3 suppressMessages(require(Rcpp))
9 ## load shared libraries with wrapper code
10 dyn.load("convolve2_c.so")
11 dyn.load("convolve3_cpp.so")
12 dyn.load("convolve4_cpp.so")
13 dyn.load("convolve5_cpp.so")
14 dyn.load("convolve7_c.so")
16 dyn.load("convolve8_cpp.so")
17 dyn.load("convolve9_cpp.so")
18 dyn.load("convolve10_cpp.so")
19 dyn.load("convolve11_cpp.so")
20 dyn.load("convolve12_cpp.so" )
21 dyn.load("convolve14_cpp.so" )
23 ## now run each one once for comparison of results,
24 ## and define test functions
26 R_API_optimised <- function(n,a,b) .Call("convolve2__loop", n, a, b)
27 Rcpp_New_std <- function(n,a,b) .Call("convolve3cpp__loop", n, a, b)
28 #Rcpp_New_std_inside <- function(n,a,b) .Call("convolve3cpp__loop", n, a, b, PACKAGE = "Rcpp" )
29 Rcpp_New_ptr <- function(n,a,b) .Call("convolve4cpp__loop", n, a, b)
30 Rcpp_New_sugar <- function(n,a,b) .Call("convolve5cpp__loop", n, a, b)
31 Rcpp_New_sugar_noNA <- function(n,a,b) .Call("convolve11cpp__loop", n, a, b)
32 R_API_naive <- function(n,a,b) .Call("convolve7__loop", n, a, b)
33 Rcpp_New_std_2 <- function(n,a,b) .Call("convolve8cpp__loop", n, a, b)
34 #Rcpp_New_std_3 <- function(n,a,b) .Call("convolve9cpp__loop", n, a, b)
35 #Rcpp_New_std_4 <- function(n,a,b) .Call("convolve10cpp__loop", n, a, b)
36 Rcpp_New_std_it <- function(n,a,b) .Call("convolve12cpp__loop", n, a, b )
37 Rcpp_New_std_Fast <- function(n,a,b) .Call("convolve14cpp__loop", n, a, b )
40 v1 <- R_API_optimised(1L, a, b )
41 v3 <- Rcpp_New_std(1L, a, b)
42 v4 <- Rcpp_New_ptr(1L, a, b)
43 v5 <- Rcpp_New_sugar(1L, a, b )
44 v7 <- R_API_naive(1L, a, b)
45 v11 <- Rcpp_New_sugar_noNA(1L, a, b)
47 stopifnot(all.equal(v1, v3))
48 stopifnot(all.equal(v1, v4))
49 stopifnot(all.equal(v1, v5))
50 stopifnot(all.equal(v1, v7))
51 stopifnot(all.equal(v1, v11))
53 ## load benchmarkin helper function
54 suppressMessages(library(rbenchmark))
56 bm <- benchmark(R_API_optimised(REPS,a,b),
57 R_API_naive(REPS,a,b),
58 Rcpp_New_std(REPS,a,b),
59 # Rcpp_New_std_inside(REPS,a,b),
60 Rcpp_New_ptr(REPS,a,b),
61 Rcpp_New_sugar(REPS,a,b),
62 Rcpp_New_sugar_noNA(REPS,a,b),
63 Rcpp_New_std_2(REPS,a,b),
64 # Rcpp_New_std_3(REPS,a,b),
65 # Rcpp_New_std_4(REPS,a,b),
66 Rcpp_New_std_it(REPS,a,b),
67 Rcpp_New_std_Fast(REPS,a,b),
68 columns=c("test", "elapsed", "relative", "user.self", "sys.self"),
73 cat("All results are equal\n") # as we didn't get stopped
79 timings <- lapply( sizes, function(size){
80 cat( "size = ", size, "..." )
81 a <- rnorm(size); b <- rnorm(size)
82 bm <- benchmark(R_API_optimised(REPS,a,b),
83 R_API_naive(REPS,a,b),
84 Rcpp_New_std(REPS,a,b),
85 Rcpp_New_ptr(REPS,a,b),
86 Rcpp_New_sugar(REPS,a,b),
87 Rcpp_New_sugar_noNA(REPS,a,b),
88 columns=c("test", "elapsed", "relative", "user.self", "sys.self"),
95 for( i in seq_along(sizes)){
96 timings[[i]]$size <- sizes[i]
98 timings <- do.call( rbind, timings )
101 png( "elapsed.png", width = 800, height = 600 )
102 xyplot( elapsed ~ size, groups = test, data = timings, auto.key = TRUE, type = "l", lwd = 2 )
104 png( "relative.png", width = 800, height = 600 )
105 xyplot( relative ~ size, groups = test, data = timings, auto.key = TRUE, type = "l", lwd = 2 )