Package ‘RQuantLib’

April 3, 2011
Title R interface to the QuantLib library
Version 0.3.7
Date $Date: 2011-04-03 16:49:11 -0500 (Sun, 03 Apr 2011) $
Maintainer Dirk Eddelbuettel <edd@debian.org>
Author Dirk Eddelbuettel <edd@debian.org> and Khanh Nguyen <knguyen@cs.umb.edu>

Description The RQuantLib package makes parts of QuantLib visible to the R
user. Currently a number option pricing functions are included, both vanilla
and exotic, as well as a broad range of fixed-income functions. Also included
are general calendaring and holiday utilities. Further software contributions are welcome.

The QuantLib project aims to provide a comprehensive software framework for
quantitative finance. The goal is to provide a standard open source library
for quantitative analysis, modeling, trading, and risk management of financial assets.

The Windows binary version is self-contained and does not require a QuantLib
(or Boost) installation.

RQuantLib uses the Rcpp R/C++ interface class library. See the Rcpp package
on CRAN (or R-Forge) for more information on Rcpp.

Note that while RQuantLib's code is licensed under the GPL (v2 or later),QuantLib itself is re-
leased under a somewhat less restrictive Open Source
license (see QuantLib-License.txt).

Depends R (>=2.10.0), Rcpp (>=0.8.7)
Suggests rgl, zoo, RUnit
LinkingTo Rcpp

SystemRequirements
QuantLib library (>= 0.9.9) from http://quantlib.org,Boost library from http://www.boost.org

License GPL (>=2)

URL http://quantlib.orghttp:
//dirk.eddelbuettel.com/code/rquantlib.html

http://quantlib.org
http://dirk.eddelbuettel.com/code/rquantlib.html
http://dirk.eddelbuettel.com/code/rquantlib.html

2

AmericanOption

R topics documented:

AmericanOption e e e e e e 2
AmericanOptionImpliedVolatility 4
AsianOption o e 5
BarrierOption L. e e e 7
BermudanSwaption 9
BinaryOption 11
BinaryOptionImpliedVolatility 13
Bond e 14
BondUtilities 16
Calendars e e e 18
CallableBond e 21
ConvertibleBond 24
DiscountCurve e e e 30
Enum 33
EuropeanOption e e 35
EuropeanOptionArrays o o it e 37
EuropeanOptionlmpliedVolatility 39
FittedBondCurve e 40
FixedRateBond 42
FloatingRateBond e 46
ImpliedVolatility 50
OPtioN o o e e 51
ZeroCouponBond L 53
Index 57
AmericanOption American Option evaluation using Finite Differences
Description

This function evaluations an American-style option on a common stock using finite differences.
The option value as well as the common first derivatives ("Greeks") are returned.

Usage

Default S3 method:

AmericanOption (type, underlying, strike,
dividendYield, riskFreeRate, maturity, volatility,
timeSteps=150, gridPoints=151)

AmericanOption 3

Arguments
type A string with one of the values call or put
underlying Current price of the underlying stock
strike Strike price of the option
dividendYield

Continuous dividend yield (as a fraction) of the stock
riskFreeRate Risk-free rate
maturity Time to maturity (in fractional years)
volatility Volatility of the underlying stock
timeSteps Time steps for the Finite Differences method, default value is 150

gridPoints Grid points for the Finite Differences method, default value is 151

Details

The Finite Differences method is used to value the American Option.

Please see any decent Finance textbook for background reading, and the Quant L ib documentation
for details on the QuantLib implementation.
Value

An object of class AmericanOption (which inherits from class Opt ion) is returned. It contains
a list with the following components:

value Value of option

delta Sensitivity of the option value for a change in the underlying

gamma Sensitivity of the option delta for a change in the underlying

vega Sensitivity of the option value for a change in the underlying’s volatility
theta Sensitivity of the option value for a change in t, the remaining time to maturity
rho Sensitivity of the option value for a change in the risk-free interest rate

dividendRho Sensitivity of the option value for a change in the dividend yield

parameters List with parameters with which object was created

Note that under the new pricing framework used in QuantLib, binary pricers do not provide analytics
for Greeks’. This is expected to be addressed in future releases of QuantLib.

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

http://quantlib.org

4 AmericanOptionImplied Volatility

See Also

EuropeanOption

Examples

simple call with unnamed parameters

AmericanOption("call", 100, 100, 0.02, 0.03, 0.5, 0.4)

simple call with some explicit parameters

AmericanOption ("put", strike=100, wvolatility=0.4, 100, 0.02, 0.03, 0.5)

AmericanOptionImpliedVolatility
Implied Volatility calculation for American Option

Description

The AmericanOptionImpliedVolatility function solves for the (unobservable) implied
volatility, given an option price as well as the other required parameters to value an option.

Usage

Default S3 method:

AmericanOptionImpliedVolatility (type, value,

underlying, strike,dividendYield, riskFreeRate, maturity, volatility,
timeSteps=150, gridPoints=151)

Arguments
type A string with one of the values call or put
value Value of the option (used only for ImpliedVolatility calculation)

underlying Current price of the underlying stock

strike Strike price of the option
dividendYield
Continuous dividend yield (as a fraction) of the stock

riskFreeRate Risk-free rate

maturity Time to maturity (in fractional years)

volatility Initial guess for the volatility of the underlying stock
timeSteps Time steps for the Finite Differences method, default value is 150
gridPoints Grid points for the Finite Differences method, default value is 151

Details
The Finite Differences method is used to value the American Option. Implied volatilities are then
calculated numerically.

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation.

AsianOption 5

Value

The AmericanOptionImpliedVolatility functionreturns an object of class ImpliedvVolatility.
It contains a list with the following elements:

impliedvVol The volatility implied by the given market prices

parameters List with the option parameters used

Note

The interface might change in future release as QuantLib stabilises its own APL

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

See Also

EuropeanOption,AmericanOption,BinaryOption

Examples

AmericanOptionImpliedVolatility (type="call", value=11.10, underlying=100,
strike=100, dividendYield=0.01, riskFreeRate=0.03,
maturity=0.5, volatility=0.4)

AsianOption Asian Option evaluation using Closed-Form solution

Description

The AsianOpt ion function evaluates an Asian-style option on a common stock using an analytic
solution for continuous geometric average price. The option value, the common first derivatives
("Greeks") as well as the calling parameters are returned.

Usage

Default S3 method:

AsianOption (averageType, type, underlying, strike,
dividendYield, riskFreeRate, maturity,
volatility, first=0, length=0, fixings=0)

http://quantlib.org

6 AsianOption
Arguments
averageType Specifiy averaging type, either "geometric" or "arithmetic"
type A string with one of the values call or put
underlying Current price of the underlying stock
strike Strike price of the option
dividendYield
Continuous dividend yield (as a fraction) of the stock
riskFreeRate Risk-free rate
maturity Time to maturity (in fractional years)
volatility Volatility of the underlying stock
first to be written
length to be written
fixings to be written
Details

When "arithmetic"

evaluation is used, only the NPV() is returned.

The well-known closed-form solution derived by Black, Scholes and Merton is used for valuation.
Implied volatilities are calculated numerically.

Please see any decent Finance textbook for background reading, and the Quant L.ib documentation
for details on the Quant Lib implementation.

Value

The AsianOption function returns an object of class AsianOpt ion (which inherits from class
Option). It contains a list with the following components:

value

delta

gamma

vega

theta

rho
dividendRho

parameters

Note

Value of option

Sensitivity of the option value for a change in the underlying

Sensitivity of the option delta for a change in the underlying

Sensitivity of the option value for a change in the underlying’s volatility
Sensitivity of the option value for a change in t, the remaining time to maturity
Sensitivity of the option value for a change in the risk-free interest rate
Sensitivity of the option value for a change in the dividend yield

List with parameters with which object was created

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

BarrierOption 7

References

http://quantlib.org for details on QuantLib.

Examples

simple call with some explicit parameters, and slightly increased vol:

AsianOption ("geometric", "put", underlying=80, strike=85, div=-0.03, riskFree=0.05,
BarrierOption Barrier Option evaluation using Closed-Form solution
Description

This function evaluations an Barrier option on a common stock using a closed-form solution. The
option value as well as the common first derivatives ("Greeks") are returned.

Usage

Default S3 method:

BarrierOption (barrType, type, underlying, strike,
dividendYield, riskFreeRate, maturity,
volatility, barrier, rebate=0.0)

Arguments
barrType A string with one of the values downin, downout, upin or upout
type A string with one of the values call or put

underlying Current price of the underlying stock

strike Strike price of the option
dividendYield
Continuous dividend yield (as a fraction) of the stock

riskFreeRate Risk-free rate
maturity Time to maturity (in fractional years)

volatility Volatility of the underlying stock

barrier Option barrier value
rebate Optional option rebate, defaults to 0.0
Details

A closed-form solution is used to value the Barrier Option. In the case of Barrier options, the
calculations are from Haug’s "Option pricing formulas" book (McGraw-Hill).

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation.

maturity

http://quantlib.org

8 BarrierOption

Value

An object of class BarrierOption (which inherits from class Option) is returned. It contains
a list with the following components:

value Value of option

delta Sensitivity of the option value for a change in the underlying

gamma Sensitivity of the option delta for a change in the underlying

vega Sensitivity of the option value for a change in the underlying’s volatility
theta Sensitivity of the option value for a change in t, the remaining time to maturity
rho Sensitivity of the option value for a change in the risk-free interest rate

dividendRho Sensitivity of the option value for a change in the dividend yield

parameters List with parameters with which object was created

Note that under the new pricing framework used in QuantLib, binary pricers do not provide analytics
for *Greeks’. This is expected to be addressed in future releases of QuantLib.

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

See Also

AmericanOption,EuropeanOption

Examples

BarrierOption (barrType="downin", type="call", underlying=100,
strike=100, dividendYield=0.02, riskFreeRate=0.03,
maturity=0.5, volatility=0.4, barrier=90)

http://quantlib.org

BermudanSwaption 9

BermudanSwaption Bermudan swaption valuation using several short-rate models

Description

BermudanSwaption prices a Bermudan swaption with specified strike and maturity (in years),
after calibrating the selected short-rate model to an input swaption volatility matrix. Swaption
maturities are in years down the rows, and swap tenors are in years along the columns, in the usual
fashion. It is assumed that the Bermudan swaption is exercisable on each reset date of the underlying
swaps.

Usage

BermudanSwaption (params, tsQuotes, swaptionMaturities, swapTenors,
volMatrix)

Arguments

params A list specifying the t radeDate (month/day/year), sett lementDate, payFixed
flag, strike, pricing method, and curve construction options (see Examples
section below). Curve construction options are interpWhat (possible values
are discount, forward, and zero) and interpHow (possible values are
linear, loglinear,and spline). Both interpWhat and interpHow
are ignored when a flat yield curve is requested, but they must be present never-
theless. The pricing method can be one of the following (all short-rate models):

G2Analytic G2 2-factor Gaussian model using analytic formulas.
HWAnalytic Hull-White model using analytic formulas.

HWTree Hull-White model using a tree.
BKTree Black-Karasinski model using a tree.
tsQuotes Market observables needed to construct the spot term structure of interest rates.

A list of name/value pairs. See the help page for DiscountCurve for details.

swaptionMaturities
A vector containing the swaption maturities associated with the rows of the
swaption volatility matrix.

swapTenors A vector containing the underlying swap tenors associated with the columns of
the swaption volatility matrix.

volMatrix The swaption volatility matrix. Must be a 2D matrix stored by rows. See the
example below.

Details

This function is based on QuantLib Version 0.3.10. It introduces support for fixed-income instru-
ments in RQuantLib.

10 BermudanSwaption

At present only a small number of the many parameters that can be set in QuantLib are exposed
by this function. Some of the hard-coded parameters that apply to the current version include:
day-count conventions, fixing days (2), index (Euribor), fixed leg frequency (annual), and floating
leg frequency (semi-annual). Also, it is assumed that the swaption volatility matrix corresponds to
expiration dates and tenors that are measured in years (a 6-month expiration date is not currently
supported, for example).

Given the number of parameters that must be specified and the care with which they must be speci-
fied (with no defaults), it is not practical to use this function in the usual interactive fashion.

The simplest approach is simply to save the example below to a file, edit as desired, and source
the result. Alternatively, the input commands can be kept in a script file (under Windows) or an
Emacs/ESS session (under Linux), and selected parts of the script can be executed in the usual way.

Fortunately, the C++ exception mechanism seems to work well with the R interface, and QuantLib
exceptions are propagated back to the R user, usually with a message that indicates what went
wrong. (The first part of the message contains technical information about the precise location of
the problem in the QuantLib code. Scroll to the end to find information that is meaningful to the
R user.)

Value

BermudanSwaption returns a list containing calibrated model paramters (what parameters are
returned depends on the model selected) along with:

price Price of swaption in basis points (actual price equals price times notional
divided by 10,000)

ATMStrike At-the-money strike
params Input parameter list
Author(s)

Dominick Samperi

References

Brigo, D. and Mercurio, F. (2001) Interest Rate Models: Theory and Practice, Springer-Verlag,
New York.

For information about QuantLib see http://quantlib.org.

For information about RQuantLibsee http://dirk.eddelbuettel.com/code/rquantlib.
html.

See Also

DiscountCurve

http://quantlib.org
http://dirk.eddelbuettel.com/code/rquantlib.html
http://dirk.eddelbuettel.com/code/rquantlib.html

BinaryOption

Examples

This
params

data is taken from sample code shipped with QuantLib 0.3.10.

<- list (tradeDate=as.Date('2002-2-15"),
settleDate=as.Date ('2002-2-19"),
payFixed=TRUE,

strike=.06,

method="G2Analytic",
interpWhat="discount",
interpHow="loglinear")

Market data used to construct the term structure of interest rates

tsQuotes <- list (dlw

=0.
dlm =0.

0382,
0372,

futl=96

.2875,
fut2=96.
fut3=96.
futd4=96.
fut5=96.
fut6=96.
fut7=96.

7875,
9875,
6875,
4875,
3875,
2875,

fut8=96.
s3y =0.
sby =0.
s10y =0.
s1l5y =0.

0875,
0398,
0443,
05165,
055175)

Use this to compare with the Bermudan swaption example from QuantLib

#tsQuotes <—- list (flat=0.04875825)

Swaption volatility matrix with corresponding

swaptionMaturities <- ¢ (1,2,3,4,5)

swapTenors <- c(1,2,3,4,5)

volMatrix <— matrix(

maturities and tenors

c(0.1490, 0.1340, 0.1228, 0.1189, 0.1148,
0.1290, 0.1201, 0.1146, 0.1108, 0.1040,
0.1149, 0.1112, 0.1070, 0.1010, 0.0957,
0.1047, 0.1021, 0.0980, 0.0951, 0.1270,
0.1000, 0.0950, 0.0900, 0.1230, 0.1160),
ncol=5, byrow=TRUE)
Price the Bermudan swaption
pricing <- BermudanSwaption (params, tsQuotes,

swaptionMaturities,

summary (pricing)

swapTenors, volMatrix)

11

BinaryOption

Binary Option evaluation using Closed-Form solution

12 BinaryOption

Description

This function evaluations an Binary option on a common stock using a closed-form solution. The
option value as well as the common first derivatives ("Greeks") are returned.

Usage

Default S3 method:

BinaryOption (binType, type, excType, underlying,
strike, dividendYield,

riskFreeRate, maturity, volatility, cashPayoff)

Arguments

binType A string with one of the values cash, asset or gap to select CashOrNothing,
AssetOrNothing or Gap payoff profiles

type A string with one of the values call or put

excType A string with one of the values european or american to denote the exercise
type

underlying Current price of the underlying stock

strike Strike price of the option

dividendYield

Continuous dividend yield (as a fraction) of the stock
riskFreeRate Risk-free rate
maturity Time to maturity (in fractional years)
volatility Volatility of the underlying stock
cashPayoff Payout amount

Details

A closed-form solution is used to value the Binary Option.

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the Quant Lib implementation.

Value

An object of class BinaryOption (which inherits from class Opt ion) is returned. It contains a
list with the following components:

value Value of option

delta Sensitivity of the option value for a change in the underlying

gamma Sensitivity of the option delta for a change in the underlying

vega Sensitivity of the option value for a change in the underlying’s volatility
theta Sensitivity of the option value for a change in t, the remaining time to maturity
rho Sensitivity of the option value for a change in the risk-free interest rate

dividendRho Sensitivity of the option value for a change in the dividend yield

parameters List with parameters with which object was created

BinaryOptionlmplied Volatility 13

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

See Also

AmericanOption,EuropeanOption

Examples

BinaryOption (binType="asset", type="call", excType="european", underlying=100, strike=100,
riskFreeRate=0.03, maturity=0.5, volatility=0.4, cashPayoff=10)

BinaryOptionImpliedVolatility
Implied Volatility calculation for Binary Option

Description

The BinaryOptionImpliedvVolatility function solves for the (unobservable) implied volatil-
ity, given an option price as well as the other required parameters to value an option.

Usage

Default S3 method:

BinaryOptionImpliedVolatility (type, value, underlying,
strike, dividendYield, riskFreeRate, maturity, volatility,
cashPayoff=1)

Arguments
type A string with one of the values call, put or straddle
value Value of the option (used only for Implied Volatility calculation)
underlying Current price of the underlying stock
strike Strike price of the option
dividendYield

Continuous dividend yield (as a fraction) of the stock
riskFreeRate Risk-free rate
maturity Time to maturity (in fractional years)
volatility Initial guess for the volatility of the underlying stock
cashPayoff Binary payout if options is exercised, default is 1

c

http://quantlib.org

14

Details

Bond

The Finite Differences method is used to value the Binary Option. Implied volatilities are then

calculated numerically.

Please see any decent Finance textbook for background reading, and the Quant Lib documentation

for details on the QuantLib implementation.

Value

The BinaryOptionImpliedVolatility functionreturns an object of class Impliedvolatility.

It contains a list with the following elements:

impliedvol The volatility implied by the given market prices
parameters List with the option parameters used

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

See Also

EuropeanOption,AmericanOption,BinaryOption

Examples

BinaryOptionImpliedVolatility("call", value=4.50, strike=100,

100,

0.

02,

0.

Bond Base class for Bond price evalution

Description

This class forms the basis from which the more specific classes are derived.

Usage
S3 method for class 'Bond'
print (x, digits=5, ...)
S3 method for class 'Bond'
plot (x, ...)

S3 method for class 'Bond'
summary (object, digits=5, ...)

03,

0.

5,

0.

4,

10)

http://quantlib.org

Bond 15

Arguments
X Any Bond object derived from this base class
object Any Bond object derived from this base class
digits Number of digits of precision shown
Further arguments
Details

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation.

Value

None, but side effects of displaying content.

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Khanh Nguyen <knguyen@cs . umb .edu>; Dirk Eddelbuettel <edd@debian.org> for the R
interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

Examples

This data is taken from sample code shipped with QuantLib 0.9.7
from the file Examples/Swap/swapvaluation
params <- list (tradeDate=as.Date('2004-09-20"),

settleDate=as.Date ('2004-09-22"),

dt=.25,

interpWhat="discount",

interpHow="loglinear")

We got numerical issues for the spline interpolation if we add
any on of these three extra futures, at least with QuantLib 0.9.7
The curve data comes from QuantLib's Examples/Swap/swapvaluation.cpp
tsQuotes <- list(dlw = 0.0382,

dlm = 0.0372,

futl=96.2875,

fut2=96.7875,

fut3=96.9875,

fut4=96.6875,

fut5=96.4875,

fut6=96.3875,

http://quantlib.org

16 BondUtilities

fut7=96.2875,
fut8=96.0875,
s2y = 0.037125,
s3y = 0.0398,
s5y = 0.0443,
s10y = 0.05165,
s15y = 0.055175)

times <- seqg(0,10,.1)
discountCurve <- DiscountCurve (params, tsQuotes, times)

price a zero coupon bond

bondparams <- list (faceAmount=100, issueDate=as.Date("2004-11-30"),
maturityDate=as.Date ("2008-11-30"), redemption=100)

dateparams <-list (settlementDays=1, calendar="us", businessDayConvention=4)

ZeroCouponBond (bondparams, discountCurve, dateparams)

price a fixed rate coupon bond

bondparams <- list (faceAmount=100, issueDate=as.Date("2004-11-30"),
maturityDate=as.Date ("2008-11-30"), redemption=100,
effectiveDate=as.Date ("2004-11-30"))
dateparams <- list (settlementDays=1, calendar="us", dayCounter = 1, period=3,
businessDayConvention = 4, terminationDateConvention=4,
dateGeneration=1, endOfMonth=1)
rates <— c¢(0.02875)
FixedRateBond (bondparams, rates, discountCurve, dateparams)

price a floating rate bond

bondparams <- list (faceAmount=100, issueDate=as.Date("2004-11-30"),
maturityDate=as.Date ("2008-11-30"), redemption=100,
effectiveDate=as.Date ("2004-11-30"))

dateparams <- list (settlementDays=1, calendar="us", dayCounter = 1, period=3,
businessDayConvention = 1, terminationDateConvention=1,
dateGeneration=0, endOfMonth=0, fixingDays = 1)

gearings <- c()
spreads <- c{()
caps <— c()
floors <- c ()

iborCurve <- DiscountCurve (params,list (flat=0.05), times)
ibor <- list (type="USDLibor", length=6, inTermOf="Month",
term=iborCurve)
FloatingRateBond (bondparams, gearings, spreads, caps, floors,
ibor, discountCurve, dateparams)

BondUtilities Bond parameter conversion utilities

BondUtilities 17

Description

These functions are using internally to convert from the characters at the R level to the enum types
used at the C++ level. They are documented here mostly to provide a means to look up some of the
possible values—the user is not expected to call these functions directly..

Usage

matchBDC (bdc = c("Following", "ModifiedFollowing", "Preceding", "ModifiedPreceding'
matchCompounding (cp = c("Simple", "Compounded", "Continuous", "SimpleThenCompoundec

matchDayCounter (daycounter = c("Actual360", "ActualFixed", "ActualActual", "Busines
matchDateGen (dg = c("Backward", "Forward", "Zero", "ThirdWednesday", "Twentieth", '
matchFrequency (freq = c("NoFrequency", "Once", "Annual", "Semiannual", "EveryFourth)

matchParams (params)

Arguments
bdc A string identifying one of the possible business day convention values.
cp A string identifying one of the possible compounding frequency values.

daycounter A string identifying one of the possible day counter scheme values.

dg A string identifying one of the possible date generation scheme values.

freq A string identifying one of the possible (dividend) frequency values.

params A named vector containing the other parameters as components.
Details

The QuantLib documentation should be consulted for details.

Value

Each function converts the given character value into a corresponding numeric entry. Format chParams,
an named vector of strings is converted into a named vector of numerics..

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Khanh Nguyen <knguyen@cs .umb.edu> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

http://quantlib.org

18 Calendars

Calendars Calendar functions from QuantLib

Description

The i sBusinessDay function evaluates the given dates in the context of the given calendar, and
returns a vector of booleans indicating business day status. BusinessDay is also recognised (but
may be deprecated one day).

The i sHoliday function evaluates the given dates in the context of the given calendar, and returns
a vector of booleans indicating holiday day status.

The isWeekend function evaluates the given dates in the context of the given calendar, and returns
a vector of booleans indicating weekend status.

The 1 sEndOfMonth function evaluates the given dates in the context of the given calendar, and
returns a vector of booleans indicating end of month status.

The get EndOfMonth function evaluates the given dates in the context of the given calendar, and
returns a vector that corresponds to the end of month. endOfMonth is a deprecated form for this
function.

The getHolidayList function returns the holidays between the given dates, with an option to
exclude weekends. holidayList is a deprecated form for this function.

The adjust function evaluates the given dates in the context of the given calendar, and returns a
vector that adjusts each input dates to the appropriate near business day with respect to the given
convention.

The advance function evaluates the given dates in the context of the given calendar, and returns
a vector that advances the given dates of the given number of business days and returns the result.
This functions gets called either with both argument n and t imeUnit, or with argument period.

The businessDaysBetween function evaluates two given dates in the context of the given
calendar, and returns a vector that gives the number of business day between.

The dayCount function returns the number of day between two dates given a day counter, see
Enum.

The yearFraction function returns year fraction between two dates given a day counter, see
Enum.

The setCalendarContext function sets three values to a singleton instance at the C++ layer.

Usage

isBusinessDay (calendar="TARGET", dates=Sys.Date())

businessDay (calendar="TARGET", dates=Sys.Date()) # deprecated form

isHoliday (calendar="TARGET", dates=Sys.Date())

isWeekend (calendar="TARGET", dates=Sys.Date())

isEndOfMonth (calendar="TARGET", dates=Sys.Date())

getEndOfMonth (calendar="TARGET", dates=Sys.Date())

endOfMonth (calendar="TARGET", dates=Sys.Date())

getHolidayList (calendar="TARGET", from=Sys.Date(), to = Sys.Date() + 5, includeWeek

Calendars

19

holidayList (calendar="TARGET", from=Sys.Date(), to = Sys.Date() + 5,
includeWeekends = 0)

adjust (calendar="TARGET", dates=Sys.Date(), bdc = 0)

advance (calendar="TARGET", dates=Sys.Date(), n, timeUnit, period, bdc

businessDaysBetween (calendar="TARGET", from=Sys.Date(),
to = Sys.Date() + 5, includeFirst = 1, includelast = 0)
dayCount (startDates, endDates, dayCounters)
yearFraction (startDates, endDates, dayCounters)
setCalendarContext (calendar, fixingDays, settleDate)

Arguments

calendar A string identifying one of the supported QuantLib calendars, see Details for
more

dates A vector (or scalar) of Date types.

from A vector (or scalar) of Date types.

to A vector (or scalar) of Date types.

includeWeekends
boolean that indicates whether the calculation should include the weekends. De-
fault = false

fixingDays An integer for the fixing day period, defaults to 2.

settleDate A date on which trades settles, defaults to two days after the current day.

n an integer number

timeUnit A value of 0,1,2,3 that corresponds to Days, Weeks, Months, and Year; for
more detail, see the QuantLib documentation at http://quantlib.org/
reference/group__datetime.html

period See Enum

bdc Business day convention. By default, this value is 0 and correspond to Following
convention

emr End Of Month rule, default is false

includeFirst boolean that indicates whether the calculation should include the first day. De-
fault = true

includeLast Default = false

startDates A vector of Date type.

endDates A vector of Date type.

dayCounters A vector of numeric type. See Enum

Details

The calendars are coming from QuantLib, and the QuantLib documentation should be consulted for

details.

0,

Currently, the following strings are recognised: TARGET (a default calendar), Canada and Canada/Settlement,
Canada/TSX, Germany and Germany/FrankfurtStockExchange, Germany/Settlement, Germany/Xetra,

emr =0)

http://quantlib.org/reference/group__datetime.html
http://quantlib.org/reference/group__datetime.html

20

Calendars

Germany/Eurex, Italy and Italy/Settlement, Italy/Exchange, Japan, UnitedKingdom and United-
Kingdom/Settlement, UnitedKingdom/Exchange, UnitedKingdom/Metals, UnitedStates and Unit-
edStates/Settlement, UnitedStates/NYSE, UnitedStates/GovernmentBond, UnitedStates/NERC.

(In case of multiples entries per country, the country default is listed right after the country itself.

Using the shorter form is equivalent.)

Value

A named vector of booleans each of which is true if the corresponding date is a business day (or
holiday or weekend) in the given calendar. The element names are the dates (formatted as text in

yyyy-mm-dd format).

For setCalendarContext, a boolean or NULL in case of error.

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

Examples

dates <- seqg(from=as.Date("2009-04-07"), to=as.Date("2009-04-14"), by=1)

isBusinessDay ("UnitedStates", dates)

isBusinessDay ("UnitedStates/Settlement", dates)
isBusinessDay ("UnitedStates/NYSE", dates)
isBusinessDay ("UnitedStates/GovernmentBond", dates)
isBusinessDay ("UnitedStates/NERC", dates)

isHoliday ("UnitedStates", dates)

(
isHoliday ("UnitedStates/Settlement", dates) #4#
isHoliday ("UnitedStates/NYSE", dates) ##
isHoliday ("UnitedStates/GovernmentBond", dates) ##
isHoliday ("UnitedStates/NERC", dates) #4#
isWeekend ("UnitedStates", dates)

(
isWeekend ("UnitedStates/Settlement", dates) #4#
isWeekend ("UnitedStates/NYSE", dates) ##
(
(

isWeekend ("UnitedStates/GovernmentBond", dates) ##
isWeekend ("UnitedStates/NERC", dates) #4#
isEndOfMonth ("UnitedStates", dates)

(
isEndOfMonth ("UnitedStates/Settlement", dates)
isEndOfMonth ("UnitedStates/NYSE", dates)
isEndOfMonth ("UnitedStates/GovernmentBond", dates)
isEndOfMonth ("UnitedStates/NERC", dates)

same as previous
stocks

bonds

energy

same as previous
stocks
bonds
energy

same as previous
stocks
bonds
energy

same as previous
stocks

bonds

energy

http://quantlib.org

CallableBond 21

getEndOfMonth ("UnitedStates", dates)

(
getEndOfMonth ("UnitedStates/Settlement", dates) ## same as previous
getEndOfMonth ("UnitedStates/NYSE", dates) ## stocks
getEndOfMonth ("UnitedStates/GovernmentBond", dates) ## bonds
getEndOfMonth ("UnitedStates/NERC", dates) ## energy

from <- as.Date("2009-04-07")
to<-as.Date ("2009-04-14")

getHolidayList ("UnitedStates", from, to)
to <- as.Date("2009-10-7")
getHolidayList ("UnitedStates", from, to)

dates <- seqg(from=as.Date("2009-04-07"), to=as.Date("2009-04-14"), by=1)

adjust ("UnitedStates", dates)

adjust ("UnitedStates/Settlement", dates) ## same as previous

adjust ("UnitedStates/NYSE", dates) ## stocks

adjust ("UnitedStates/GovernmentBond", dates) ## bonds

adjust ("UnitedStates/NERC", dates) ## energy

advance ("UnitedStates", dates, 10, 0)

advance ("UnitedStates/Settlement", dates, 10, 1) ## same as previous
advance ("UnitedStates/NYSE", dates, 10, 2) ## stocks

advance ("UnitedStates/GovernmentBond", dates, 10, 3) ## bonds

advance ("UnitedStates/NERC", dates, period = 3) ## energy

from <- as.Date("2009-04-07")
to<-as.Date ("2009-04-14")
businessDaysBetween ("UnitedStates", from, to)

startDates <- seqg(from=as.Date("2009-04-07"), to=as.Date("2009-04-14"),by=1)
endDates <- seq(from=as.Date("2009-11-07"), to=as.Date("2009-11-14"), by=1)
dayCounters <- ¢(0,1,2,3,4,5,6,1)

dayCount (startDates, endDates, dayCounters)

yearFraction (startDates, endDates, dayCounters)

CallableBond CallableBond evaluation

Description

The CallableBond function sets up and evaluates a callable fixed rate bond using Hull-White
model and a TreeCallableFixedBondEngine pricing engine. For more detail, see the source codes
in quantlib’s example folder, Examples/CallableBond/CallableBond.cpp

Usage

Default S3 method:
CallableBond (bondparams, hullWhite, coupon, dateparams)

22

CallableBond

(Optional) a double, percentage of the initial face

(Optional) a data frame whose columns are "Price",

"Type" and "Date" corresponding to QuantLib’s
CallabilitySchedule. Defaule is an empty frame, or no callability.

anamed list whose elements are parameters needed to set up a HullWhite pricing

a double, to set up a flat rate yield term structure
a double, Hull-White model’s alpha value

a double, Hull-White model’s sigma value

a double, time intervals parameter to

set up the TreeCallableFixedBondEngine

Currently, the codes only support a flat rate yield term structure. For more detail,
see QuantLib’s doc on HullWhite and TreeCallableFixedBondEngine.

(Optional) a named list, QuantLib’s date parameters of the bond.

(Optional) a double, settlement days.
Default value is 1.

(Optional) a string, either "us’ or "uk’
corresponding to US Goverment Bond
calendar and UK Exchange calendar.
Default value is ’us’.

(Optional) a number or string,

day counter convention.

See Enum. Default value is *Thirty360’

Arguments
bondparams a named list whose elements are:
issueDate a Date, the bond’s issue date
maturityDate a Date, the bond’s maturity date
faceAmount (Optional) a double, face amount of the bond.
Default value is 100.
redemption
amount that will be returned at maturity date.
Default value is 100.
callsch
hullWhite
engine in QuantLib:
term
alpha
sigma
gridIntervals.
coupon a numeric vector of coupon rates
dateparams
settlementDays
calendar
dayCounter
period

businessDayConvention

terminationDateConvention

(Optional) a number or string,

interest compounding interval. See Enum.
Default value is ’Semiannual’.

(Optional) a number or string,

business day convention.

See Enum. Default value is *Following’.
(Optional) a number or string

termination day convention.

CallableBond 23

See Enum. Default value is’Following’.

See example below.

Details

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation.

Value

The CallableBond function returns an object of class CallableBond (which inherits from
class Bond). It contains a list with the following components:

NPV net present value of the bond

cleanPrice price price of the bond

dirtyPrice dirty price of the bond
accruedAmount
accrued amount of the bond

yield yield of the bond
cashFlows cash flows of the bond
Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Khanh Nguyen <knguyen@cs . umb . edu> for the inplementation; Dirk Eddelbuettel <edd@debian.org>
for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

Examples

#set-up a HullWhite according to example from QuantLib
HullWhite <- list(term = 0.055, alpha = 0.03, sigma = 0.01,
gridIntervals = 40)

#callability schedule dataframe

Price <- rep(as.double(100),24)

Type <- rep(as.character("C"), 24)

Date <- seg(as.Date("2006-09-15"), by = '3 months', length = 24)
callSch <- data.frame (Price, Type, Date)

callSch$Type <- as.character (callSch$Type)

http://quantlib.org

24

ConvertibleBond

bondparams <- list (faceAmount=100, issueDate = as.Date("2004-09-16"),
maturityDate=as.Date ("2012-09-16"), redemption=100,
callSch = callSch)

dateparams <- list (settlementDays=3, calendar="us",

dayCounter = "ActualActual",
period="Quarterly",
businessDayConvention = "Unadjusted",

terminationDateConvention= "Unadjusted")
coupon <— c¢(0.0465)

CallableBond (bondparams, HullWhite, coupon, dateparams)
#examples using default values
CallableBond (bondparams, HullWhite, coupon)
dateparams <- list(
period="Quarterly",
businessDayConvention = "Unadjusted",
terminationDateConvention= "Unadjusted")
CallableBond (bondparams, HullWhite, coupon, dateparams)

bondparams <- list (issueDate = as.Date("2004-09-16"),
maturityDate=as.Date ("2012-09-16")
)

CallableBond (bondparams, HullWhite, coupon, dateparams)

ConvertibleBond Convertible Bond evaluation for Fixed, Floating and Zero Coupon

Description

The ConvertibleFixedCouponBond function setups and evaluates a ConvertibleFixedCoupon-
Bond using QuantLib’s BinomialConvertibleEngine

and BlackScholesMertonProcess

The NPV, clean price, dirty price, accrued interest, yield and cash flows of the bond is returned. For
detail, see test-suite/convertiblebond.cpp

The ConvertibleFloatingCouponBond function setups and evaluates a ConvertibleFixed-
CouponBond using QuantLib’s BinomialConvertibleEngine

and BlackScholesMertonProcess

The NPV, clean price, dirty price, accrued interest, yield and cash flows of the bond is returned. For
detail, see test-suite/convertiblebond.cpp

The ConvertibleZeroCouponBond function setups and evaluates a ConvertibleFixedCoupon-
Bond using QuantLib’s BinomialConvertibleEngine

and BlackScholesMertonProcess

The NPV, clean price, dirty price, accrued interest, yield and cash flows of the bond is returned. For
detail, see test-suite/convertiblebond. cpp.

ConvertibleBond 25

Usage

Default S3 method:

ConvertibleFloatingCouponBond (bondparams, iborindex, spread, process, dateparams)
Default S3 method:

ConvertibleFixedCouponBond (bondparams, coupon, process, dateparams)

Default S3 method:

ConvertibleZeroCouponBond (bondparams, process, dateparams)

Arguments

bondparams bond parameters, a named list whose elements are:

issueDate a Date, the bond’s issue date
maturityDate a Date, the bond’s maturity date
creditSpread a double, credit spread parameter

in the constructor of the bond.
conversitionRatio adouble, conversition ratio

parameter in the constructor of the bond.
exercise (Optional) a string, either "eu" for European

option, or "am" for American option.

Default value is "am’.

faceAmount (Optional) a double, face amount of the bond.
Default value is 100.
redemption (Optional) a double, percentage of the initial

face amount that will be returned at maturity
date. Default value is 100.
divSch (Optional) a data frame whose columns are
"Type", "Amount", "Rate", and "Date"
corresponding to QuantLib’s DividendSchedule.
Default value is an empty frame, or no dividend.
callSch (Optional) a data frame whose columns are "Price",
"Type" and "Date" corresponding to QuantLib’s
CallabilitySchedule. Defaule is an empty frame,
or no callability.

iborindex a DiscountCurve object, represents an IborIndex

spread a double vector, represents paramter ’spreads’ in ConvertibleFloatingBond’s
constructor.

coupon a double vector of coupon rate

process arguments to construct a BlackScholes process and set up the binomial pricing

engine for this bond.

underlying a double, flat underlying term structure
volatility a double, flat volatility term structure
dividendYield a DiscountCurve object
riskFreeRate a DiscountCurve object

26 ConvertibleBond

dateparams (Optional) a named list, QuantLib’s date parameters of the bond.

settlementDays (Optional) a double, settlement days.
Default value is 1.
calendar (Optional) a string, either "us’ or "uk’

corresponding to US Goverment Bond

calendar and UK Exchange calendar.

Default value is ’us’.
dayCounter (Optional) a number or string,

day counter convention.

See Enum. Default value is *Thirty360°
period (Optional) a number or string,

interest compounding interval. See Enum.

Default value is ’Semiannual’.
businessDayConvention (Optional) a number or string,

business day convention.

See Enum. Default value is 'Following’.

See the examples below.

Details
Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the Quant Lib implementation.

Value

The ConvertibleFloatingCouponBond function returns an object of class ConvertibleFloatingCouponBon
(which inherits from class Bond). It contains a list with the following components:

NPV net present value of the bond

cleanPrice price price of the bond

dirtyPrice dirty price of the bond

accruedAmount

accrued amount of the bond
yield yield of the bond
cashFlows cash flows of the bond

The ConvertibleFixedCouponBond function returns an object of class ConvertibleFixedCouponBond
(which inherits from class Bond). It contains a list with the following components:

NPV net present value of the bond

cleanPrice price price of the bond

dirtyPrice dirty price of the bond
accruedAmount
accrued amount of the bond

ConvertibleBond 27

yield yield of the bond

cashFlows cash flows of the bond

The ConvertibleZeroCouponBond function returns an object of class ConvertibleZeroCouponBond
(which inherits from class Bond). It contains a list with the following components:

NPV net present value of the bond

cleanPrice price price of the bond

dirtyPrice dirty price of the bond
accruedAmount
accrued amount of the bond

yield yield of the bond
cashFlows cash flows of the bond
Author(s)

Khanh Nguyen <knguyen@cs . umb . edu> for the inplementation; Dirk Eddelbuettel <edd@debian.org>
for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org/ for details on QuantLib.

Examples

#this follow an example in test-suite/convertiblebond.cpp
params <- list (tradeDate=Sys.Date()-2,
settleDate=Sys.Date (),
dt=.25,
interpWhat="discount",
interpHow="loglinear")

dividendYield <- DiscountCurve (params, list (flat=0.02))
riskFreeRate <- DiscountCurve (params, list (flat=0.05))

dividendSchedule <- data.frame (Type=character (0), Amount=numeric(0),
Rate = numeric(0), Date = as.Date(character (0)))
callabilitySchedule <- data.frame (Price = numeric(0), Type=character(0),
Date = as.Date(character(0)))

process <- list (underlying=50, divYield = dividendYield,
rff = riskFreeRate, volatility=0.15)

today <- Sys.Date()

bondparams <- list (exercise="am", faceAmount=100,
divSch = dividendSchedule,
callSch = callabilitySchedule,
redemption=100,
creditSpread=0.005,

http://quantlib.org/

ConvertibleBond

conversionRatio = 0.0000000001,

issueDate=as.Date (today+2),

maturityDate=as.Date (today+3650))
dateparams <- list (settlementDays=3,

dayCounter="ActualActual",

period = "Semiannual", calendar = "us",

businessDayConvention="Following")

lengths <- c¢(2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)
coupons <- c¢(0.0200, 0.0225, 0.0250, 0.0275, 0.0300,
0.0325, 0.0350, 0.0375, 0.0400, 0.0425,
0.0450, 0.0475, 0.0500, 0.0525, 0.0550)
marketQuotes <- rep (100, length(lengths))
curvedateparams <- list (settlementDays=0, period="Annual",
dayCounter="ActualActual",
businessDayConvention ="Unadjusted")
curveparams <- list (method="ExponentialSplinesFitting",
origDate = Sys.Date())
curve <- FittedBondCurve (curveparams, lengths, coupons, marketQuotes, curvedateparams)
iborindex <- list (type="USDLibor", length=6,
inTermOf="Month", term=curve)
spreads <- c{()
#ConvertibleFloatingCouponBond (bondparams, iborindex, spreads, process, dateparams)

#example using default values
#ConvertibleFloatingCouponBond (bondparams, iborindex, spreads, process)

dateparams <- list (settlementDays=3,
period = "Semiannual",
businessDayConvention="Unadjusted")

bondparams <- list(
creditSpread=0.005, conversionRatio = 0.0000000001,
issueDate=as.Date (today+2),
maturityDate=as.Date (today+3650))
#ConvertibleFloatingCouponBond (bondparams, iborindex,
#spreads, process, dateparams)

#this follow an example in test-suite/convertiblebond.cpp
#for ConvertibleFixedCouponBond

#set up arguments to build a pricing engine.

params <- list (tradeDate=Sys.Date()-2,
settleDate=Sys.Date (),
dt=.25,

interpWhat="discount",
interpHow="loglinear")
times <- seq(0,10,.1)

dividendYield <- DiscountCurve (params, list (flat=0.02), times)

ConvertibleBond 29

riskFreeRate <- DiscountCurve (params, list (flat=0.05), times)

dividendSchedule <- data.frame (Type=character (0), Amount=numeric (0),

Rate = numeric(0), Date = as.Date(character(0)))
callabilitySchedule <- data.frame(Price = numeric(0), Type=character(0),
Date = as.Date(character(0)))

process <- list (underlying=50, divYield = dividendYield,
rff = riskFreeRate, volatility=0.15)

today <- Sys.Date()

bondparams <- list (exercise="am", faceAmount=100, divSch = dividendSchedule,
callSch = callabilitySchedule, redemption=100,
creditSpread=0.005, conversionRatio = 0.0000000001,
issueDate=as.Date (today+2),
maturityDate=as.Date (today+3650))

dateparams <- list (settlementDays=3,
dayCounter="Actual360",
period = "Once", calendar = "us",
businessDayConvention="Following"
)

coupon <- c¢(0.05)

ConvertibleFixedCouponBond (bondparams, coupon, process, dateparams)

#example with default value
ConvertibleFixedCouponBond (bondparams, coupon, process)

dateparams <- list (settlementDays=3,
dayCounter="Actual360")
ConvertibleFixedCouponBond (bondparams, coupon, process, dateparams)

bondparams <- list (creditSpread=0.005, conversionRatio = 0.0000000001,
issueDate=as.Date (today+2),
maturityDate=as.Date (today+3650))
ConvertibleFixedCouponBond (bondparams, coupon, process, dateparams)

#this follow an example in test-suite/convertiblebond.cpp
params <- list (tradeDate=Sys.Date()-2,
settleDate=Sys.Date (),
dt=.25,
interpWhat="discount",
interpHow="loglinear")
times <- seq(0,10,.1)

dividendYield <- DiscountCurve (params, list (flat=0.02), times)
riskFreeRate <- DiscountCurve (params, list (flat=0.05), times)

dividendSchedule <- data.frame (Type=character (0), Amount=numeric (0),
Rate = numeric(0), Date = as.Date(character(0)))
callabilitySchedule <- data.frame (Price = numeric(0), Type=character(0),

30

DiscountCurve

Date = as.Date(character(0)))

process <- list (underlying=50, divYield = dividendYield,
rff = riskFreeRate, volatility=0.15)

today <- Sys.Date()

bondparams <- list (exercise="am", faceAmount=100, divSch = dividendSchedule,
callSch = callabilitySchedule, redemption=100,
creditSpread=0.005, conversionRatio = 0.0000000001,
issueDate=as.Date (today+2),
maturityDate=as.Date (today+3650))

dateparams <- list (settlementDays=3,
dayCounter="Actual360",
period = "Once", calendar = "us",
businessDayConvention="Following"

)
ConvertibleZeroCouponBond (bondparams, process, dateparams)

#example with default values
ConvertibleZeroCouponBond (bondparams, process)

bondparams <- list (creditSpread=0.005,
conversionRatio=0.0000000001,
issueDate=as.Date (today+t2),
maturityDate=as.Date (today+3650))

dateparams <- list (settlementDays=3, dayCounter='Actual360')
ConvertibleZeroCouponBond (bondparams, process, dateparams)
ConvertibleZeroCouponBond (bondparams, process)

DiscountCurve Returns the discount curve (with zero rates and forwards) given times

Description

DiscountCurve constructs the spot term structure of interest rates based on input market data
including the settlement date, deposit rates, futures prices, FRA rates, or swap rates, in various
combinations. It returns the corresponding discount factors, zero rates, and forward rates for a
vector of times that is specified as input.

Usage

DiscountCurve (params, tsQuotes, times)

DiscountCurve

Arguments

params

tsQuotes

times

Details

31

A list specifying the t radeDate (month/day/year), settleDate, forward
rate time span dt, and two curve construction options: interpWhat (with
possible values discount, forward, and zero) and interpHow (with
possible values 1inear, loglinear, and spline). spline here means
cubic spline interpolation of the interpWhat value.

Market quotes used to construct the spot term structure of interest rates. Must
be a list of name/value pairs, where the currently recognized names are:

flat rate for a flat yield curve
dlw 1-week deposit rate
dlm I-month deposit rate
d3m 3-month deposit rate
dém 6-month deposit rate
d9m 9-month deposit rate
dly 1-year deposit rate

s2y 2-year swap rate

s3y 3-year swap rate

sby 5-year swap rate

s10y 10-year swap rate

slby 15-year swap rate

s20y 20-year swap rate

s30y 30-year swap rate
futl-fut8 3-month futures contracts
fra3x6 3x6 FRA

fra6x9 6x9 FRA

fra6xl2 6x12 FRA

Here rates are expected as fractions (so 5% means .05). If £1at is specified it
must be the first and only item in the list. The eight futures correspond to the
first eight IMM dates. The maturity dates of the instruments specified need not
be ordered, but they must be distinct.

A vector of times at which to return the discount factors, forward rates, and zero
rates. Times must be specified such that the largest time plus dt does not exceed
the longest maturity of the instruments used for calibration (no extrapolation).

This function is based on QuantLib Version 0.3.10. It introduces support for fixed-income instru-
ments in RQuantLib.

Forward rates and zero rates are computed assuming continuous compounding, so the forward rate
f over the period from ¢ to 5 is determined by the relation

dy/dy = e/ (271

where d; and ds are discount factors corresponding to the two times. In the case of the zero rate ¢,
is the current time (the spot date).

32 DiscountCurve

Curve construction can be a delicate problem and the algorithms may fail for some input data sets
and/or some combinations of the values for interpWhat and interpHow. Fortunately, the C++
exception mechanism seems to work well with the R interface, and QuantLib exceptions are
propagated back to the R user, usually with a message that indicates what went wrong. (The first
part of the message contains technical information about the precise location of the problem in the
QuantLib code. Scroll to the end to find information that is meaningful to the R user.)

Value

DiscountCurve returns a list containing:

times Vector of input times

discounts Corresponding discount factors

forwards Corresponding forward rates with time span dt
zerorates Corresponding zero coupon rates

flatQuotes True if a flat quote was used, False otherwise

params The input parameter list

Author(s)

Dominick Samperi

References

Brigo, D. and Mercurio, F. (2001) Interest Rate Models: Theory and Practice, Springer-Verlag,
New York.

For information about QuantLib see http://quantlib.org.

For information about RQuantLibsee http://dirk.eddelbuettel.com/code/rquantlib.
html.

See Also

BermudanSwaption

Examples

savepar <- par (mfrow=c(3,3), mar=c(4,4,2,0.5))

This data is taken from sample code shipped with QuantLib 0.9.7
from the file Examples/Swap/swapvaluation
params <- list (tradeDate=as.Date('2004-09-20"),

settleDate=as.Date ('2004-09-22"),

dt=.25,

interpWhat="discount",

interpHow="loglinear")

We get numerical issue for the spline interpolation if we add
any on of these three extra futures —-- the original example

http://quantlib.org
http://dirk.eddelbuettel.com/code/rquantlib.html
http://dirk.eddelbuettel.com/code/rquantlib.html

Enum

creates different curves based on different deposit, fra, futures
and swap data
tsQuotes <- list (dlw =
dlm =
d3m =
dém =
d9m =
dly =
futl

.0382,
.0372,
.0363,
.0353,
.0348,
.0345,
.2875,
fut2=96.7875,
fut3=96.9875,
fut4=96.6875,
fut5=96.4875,
fut6=96.3875,
fut7=96.2875,
fut8=96.0875,
s2y = 0.037125,
s3y = 0.0398,
s5y = 0.0443,
s10y = 0.05165,
s15y = 0.055175)

O W o o oo oo

Il
o O

EEETE B Rt
I
©
o

times <- seqg(0,10,.1)

Loglinear interpolation of discount factors
curves <- DiscountCurve (params, tsQuotes, times)
plot (curves, setpar=FALSE)

Linear interpolation of discount factors
params$interpHow="1linear"

curves <- DiscountCurve (params, tsQuotes, times)
plot (curves, setpar=FALSE)

Spline interpolation of discount factors
params$interpHow="spline"

curves <- DiscountCurve (params, tsQuotes, times)
plot (curves, setpar=FALSE)

par (savepar)

Enum Documentation for parameters

Description

Reference for parameters when constructing a bond

Arguments

DayCounter an int value

34

Actual360
Actual360FixEd
ActualActual
ActualBusiness252
OneDayCounter
SimpleDayCounter
anything else Thirty360

g w N R @

businessDayConvention
an int value

0 Following

1 ModifiedFollowing
2 Preceding

3 ModifiedPreceding
anything else UNadjusted

compounding an int value

0 Simple
1 Compounded
2 Continuous
3 SimpleThenCompounded
period or frequency
an int value
-1 NoFrequency
0 Once
1 Annual
2 Semiannual
3 EveryFourthMonth
4 Quarterly
6 BiMonthtly
12 Monthly
13 EveryFourthWeek
26 BiWeekly
52 Weekly
365 Daily

anything else OtherFrequency

date generation
an int value to specify date generation rule

Backward
Forward

Zero
ThirdWednesday
Twentieth

S W N e @

Enum

EuropeanOption 35

anything else TwentiethIMM

Details

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation, particularly the datetime classes.

Value

None

Author(s)

Khanh Nguyen <knguyen@cs.umb.edu>

References

http://quantlib.org for details on QuantLib.

EuropeanOption European Option evaluation using Closed-Form solution

Description

The EuropeanOpt ion function evaluations an European-style option on a common stock using
the Black-Scholes-Merton solution. The option value, the common first derivatives ("Greeks") as
well as the calling parameters are returned.

Usage

Default S3 method:
EuropeanOption (type, underlying, strike,
dividendYield, riskFreeRate, maturity, volatility)

Arguments

type A string with one of the values call or put
underlying Current price of the underlying stock

strike Strike price of the option
dividendYield
Continuous dividend yield (as a fraction) of the stock

riskFreeRate Risk-free rate
maturity Time to maturity (in fractional years)

volatility Volatility of the underlying stock

http://quantlib.org

36 EuropeanOption

Details

The well-known closed-form solution derived by Black, Scholes and Merton is used for valuation.
Implied volatilities are calculated numerically.

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation.
Value

The EuropeanOption function returns an object of class EuropeanOption (which inherits
from class Option). It contains a list with the following components:

value Value of option

delta Sensitivity of the option value for a change in the underlying

gamma Sensitivity of the option delta for a change in the underlying

vega Sensitivity of the option value for a change in the underlying’s volatility
theta Sensitivity of the option value for a change in t, the remaining time to maturity
rho Sensitivity of the option value for a change in the risk-free interest rate

dividendRho Sensitivity of the option value for a change in the dividend yield

parameters List with parameters with which object was created

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

See Also

EuropeanOptionImpliedVolatility, EuropeanOptionArrays,AmericanOption,BinaryOption

Examples

simple call with unnamed parameters

EuropeanOption("call", 100, 100, 0.01, 0.03, 0.5, 0.4)

simple call with some explicit parameters, and slightly increased vol:
EuropeanOption (type="call", underlying=100, strike=100, dividendYield=0.01,
riskFreeRate=0.03, maturity=0.5, volatility=0.5)

http://quantlib.org

EuropeanOptionArrays 37

EuropeanOptionArrays
European Option evaluation using Closed-Form solution

Description

The EuropeanOptionArrays function allows any two of the numerical input parameters to
be a vector, and a list of matrices is returned for the option value as well as each of the ’greeks’.
For each of the returned matrices, each element corresponds to an evaluation under the given set of
parameters.

Usage

EuropeanOptionArrays (type, underlying, strike, dividendYield, riskFreeRate, maturit
oldEuropeanOptionArrays (type, underlying, strike, dividendYield, riskFreeRate, matt
plotOptionSurface (EOres, ylabel="", xlabel="", zlabel="", fov=60)

Arguments

type A string with one of the values call or put
underlying (Scalar or list) current price(s) of the underlying stock

strike (Scalar or list) strike price(s) of the option

dividendYield
(Scalar or list) continuous dividend yield(s) (as a fraction) of the stock

riskFreeRate (Scalar or list) risk-free rate(s)
maturity (Scalar or list) time(s) to maturity (in fractional years)

volatility (Scalar or list) volatilit(ylies) of the underlying stock

EOres result matrix produced by EuropeanOptionArrays
ylabel label for y-axsis
xlabel label for x-axsis
zlabel label for z-axsis
fov viewpoint for 3d rendering
Details

The well-known closed-form solution derived by Black, Scholes and Merton is used for valuation.

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation.

38 EuropeanOptionArrays

Value

The EuropeanOptionArrays function allows any two of the numerical input parameters to be
a vector or sequence. A list of two-dimensional matrices is returned. Each cell corresponds to an
evaluation under the given set of parameters.

For these functions, the following components are returned:

value (matrix) value of option

delta (matrix) change in value for a change in the underlying

gamma (matrix) change in value for a change in delta

vega (matrix) change in value for a change in the underlying’s volatility
theta (matrix) change in value for a change in delta

rho (matrix) change in value for a change in time to maturity

dividendRho (matrix) change in value for a change in delta
parameters List with parameters with which object was created

The o1ldEuropeanOptionArrays function is an older implementation which vectorises this at
the R level instead but allows more general multidimensional arrays.

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)
Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

See Also

AmericanOption,BinaryOption

Examples

define two vectos for the underlying and the volatility

und.seq <- seq(10,180,by=2)

vol.seqg <- seq(0.1,0.9,by=0.1)

evaluate them along with three scalar parameters

EQOarr <- EuropeanOptionArrays("call", underlying=und.seq,
strike=100, dividendYield=0.01,
riskFreeRate=0.03,
maturity=1, volatility=vol.seq)

and look at four of the result arrays: value, delta, gamma, vega

old.par <- par(no.readonly = TRUE)

par (mfrow=c (2, 2) ,oma=c(5,0,0,0) ,mar=c(2,2,2,1))

plot (EOarr$parameters.underlying, EOarr$valuel[,1l], type='n',

http://quantlib.org

EuropeanOptionImplied Volatility 39

main="option value", xlab="", ylab="")
topocol <- topo.colors(length(vol.seq))
for (i in l:length(vol.seq))
lines (EOarrS$parameters.underlying, EOarrS$value[,i], col=topocol[i])
plot (EOQarrS$parameters.underlying, EOarrS$deltal,1l],type='n"',
main="option delta", xlab="", ylab="")
for (i in l:length(vol.seq))
lines (EOarrS$parameters.underlying, EOarr$deltal[,i], col=topocol[i])
plot (EOarr$parameters.underlying, EOarr$gammal,l],type='n',
main="option gamma", xlab="", ylab="")
for (i in l:length(vol.seq))
lines (EOarr$parameters.underlying, EOarr$gammal[,i], col=topocol[i])
plot (EOarr$parameters.underlying, EOarr$vegal,1],type='n"',
main="option vega", xlab="", ylab="")
for (i in l:length(vol.seq))
lines (EOarrS$parameters.underlying, EOarrS$vegal,i], col=topocol[il])
mtext (text=paste ("Strike is 100, maturity 1 year, riskless rate 0.03",
"\nUnderlying price from", und.seq[l],"to", und.seg[length (und.seq)],
"\nVolatility from",vol.seq[l], "to",vol.seq[length(vol.seq)l]),
side=1, font=1, outer=TRUE, 1ine=3)
par (old.par)

EuropeanOptionImpliedVolatility
Implied Volatility calculation for European Option

Description

The EuropeanOptionImpliedvVolatility function solves for the (unobservable) implied
volatility, given an option price as well as the other required parameters to value an option.

Usage

Default S3 method:
EuropeanOptionImpliedVolatility (type, value,
underlying, strike, dividendYield, riskFreeRate, maturity, volatility)

Arguments
type A string with one of the values call or put
value Value of the option (used only for ImpliedVolatility calculation)

underlying Current price of the underlying stock

strike Strike price of the option
dividendYield
Continuous dividend yield (as a fraction) of the stock

riskFreeRate Risk-free rate
maturity Time to maturity (in fractional years)
volatility Initial guess for the volatility of the underlying stock

40 FittedBondCurve

Details

The well-known closed-form solution derived by Black, Scholes and Merton is used for valuation.
Implied volatilities are then calculated numerically.

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation.
Value

The EuropeanOptionImpliedVolatility function returns an object of class ImpliedVolatility.
It contains a list with the following elements:

impliedvol The volatility implied by the given market prices

parameters List with the option parameters used

Note

The interface might change in future release as QuantLib stabilises its own API.

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

See Also

EuropeanOption,AmericanOption,BinaryOption

Examples

EuropeanOptionImpliedVolatility (type="call", value=11.10, underlying=100,
strike=100, dividendYield=0.01, riskFreeRate=0.03,
maturity=0.5, volatility=0.4)

FittedBondCurve Returns the discount curve (with zero rates and forwards) given set of
bonds

Description
FittedBondCurve fits a term structure to a set of bonds using three different fitting methodolo-
gies. For more detail, see QuantLib/Example/FittedBondCurve.

Usage

FittedBondCurve (curveparams, lengths, coupons, marketQuotes, dateparams)

http://quantlib.org

FittedBondCurve 41

Arguments

curveparams curve parameters

method a string, fitting methods: "ExponentialSplinesFitting",
"SimplePolynomialFitting", "NelsonSiegelFitting"
origDate a Date, starting date of the curve

lengths an numeric vector, length of the bonds in year
coupons a numeric vector, coupon rate of the bonds
marketQuotes anumeric vector, market price of the bonds

dateparams (Optional) a named list, QuantLib’s date parameters of the bond.

settlementDays (Optional) a double, settlement days.
Default value is 1.
dayCounter (Optional) a number or string,

day counter convention.

See Enum. Default value is ’Thirty360’
period (Optional) a number or string,

interest compounding interval. See Enum.

Default value is *Semiannual’.
businessDayConvention (Optional) a number or string,

business day convention.

See Enum. Default value is "Following’.

See example below.

Details

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation.

Value

table, a three columns "date - zeroRate - discount” data frame

Author(s)

Khanh Nguyen <knguyen@cs . umb . edu> for the inplementation; Dirk Eddelbuettel <edd@debian
for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org/ for details on QuantLib.

.org>

http://quantlib.org/

42 FixedRateBond

Examples

lengths <- c¢(2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)
coupons <- c(0.0200, 0.0225, 0.0250, 0.0275, 0.0300,
0.0325, 0.0350, 0.0375, 0.0400, 0.0425,
0.0450, 0.0475, 0.0500, 0.0525, 0.0550)
marketQuotes <- rep (100, length (lengths))
dateparams <- list (settlementDays=0, period="Annual",
dayCounter="ActualActual",
businessDayConvention ="Unadjusted")
curveparams <- list (method="ExponentialSplinesFitting",
origDate = Sys.Date())
curve <- FittedBondCurve (curveparams, lengths, coupons, marketQuotes, dateparams)
library (zoo)
z <- zoo(curveS$StableS$SzeroRates, order.by=curve$StableSdate)
plot (z)

FixedRateBond Fixed-Rate bond pricing

Description

The FixedRateBond function evaluates a fixed rate bond using discount curve. More specificly,
the calculation is done by DiscountingBondEngine from QuantLib. The NPV, clean price, dirty
price, accrued interest, yield and cash flows of the bond is returned. For more detail, see the source
codes in QuantLib’s file test-suite/bond. cpp.

The FixedRateBondPriceByYield function calculates the theoretical price of a fixed rate
bond from its yield.

The FixedRateBondYield function calculates the theoretical yield of a fixed rate bond from
its price.

Usage

Default S3 method:
FixedRateBond (bond, rates, discountCurve, dateparams)

Default S3 method:
FixedRateBondPriceByYield(settlementDays=1, yield, faceAmount,
effectiveDate, maturityDate,
period, calendar="us",
rates, dayCounter=2,
businessDayConvention=0, compound = 0, redemptions=
issueDate)

Default S3 method:
FixedRateBondYield(settlementDays=1, price, faceAmount,
effectiveDate, maturityDate,

FixedRateBond 43

period, calendar="us",
rates, dayCounter=2,
businessDayConvention=0,

compound = 0, redemption=100,
issueDate)
Arguments
bond bond parameters, a named list whose elements are:

issueDate a Date, the bond’s issue date

maturityDate a Date, the bond’s maturity date

faceAmount (Optional) a double, face amount of the bond.

Default value is 100.
redemption (Optional) a double, percentage of the initial

face amount that will be returned at maturity
date. Default value is 100.
effectiveDate (Optinal) a Date, the bond’s effective date. Default value is issueDate

rates a numeric vector, bond’s coupon rates
discountCurve
Can be one of the following:

a DiscountCurve aobject of DiscountCurve class
For more detail, see example or
the discountCurve function

A 2 items list specifies a flat curve in two
values "todayDate" and "rate"

A 3 items 1list specifies three values to construct a
DiscountCurve object, "params" ,
"tsQuotes", "times".

For more detail, see example or

the discountCurve function

dateparams (Optional) a named list, QuantLib’s date parameters of the bond.

settlementDays (Optional) a double, settlement days.
Default value is 1.
calendar (Optional) a string, either 'us’ or "uk’

corresponding to US Goverment Bond
calendar and UK Exchange calendar.
Default value is "us’.
dayCounter (Optional) a number or string,
day counter convention.
See Enum. Default value is *Thirty360’
period (Optional) a number or string,
interest compounding interval. See Enum.

44 FixedRateBond

Default value is *Semiannual’.
businessDayConvention (Optional) a number or string,

business day convention.

See Enum. Default value is *Following’.
terminationDateConvention (Optional) a number or string,

termination day convention.

See Enum. Default value is ’Following’.

endOfMonth (Optional) a numeric with value 1 or 0.
End of Month rule. Default value is 0.
dateGeneration (Optional) a numeric, date generation method.

See Enum. Default value is *Backward’

See example below.

settlementDays
an integer, 1 for T+1, 2 for T+2, etc...

yield yield of the bond
price price of the bond
effectiveDate

bond’s effective date
maturityDate bond’s maturity date

period frequency of events,0=NoFrequency, 1=Once, 2=Annual, 3=Semiannual, 4=Ev-
eryFourthMonth, 5=Quarterly, 6=Bimonthly ,7=Monthly ,8=EveryFourthWeely,9=Biweekly,
10=Weekly, 11=Daily. For more information, see QuantLib’s Frequency class

calendar Business Calendar. Either us or uk

faceAmount face amount of the bond

businessDayConvention
convention used to adjust a date in case it is not a valid business day. See quantlib
for more detail. 0 = Following, 1 = ModifiedFollowing, 2 = Preceding, 3 =
ModifiedPreceding, other = Unadjusted

dayCounter day count convention. 0 = Actual360(), 1 = Actual365Fixed(), 2 = ActualAc-
tual(), 3 = Business252(), 4 = OneDayCounter(), 5 = SimpleDayCounter(), all
other = Thirty360(). For more information, see QuantLib’s DayCounter class

compound compounding type. 0=Simple, 1=Compounded, 2=Continuous, all other=SimpleThenCompounded.
See QuantLib’s Compound class

redemption redemption when the bond expires

issueDate date the bond is issued

Details

A discount curve is built to calculate the bond value.

Please see any decent Finance textbook for background reading, and the Quant L ib documentation
for details on the QuantLib implementation.

FixedRateBond 45

Value

The FixedRateBond function returns an object of class FixedRateBond (which inherits from
class Bond). It contains a list with the following components:

NPV net present value of the bond

cleanPrice clean price of the bond

dirtyPrice dirty price of the bond

accruedAmount

accrued amount of the bond
yield yield of the bond
cashFlows cash flows of the bond

The FixedRateBondPriceByYield function returns an object of class FixedRateBondPriceByYield
(which inherits from class Bond). It contains a list with the following components:

price price of the bond

The FixedRateBondYield function returns an object of class FixedRateBondYield (which
inherits from class Bond). It contains a list with the following components:

yield yield of the bond

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Khanh Nguyen <knguyen@cs . umb . edu> for the inplementation; Dirk Eddelbuettel <edd@debian.org>
for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

Examples

#Simple call with a flat curve
bond <- list (faceAmount=100,
issueDate=as.Date ("2004-11-30"),
maturityDate=as.Date ("2008-11-30"),
redemption=100,
effectiveDate=as.Date ("2004-11-30"))
dateparams <- list (settlementDays=1,
calendar="us", dayCounter = 'Thirty360', period=2,
businessDayConvention = 4, terminationDateConvention=4,
dateGeneration=1, endOfMonth=1)
coupon.rate <- ¢ (0.02875)

params <- list (tradeDate=as.Date('2002-2-15"),

http://quantlib.org

46

settleDate=as.Date('2002-2-19"),
dt=.25,

interpWhat="discount",
interpHow="loglinear")

discountCurve.flat <- DiscountCurve (params, list (flat=0.05))

FloatingRateBond

FixedRateBond (bond, coupon.rate, discountCurve.flat, dateparams)

#Same bond with a discount curve constructed from market quotes

tsQuotes <- list (dlw =0.0382,
dlm =0.0372,
futl1=96.2875,
fut2=96.7875,
fut3=96.9875,
fut4=96.6875,
fut5=96.4875,
fut6=96.3875,
fut7=96.2875,
fut8=96.0875,
s3y =0.0398,
sby =0.0443,
sl0y =0.05165,
sl5y =0.055175)

discountCurve <- DiscountCurve (params, tsQuotes)
FixedRateBond (bond, coupon.rate, discountCurve, dateparams)

#example with default dateparams
FixedRateBond (bond, coupon.rate, discountCurve)

##exampe with defaul bond parameter and dateparams
bond <- list (issueDate=as.Date("2004-11-30"),
maturityDate=as.Date ("2008-11-30"))
dateparams <- list (calendar="us",
dayCounter = "ActualActual",
period="Annual")
FixedRateBond (bond, coupon.rate, discountCurve, dateparams)

FixedRateBondPriceByYield(,0.0307, 100000, as.Date("2004-11-30"), as.Date("2008-11-30"), 3,

FixedRateBondYield(, 90, 100000, as.Date("2004-11-30"), as.Date("2008-11-30"), 3,

FloatingRateBond Floating rate bond pricing

’

c(0.0287¢

FloatingRateBond 47

Description

The FloatingRateBond function evaluates a floating rate bond using discount curve. More
specificly, the calculation is done by DiscountingBondEngine from QuantLib. The NPV, clean
price, dirty price, accrued interest, yield and cash flows of the bond is returned. For more detail, see
the source codes in quantlib’s test-suite. test-suite/bond.cpp

Usage

Default S3 method:

FloatingRateBond (bond, gearings, spreads,
caps, floors, indexk,
curve, dateparams)

Arguments
bond bond parameters, a named list whose elements are:
issueDate a Date, the bond’s issue date
maturityDate a Date, the bond’s maturity date
faceAmount (Optional) a double, face amount of the bond.
Default value is 100.
redemption (Optional) a double, percentage of the initial

face amount that will be returned at maturity
date. Default value is 100.
effectiveDate (Optinal) a Date, the bond’s effective date. Default value is issueDate

gearings (Optional) a numeric vector, bond’s gearings. See quantlib’s doc on Floatin-
gRateBond for more detail. Default value is an empty vector c().

spreads (Optional) a numeric vector, bond’s spreads. See quantlib’s doc on Floatin-
gRateBond for more detail.Default value is an empty vector c()

caps (Optional) a numeric vector, bond’s caps. See quantlib’s doc on FloatingRate-
Bond for more detail. Default value is an empty vector c()

floors (Optional) a numeric vector, bond’s floors. See quantlib’s doc on FloatingRate-
Bond for more detail. Default value is an empty vector c()

curve Can be one of the following:

a DiscountCurve aobject of DiscountCurve class
For more detail, see example or
the discountCurve function

A 2 items list specifies a flat curve in two
values "todayDate" and "rate"

A 3 items list specifies three values to construct a
DiscountCurve object, "params" ,
"tsQuotes", "times".

For more detail, see example or
the discountCurve function

48 FloatingRateBond

index a named list whose elements are parameters of an IborIndex term structure.
type a string, currently support only "USDLibor"
length an integer, length of the index
inTermOf astring, period unit, currently support only "Month’
term a DiscountCurve object, the term structure of the index

dateparams (Optional) a named list, QuantLib’s date parameters of the bond.

settlementDays (Optional) a double, settlement days.
Default value is 1.
calendar (Optional) a string, either "us’ or "uk’

corresponding to US Goverment Bond

calendar and UK Exchange calendar.

Default value is "us’.
dayCounter (Optional) a number or string,

day counter convention.

See Enum. Default value is *Thirty360’
period (Optional) a number or string,

interest compounding interval. See Enum.

Default value is *Semiannual’.
businessDayConvention (Optional) a number or string,

business day convention.

See Enum. Default value is ’Following’.
terminationDateConvention (Optional) a number or string,

termination day convention.

See Enum. Default value is *Following’.

endOfMonth (Optional) a numeric with value 1 or 0.
End of Month rule. Default value is 0.
dateGeneration (Optional) a numeric, date generation method.

See Enum. Default value is 'Backward’

See example below.

Details

A discount curve is built to calculate the bond value.

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the Quant Lib implementation.
Value

The Float ingRateBond function returns an object of class Float ingRateBond (which in-
herits from class Bond). It contains a list with the following components:

NPV net present value of the bond

cleanPrice clean price of the bond

FloatingRateBond 49

dirtyPrice dirty price of the bond

accruedAmount
accrued amount of the bond
yield yield of the bond
cashFlows cash flows of the bond
Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Khanh Nguyen <knguyen@cs . umbno . edu> for the inplementation; Dirk Eddelbuettel <edd@debian.org>
for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

Examples

bond <- list (faceAmount=100, issueDate=as.Date("2004-11-30"),
maturityDate=as.Date ("2008-11-30"), redemption=100,
effectiveDate=as.Date ("2004-11-30"))
dateparams <- list (settlementDays=1, calendar="us",
dayCounter = 'ActualActual', period=2,
businessDayConvention = 1, terminationDateConvention=1,
dateGeneration=0, endOfMonth=0, fixingDays = 1)

gearings <- c()
spreads <- c()
caps <— c()
floors <- c{()

params <- list (tradeDate=as.Date('2002-2-15"),
settleDate=as.Date('2002-2-19"),
dt=.25,
interpWhat="discount",
interpHow="loglinear")

tsQuotes <- list(dlw =0.0382,
dlm =0.0372,
fut1=96.2875,
fut2=96.7875,
fut3=96.9875,
fut4=96.6875,
fut5=96.4875,
fut6=96.3875,
fut7=96.2875,
fut8=96.0875,

http://quantlib.org

50 Implied Volatility

s3y =0.0398,
s5y =0.0443,

s10y =0.05165,
s15y =0.055175)

when both discount and libor curves are flat.

discountCurve.flat <- DiscountCurve (params, list (flat=0.05))
termstructure <- DiscountCurve (params, list (flat=0.03))
iborIndex.params <- list (type="USDLibor", length=6,
inTermOf="Month", term=termstructure)
FloatingRateBond (bond, gearings, spreads, caps, floors,
iborIndex.params, discountCurve.flat, dateparams)

discount curve is constructed from market quotes

and a flat libor curve

discountCurve <- DiscountCurve (params, tsQuotes)

termstructure <- DiscountCurve (params, list (flat=0.03))

iborIndex.params <- list (type="USDLibor", length=6,
inTermOf="Month", term = termstructure)

FloatingRateBond (bond, gearings, spreads, caps, floors,
iborIndex.params, discountCurve, dateparams)

#example using default values
FloatingRateBond (bond=bond, index=iborIndex.params, curve=discountCurve)

ImpliedVolatility Base class for option-price implied volatility evalution

Description

This class forms the basis from which the more specific classes are derived.

Usage

S3 method for class 'ImpliedVolatility'
print (x, digits=3, ...)

S3 method for class 'ImpliedVolatility'
summary (object, digits=3, ...)

Arguments
X Any option-price implied volatility object derived from this base class
object Any option-price implied volatility object derived from this base class
digits Number of digits of precision shown

ce Further arguments

Option 51

Details
Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the Quant Lib implementation.

Value

None, but side effects of displaying content.

Note

The interface might change in future release as QuantLib stabilises its own API.

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

See Also
AmericanOptionImpliedVolatility, EuropeanOptionImpliedVolatility,AmericanOption,Euror
BinaryOption

Examples

impVol<-EuropeanOptionImpliedVolatility ("call", wvalue=11.10, strike=100, volatility=0.4, 100
print (impVol)
summary (impVol)

Option Base class for option price evalution

Description

This class forms the basis from which the more specific classes are derived.

Usage

S3 method for class 'Option'
print (x, digits=4, ...)

S3 method for class 'Option'
plot (x, ...)

S3 method for class 'Option'
summary (object, digits=4, ...)

http://quantlib.org

52 Option

Arguments
X Any option object derived from this base class
object Any option object derived from this base class
digits Number of digits of precision shown
Further arguments
Details

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation.

Value

None, but side effects of displaying content.

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

See Also

AmericanOption,EuropeanOption, BinaryOption

Examples

EO<-EuropeanOption("call", strike=100, volatility=0.4, 100, 0.01, 0.03, O.

print (EO)
summary (EO)

S5)

http://quantlib.org

ZeroCouponBond 53

ZeroCouponBond Zero-Coupon bond pricing

Description

The ZeroCouponBond function evaluates a zero-coupon plainly using discount curve. More
specificly, the calculation is done by DiscountingBondEngine from QuantLib. The NPV, clean
price, dirty price, accrued interest, yield and cash flows of the bond is returned. For more detail, see
the source code in the QuantLib file test-suite/bond. cpp.

The ZeroPriceYield function evaluates a zero-coupon clean price based on its yield.

The ZeroYield function evaluations a zero-coupon yield based. See also http://www.mathworks.com/access/helpdesk/help

Usage

Default S3 method:
ZeroCouponBond (bond, discountCurve, dateparams)

Default S3 method:

ZeroPriceByYield(yield, faceAmount,
issueDate, maturityDate,
dayCounter=2, frequency=2,
compound=0, businessDayConvention=4)

Default S3 method:

ZeroYield(price, faceAmount,
issueDate, maturityDate,
dayCounter=2, frequency=2,
compound=0, businessDayConvention=4)

Arguments
bond bond parameters, a named list whose elements are:
issueDate a Date, the bond’s issue date
maturityDate aDate, the bond’s maturity date
faceAmount (Optional) a double, face amount of the bond.
Default value is 100.
redemption (Optional) a double, percentage of the initial
face amount that will be returned at maturity
date. Default value is 100.
discountCurve

Can be one of the following:

a DiscountCurve aobject of DiscountCurve class
For more detail, see example or

54 ZeroCouponBond

the discountCurve function

A 2 items list specifies a flat curve in two
values "todayDate" and "rate"

A 3 items list specifies three values to construct a
DiscountCurve object, "params" ,
"tsQuotes", "times".
For more detail, see example or

the discountCurve function

dateparams (Optional) a named list, QuantLib’s date parameters of the bond.

settlementDays (Optional) a double, settlement days.
Default value is 1.
calendar (Optional) a string, either "us’ or "uk’

corresponding to US Goverment Bond

calendar and UK Exchange calendar.

Default value is "us’.
businessDayConvention (Optional) a number or string,

business day convention.

See Enum. Default value is *Following’.

See example below.
yield yield of the bond
price price of the bond
faceAmount face amount of the bond
issueDate date the bond is issued
maturityDate maturity date, an R’s date type

dayCounter day count convention. 0 = Actual360(), 1 = Actual365Fixed(), 2 = ActualAc-
tual(), 3 = Business252(), 4 = OneDayCounter(), 5 = SimpleDayCounter(), all
other = Thirty360(). For more information, see QuantLib’s DayCounter class

frequency frequency of events,0=NoFrequency, 1=Once, 2=Annual, 3=Semiannual, 4=Ev-
eryFourthMonth, 5=Quarterly, 6=Bimonthly ,7=Monthly ,8=EveryFourthWeely,9=Biweekly,
10=Weekly, 11=Daily. For more information, see QuantLib’s Frequency class

compound compounding type. 0=Simple, 1=Compounded, 2=Continuous, all other=SimpleThenCompounded.
See QuantLib’s Compound class

businessDayConvention
convention used to adjust a date in case it is not a valid business day. See quantlib
for more detail. 0 = Following, 1 = ModifiedFollowing, 2 = Preceding, 3 =
ModifiedPreceding, other = Unadjusted

Details

A discount curve is built to calculate the bond value.

Please see any decent Finance textbook for background reading, and the Quant Lib documentation
for details on the QuantLib implementation.

ZeroCouponBond 55

Value

The ZeroCouponBond function returns an object of class ZeroCouponBond (which inherits
from class Bond). It contains a list with the following components:

NPV net present value of the bond

cleanPrice clean price of the bond

dirtyPrice dirty price of the bond

accruedAmount

accrued amount of the bond
yield yield of the bond
cashFlows cash flows of the bond

The ZeroPriceByYield function returns an object of class ZeroPriceByYield (which in-
herits from class Bond). It contains a list with the following components:

price price of the bond

The ZeroYield function returns an object of class ZeroYield (which inherits from class
Bond). It contains a list with the following components:

yield yield of the bond

Note

The interface might change in future release as QuantLib stabilises its own APIL.

Author(s)

Khanh Nguyen <knguyen@cs . umb . edu> for the inplementation; Dirk Eddelbuettel <edd@debian.org>
for the R interface; the QuantLib Group for QuantLib

References

http://quantlib.org for details on QuantLib.

Examples

Simple call with all parameter and a flat curve
bond <- list (faceAmount=100, issueDate=as.Date("2004-11-30"),
maturityDate=as.Date ("2008-11-30"), redemption=100)

dateparams <-list (settlementDays=1, calendar="us", businessDayConvention='Unadjusted"')

discountCurve.param <- list (tradeDate=as.Date('2002-2-15"),
settleDate=as.Date ('2002-2-15"),
dt=0.25,
interpWhat="'discount', interpHow='loglinear"')
discountCurve.flat <- DiscountCurve (discountCurve.param, list (flat=0.05))

http://quantlib.org

56

ZeroCouponBond (bond, discountCurve.flat,

The same bond with

tsQuotes <- list (dlw =0.0382,

dim =0.0372,
fut1=96.2875,
fut2=96.7875,
fut3=96.9875,
fut4=96.6875,
fut5=96.4875,
fut6=96.3875,
fut7=96.2875,
fut8=96.0875,
s3y =0.0398,
s5y =0.0443,
s10y =0.05165,
s15y =0.055175)

ZeroCouponBond

dateparams)

a discount curve constructed from market quotes

discountCurve <- DiscountCurve (discountCurve.param, tsQuotes)

ZeroCouponBond (bond, discountCurve,

#examples with default arguments
ZeroCouponBond (bond, discountCurve)

dateparams)

bond <- list (issueDate=as.Date("2004-11-30"),
maturityDate=as.Date ("2008-11-30"))

dateparams <-
ZeroCouponBond (bond, discountCurve,

list (settlementDays=1)

dateparams)

ZeroPriceByYield(0.1478, 100, as.Date("1993-6-24"), as.Date("1993-11-1"))

ZeroYield (90,

100, as.Date("1993-6-24"),

as.Date ("1993-11-1"))

Index

*Topic misc
AmericanOption, 2

AmericanOptionImpliedvVolatility

4
AsianOption,5S

BarrierOption,7
BinaryOption, 11

BinaryOptionImpliedVolatility,

13
Bond, 14
BondUtilities, 16
Calendars, 18
CallableBond, 21
Enum, 33
EuropeanOption, 35
EuropeanOptionArrays, 37

EuropeanOptionImpliedvVolatility,

39
FixedRateBond, 42
FloatingRateBond, 46
ImpliedvVolatility, 50
Option, 51
ZeroCouponBond, 53

*Topic models
BermudanSwaption, 9
DiscountCurve, 30

adjust (Calendars), 18

advance (Calendars), 18

AmericanOption,2,3,8, 13, 14, 36, 38,
40, 51, 52

AmericanOptionImpliedVolatility
4,51

AsianOption,5

BarrierOption,7
BermudanSwaption,9, 32
BinaryOption, 5, 11, 14, 36, 38, 40, 51, 52
BinaryOptionImpliedVolatility, 13
Bond, 14

57

BondUtilities, 16
businessDay (Calendars), 18

businessDaysBetween (Calendars),
18

Calendars, 18

CallableBond, 21

ConvertibleBond, 24

ConvertibleFixedCouponBond
(ConvertibleBond), 24

ConvertibleFloatingCouponBond
(ConvertibleBond), 24

ConvertibleZeroCouponBond
(ConvertibleBond), 24

dayCount (Calendars), 18
DiscountCurve, 9, 10, 30

endOfMonth (Calendars), 18

Enum, 18, 19, 22, 23, 26, 33, 41, 43, 44, 48, 54

EuropeanOption, 4, 5,8, 13, 14, 35, 40,
51, 52

EuropeanOptionArrays, 36, 37

EuropeanOptionImpliedVolatility,
36,39, 51

FittedBondCurve, 40
FixedRateBond, 42
FixedRateBondPriceByYield
(FixedRateBond), 42
FixedRateBondYield
(FixedRateBond), 42
FloatingRateBond, 46

getEndOfMonth (Calendars), 18
getHolidayList (Calendars), 18

holidayList (Calendars), 18

ImpliedvVolatility, 5, 14, 40,50
isBusinessDay (Calendars), 18

58

isEndOfMonth (Calendars), 18
isHoliday (Calendars), 18
isWeekend (Calendars), 18

matchBDC (BondUtilities), 16

matchCompounding (BondUtilities),
16

matchDateGen (BondUtilities), 16

matchDayCounter (BondUtilities),
16

matchFrequency (BondUtilities), 16

matchParams (BondUtilities), 16

oldEuropeanOptionArrays
(EuropeanOptionArrays), 37
Option,3,6,8, 12, 36,51

plot.Bond (Bond), 14
plot.DiscountCurve
(DiscountCurve), 30
plot.FittedBondCurve
(FittedBondCurve), 40
plot.Option (Option), 51
plotOptionSurface
(EuropeanOptionArrays), 37
print.Bond (Bond), 14
print.ImpliedVolatility
(ImpliedVolatility), 50
print.Option (Option), 51

setCalendarContext (Calendars), 18
summary .BKTree
(BermudanSwaption), 9
summary .Bond (Bond), 14
summary.G2Analytic
(BermudanSwaption), 9
summary.HWAnalytic
(BermudanSwaption), 9
summary.HWTree
(BermudanSwaption), 9
summary.ImpliedVolatility
(ImpliedVolatility), 50
summary.Option (Option), 51

yearFraction (Calendars), 18

ZeroCouponBond, 53

ZeroPriceByYield
(ZeroCouponBond), 53

ZeroYield (ZeroCouponBond), 53

INDEX

	AmericanOption
	AmericanOptionImpliedVolatility
	AsianOption
	BarrierOption
	BermudanSwaption
	BinaryOption
	BinaryOptionImpliedVolatility
	Bond
	BondUtilities
	Calendars
	CallableBond
	ConvertibleBond
	DiscountCurve
	Enum
	EuropeanOption
	EuropeanOptionArrays
	EuropeanOptionImpliedVolatility
	FittedBondCurve
	FixedRateBond
	FloatingRateBond
	ImpliedVolatility
	Option
	ZeroCouponBond
	Index

