3# Comparison benchmark -- using old and small Longley data set
5# This shows how Armadillo improves on the previous version using GNU GSL,
6# and how both are doing better than lm.fit()
8# Copyright (C) 2010 Dirk Eddelbuettel and Romain Francois
10# This file is part of Rcpp.
12# Rcpp is free software: you can redistribute it and/or modify it
13# under the terms of the GNU General Public License as published by
14# the Free Software Foundation, either version 2 of the License, or
15# (at your option) any later version.
17# Rcpp is distributed in the hope that it will be useful, but
18# WITHOUT ANY WARRANTY; without even the implied warranty of
19# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20# GNU General Public License for more details.
22# You should have received a copy of the GNU General Public License
23# along with Rcpp. If not, see <http://www.gnu.org/licenses/>.
25suppressMessages(library(utils))
26suppressMessages(library(Rcpp))
27suppressMessages(library(inline))
28suppressMessages(library(datasets))
30source("lmArmadillo.R")
35longleydm <- data.matrix(data.frame(intcp=1, longley))
37y <- as.numeric(longleydm[,8])
42lmarma <- lmArmadillo()
44tlm <- mean(replicate(N, system.time( lmfit <- lm(y ~ X - 1) )["elapsed"]), trim=0.05)
45tlmfit <- mean(replicate(N, system.time(lmfitfit <- lm.fit(X, y))["elapsed"]), trim=0.05)
46tlmgsl <- mean(replicate(N, system.time(lmgsl(y, X))["elapsed"]), trim=0.05)
47tlmarma <- mean(replicate(N, system.time(lmarma(y, X))["elapsed"]), trim=0.05)
49res <- c(tlm, tlmfit, tlmgsl, tlmarma)
50data <- data.frame(results=res, ratios=tlm/res)
51rownames(data) <- c("lm", "lm.fit", "lmGSL", "lmArma")
54print(t(1/data[,1,drop=FALSE])) # regressions per second