. Addison-Wesley,
Boston.

Veldhuizen TL (1998). “Arrays in Blitz++.” In ISCOPE ’98: Proceedings of the Second Inter-
national Symposium on Computing in Object-Oriented Parallel Environments, pp. 223–230.
Springer-Verlag, London. ISBN 3-540-65387-2.

Affiliation:

Dirk Eddelbuettel
Debian Project
River Forest, IL, United States of America
E-mail: edd@debian.org
URL: http://dirk.eddelbuettel.com/

Romain François
Professional R Enthusiast
1 rue du Puits du Temple
34 000 Montpellier, France
E-mail: romain@r-enthusiasts.com
URL: http://romainfrancois.blog.free.fr/

http://CRAN.R-Project.org/package=inline
http://CRAN.R-Project.org/package=inline
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://CRAN.R-Project.org/package=Rserve
http://CRAN.R-Project.org/package=Rserve
mailto:edd@debian.org
http://dirk.eddelbuettel.com/
mailto:romain@r-enthusiasts.com
http://romainfrancois.blog.free.fr/

	Introduction
	Historical context
	Related work
	Rcpp use cases

	The Rcpp API
	A first example
	Rcpp class hierarchy
	Derived classes
	Numeric vectors
	Character vectors

	R and C++ data interchange
	C++ to R: wrap
	R to C++: as
	Implicit use of converters

	Function calls
	Using code `inline'
	Using Standard Template Library algorithms
	Error handling
	C++ exceptions in R
	R errors in C++

	Performance comparison
	On-going development
	Summary

