3suppressMessages(require(Rcpp))
9## load shared libraries with wrapper code
10dyn.load("convolve2_c.so")
11dyn.load("convolve3_cpp.so")
12dyn.load("convolve4_cpp.so")
13dyn.load("convolve5_cpp.so")
14dyn.load("convolve7_c.so")
16dyn.load("convolve8_cpp.so")
17dyn.load("convolve9_cpp.so")
18dyn.load("convolve10_cpp.so")
19dyn.load("convolve11_cpp.so")
20dyn.load("convolve12_cpp.so" )
21dyn.load("convolve14_cpp.so" )
23## now run each one once for comparison of results,
24## and define test functions
26R_API_optimised <- function(n,a,b) .Call("convolve2__loop", n, a, b)
27Rcpp_New_std <- function(n,a,b) .Call("convolve3cpp__loop", n, a, b)
28#Rcpp_New_std_inside <- function(n,a,b) .Call("convolve3cpp__loop", n, a, b, PACKAGE = "Rcpp" )
29Rcpp_New_ptr <- function(n,a,b) .Call("convolve4cpp__loop", n, a, b)
30Rcpp_New_sugar <- function(n,a,b) .Call("convolve5cpp__loop", n, a, b)
31Rcpp_New_sugar_noNA <- function(n,a,b) .Call("convolve11cpp__loop", n, a, b)
32R_API_naive <- function(n,a,b) .Call("convolve7__loop", n, a, b)
33Rcpp_New_std_2 <- function(n,a,b) .Call("convolve8cpp__loop", n, a, b)
34#Rcpp_New_std_3 <- function(n,a,b) .Call("convolve9cpp__loop", n, a, b)
35#Rcpp_New_std_4 <- function(n,a,b) .Call("convolve10cpp__loop", n, a, b)
36Rcpp_New_std_it <- function(n,a,b) .Call("convolve12cpp__loop", n, a, b )
37Rcpp_New_std_Fast <- function(n,a,b) .Call("convolve14cpp__loop", n, a, b )
40v1 <- R_API_optimised(1L, a, b )
41v3 <- Rcpp_New_std(1L, a, b)
42v4 <- Rcpp_New_ptr(1L, a, b)
43v5 <- Rcpp_New_sugar(1L, a, b )
44v7 <- R_API_naive(1L, a, b)
45v11 <- Rcpp_New_sugar_noNA(1L, a, b)
47stopifnot(all.equal(v1, v3))
48stopifnot(all.equal(v1, v4))
49stopifnot(all.equal(v1, v5))
50stopifnot(all.equal(v1, v7))
51stopifnot(all.equal(v1, v11))
53## load benchmarkin helper function
54suppressMessages(library(rbenchmark))
56bm <- benchmark(R_API_optimised(REPS,a,b),
57 R_API_naive(REPS,a,b),
58 Rcpp_New_std(REPS,a,b),
59# Rcpp_New_std_inside(REPS,a,b),
60 Rcpp_New_ptr(REPS,a,b),
61 Rcpp_New_sugar(REPS,a,b),
62 Rcpp_New_sugar_noNA(REPS,a,b),
63 Rcpp_New_std_2(REPS,a,b),
64# Rcpp_New_std_3(REPS,a,b),
65# Rcpp_New_std_4(REPS,a,b),
66 Rcpp_New_std_it(REPS,a,b),
67 Rcpp_New_std_Fast(REPS,a,b),
68 columns=c("test", "elapsed", "relative", "user.self", "sys.self"),
73cat("All results are equal\n") # as we didn't get stopped
79timings <- lapply( sizes, function(size){
80 cat( "size = ", size, "..." )
81 a <- rnorm(size); b <- rnorm(size)
82 bm <- benchmark(R_API_optimised(REPS,a,b),
83 R_API_naive(REPS,a,b),
84 Rcpp_New_std(REPS,a,b),
85 Rcpp_New_ptr(REPS,a,b),
86 Rcpp_New_sugar(REPS,a,b),
87 Rcpp_New_sugar_noNA(REPS,a,b),
88 columns=c("test", "elapsed", "relative", "user.self", "sys.self"),
95for( i in seq_along(sizes)){
96 timings[[i]]$size <- sizes[i]
98timings <- do.call( rbind, timings )
101png( "elapsed.png", width = 800, height = 600 )
102xyplot( elapsed ~ size, groups = test, data = timings, auto.key = TRUE, type = "l", lwd = 2 )
104png( "relative.png", width = 800, height = 600 )
105xyplot( relative ~ size, groups = test, data = timings, auto.key = TRUE, type = "l", lwd = 2 )