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Agenda

• Quick R Basics Reminder
• C++ in (way less than) a nutshell
• Extending R with C++ via Rpp
• Multi-Lingual Computing
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About Me

Brief Bio

• PhD, MA Econometrics; MSc Ind.Eng. (Comp.Sci./OR)

• Finance Quant for 20+ years

• Open Source for 23+ years

• Debian developer
• R package author / contributor

• R and Statistics

• JSS Associate Editor
• R Foundation Board member
• R Consortium ISC member
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Why R?
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Programming with Data from 1977 to 2016

Thanks to John Chambers for high-resolution cover images. The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.
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A Simple Example

xx <- faithful[,”eruptions”]
fit <- density(xx)
plot(fit)
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A Simple Example
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A Simple Example - Refined

xx <- faithful[,”eruptions”]
fit1 <- density(xx)
fit2 <- replicate(10000, {

x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))$y

})
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x,rev(fit1$x)), c(fit3[1,],rev(fit3[2,])),

col='grey', border=F)
lines(fit1)
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A Simple Example - Refined
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So Why R?

R enables us to

• work interactively
• explore and visualize data
• access, retrieve and/or generate data
• summarize and report into pdf, html, …

making it the key language for statistical computing, and a preferred
environment for many data analysts.
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So Why R?

R is a fantastice data interface:

• powerful REPL, now also powerful IDE
• interfaces to import from anything:

• databases
• text or binary formats

• output to report in anything

• first sweave, now (R)markdown and knitr
• via pandoc export to any format

• Shiny dashboard are fabulous
• plays with others such as Jupiter notebooks too
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So Why R?

R has always been extensible via

• C via a bare-bones interface described in Writing R Extensions
• Fortran which is also used internally by R
• Java via rJava by Simon Urbanek
• C++ but essentially at the bare-bones level of C

So while in theory this always worked – it was tedious in practice
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Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and Fortran:

Since the core of R is in fact a program written in the C
language, it’s not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code
is a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.
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Why Extend R?

Chambers proceeds with this rough map of the road ahead:

• Against:

• It’s more work
• Bugs will bite
• Potential platform dependency
• Less readable software

• In Favor:

• New and trusted computations
• Speed
• Object references
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Why Extend R?

The Why? boils down to:

• speed: Often a good enough reason for us … and a focus for us
in this workshop.

• new things: We can bind to libraries and tools that would
otherwise be unavailable in R

• references: Chambers quote from 2008 foreshadowed the work
on Reference Classes now in R and built upon via Rcpp Modules,
Rcpp Classes (and also RcppR6)
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And Why C++?

• Asking Google leads to tens of million of hits.
• Wikipedia: C++ is a statically typed, free-form, multi-paradigm,
compiled, general-purpose, powerful programming language

• C++ is industrial-strength, vendor-independent, widely-used,
and still evolving

• In science & research, one of the most frequently-used
languages: If there is something you want to use / connect to, it
probably has a C/C++ API

• As a widely used language it also has good tool support
(debuggers, profilers, code analysis)
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Why C++?

Scott Meyers: View C++ as a federation of languages

• C provides a rich inheritance and interoperability as Unix,
Windows, … are all build on C.

• Object-Oriented C++ (maybe just to provide endless discussions
about exactly what OO is or should be)

• Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

• The Standard Template Library (STL) is a specific template
library which is powerful but has its own conventions.

• C++11 and C++14 (and beyond) add enough to be called a fifth
language.

NB: Meyers original list of four languages appeared years before C++11.
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Why C++?

• Mature yet current
• Strong performance focus:

• You don’t pay for what you don’t use
• Leave no room for another language between the machine level
and C++

• Yet also powerfully abstract and high-level
• C++11, C++14, C++17, … a big deal giving us new language features
• While there are complexities, Rcpp users are mostly shielded
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C++ In Too Little Time
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Compiled not Interpreted

Need to compile and link

#include <cstdio>

int main(void) {
printf(”Hello, world!\n”);
return 0;

}
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Compiled not Interpreted

Or streams output rather than printf

#include <iostream>

int main(void) {
std::cout << ”Hello, world!” << std::endl;
return 0;

}
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Compiled not Interpreted

g++ -o will compile and link

We will now look at an examples with explicit linking.
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Compiled not Interpreted

#include <cstdio>

#define MATHLIB_STANDALONE
#include <Rmath.h>

int main(void) {
printf(”N(0,1) 95th percentile %9.8f\n”,

qnorm(0.95, 0.0, 1.0, 1, 0));
}
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Compiled not Interpreted

We may need to supply:

• header location via -I,
• library location via -L,
• library via -llibraryname

g++ -I/usr/include -c qnorm_rmath.cpp
g++ -o qnorm_rmath qnorm_rmath.o -L/usr/lib -lRmath
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Statically Typed

• R is dynamically typed: x <- 3.14; x <- ”foo” is valid.

• In C++, each variable must be declared before first use.

• Common types are int and long (possibly with unsigned),
float and double, bool, as well as char.

• No standard string type, though std::string is close.

• All these variables types are scalars which is fundamentally
different from R where everything is a vector.

• class (and struct) allow creation of composite types; classes
add behaviour to data to form objects.

• Variables need to be declared, cannot change
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C++ is a Better C

• control structures similar to what R offers: for, while, if,
switch

• functions are similar too but note the difference in
positional-only matching, also same function name but
different arguments allowed in C++

• pointers and memory management: very different, but lots of
issues people had with C can be avoided via STL (which is
something Rcpp promotes too)

• sometimes still useful to know what a pointer is …
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Object-Oriented

This is a second key feature of C++, and itis different from S3 and S4.

struct Date {
unsigned int year;
unsigned int month;
unsigned int day

};
struct Person {

char firstname[20];
char lastname[20];
struct Date birthday;
unsigned long id;

};
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Object-Oriented

Object-orientation matches data with code operating on it:

class Date {
private:

unsigned int year
unsigned int month;
unsigned int date;

public:
void setDate(int y, int m, int d);
int getDay();
int getMonth();
int getYear();

}

Talk @ Civis, Oct 2017 30/78



Generic Programming and the STL

The STL promotes generic programming.

For example, the sequence container types vector, deque, and
list all support

• push_back() to insert at the end;
• pop_back() to remove from the front;
• begin() returning an iterator to the first element;
• end() returning an iterator to just after the last element;
• size() for the number of elements;

but only list has push_front() and pop_front().

Other useful containers: set, multiset, map and multimap.
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Generic Programming and the STL

Traversal of containers can be achieved via iterators which require
suitable member functions begin() and end():

std::vector<double>::const_iterator si;
for (si=s.begin(); si != s.end(); si++)

std::cout << *si << std::endl;
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Generic Programming and the STL

Another key STL part are algorithms:

double sum = accumulate(s.begin(), s.end(), 0);

Some other STL algorithms are

• find finds the first element equal to the supplied value
• count counts the number of matching elements
• transform applies a supplied function to each element
• for_each sweeps over all elements, does not alter
• inner_product inner product of two vectors
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Template Programming

Template programming provides a ‘language within C++’: code gets
evaluated during compilation.

One of the simplest template examples is

template <typename T>
const T& min(const T& x, const T& y) {

return y < x ? y : x;
}

This can now be used to compute the minimum between two int
variables, or double, or in fact any admissible type providing an
operator<() for less-than comparison.

Talk @ Civis, Oct 2017 34/78



Template Programming

Another template example is a class squaring its argument:

template <typename T>
class square : public std::unary_function<T,T> {
public:

T operator()(T t) const {
return t*t;

}
};

which can be used along with STL algorithms:

transform(x.begin(), x.end(), square);
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Further Reading

Books by Meyers are excellent

I also like the (free) C++ Annotations

C++ FAQ

Resources on StackOverflow such as

• general info and its links, eg
• booklist
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Debugging

Some tips:

• Generally painful, old-school printf() still pervasive

• Debuggers go along with compilers: gdb for gcc and g++; lldb
for the clang / llvm family

• Extra tools such as valgrind helpful for memory debugging

• “Sanitizer” (ASAN/UBSAN) in newer versions of g++ and
clang++
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Extending R with C++
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Rcpp: First steps

Three key functions

• evalCpp()

• sourceCpp()

• cppFunction()
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Basic Usage: evalCpp()

evalCpp() evaluates a single C++ expression. Includes and
dependencies can be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2”) # simple test

## [1] 4

evalCpp(”std::numeric_limits<double>::max()”)

## [1] 1.797693e+308
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Basic Usage: cppFunction()

cppFunction() creates, compiles and links a C++ file, and creates
an R function to access it.

cppFunction(”
int simpleExample() {

int x = 10;
return x;

}”)
simpleExample() # same identifier as C++ function
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Basic Usage: cppFunction()

cppFunction() creates, compiles and links a C++ file, and creates
an R function to access it.

cppFunction(”
int exampleCpp11() {

auto x = 10;
return x;

}”, plugins=c(”cpp11”))
exampleCpp11() # same identifier as C++ function
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Basic Usage: sourceCpp()

sourceCpp() is the actual workhorse behind evalCpp() and
cppFunction(). It is described in more detail in the package
vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package
inline, but provides even more ease-of-use, control and helpers –
freeing us from boilerplate scaffolding.

A key feature are the plugins and dependency options: other
packages can provide a plugin to supply require compile-time
parameters (cf RcppArmadillo, RcppEigen, RcppGSL).
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Basic Uage: RStudio
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Basic Uage: RStudio (Cont’ed)

The following file gets created:
#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar). ...

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) { return x * 2; }

// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.

/*** R
timesTwo(42)
*/
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Basic Uage: RStudio (Cont’ed)

So what just happened?

• We defined a simple C++ function
• It operates on a numeric vector argument
• We asked Rcpp to ‘source it’ for us
• Behind the scenes Rcpp creates a wrapper
• Rcpp then compiles, links, and loads the wrapper
• The function is available in R under its C++ name
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Basic Usage: Packages

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can
be created by Rcpp.package.skeleton()

The vignette Rcpp-packages has fuller details.

As of October 11, 2017, there are 1185 packages on CRAN which use
Rcpp, and a further 91 on BioConductor — with working, tested, and
reviewed examples.
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Packages and Rcpp

Best way to organize R code with Rcpp is via a package:
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Packages and Rcpp

Rcpp.package.skeleton() and its derivatives. e.g.
RcppArmadillo.package.skeleton() create working packages.
// another simple example: outer product of a vector,
// returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
//
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}
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Nice, but does it really work?

Talk @ Civis, Oct 2017 50/78



Simple Example

Something self-contained

• Let’s talk random numbers!
• We’ll look at a quick generator
• And wrap it in plain C / C++

Talk @ Civis, Oct 2017 51/78



Talk @ Civis, Oct 2017 52/78



xkcdRng.h

// cf https://xkcd.com/221/
//
// ”RFC 1149.5 specifies 4 as the ”
// ”standard IEEE-vetted random number.”

int getRandomNumber()
{

return 4; // chosen by fair dice roll
// guaranteed to be random

}
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getXkcdRngDraw()

#include <Rcpp.h>
#include <xkcdRng.h>

// [[Rcpp::export]]
int getXkcdRngDraw() {

return getRandomNumber();
}
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Package
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What Did We Do?

• An unmodified piece of C / C++ code
• A simple interface function
• Rcpp does the rest
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Empirics of Usage
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Growth
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Pagerank

library(pagerank) # github.com/andrie/pagerank

cran <- ”http://cloud.r-project.org”

pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

## Rcpp MASS ggplot2 Matrix dplyr
## 2.735 1.514 1.242 0.835 0.676
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Pagerank

tidyr
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CRAN Proportion

db <- tools::CRAN_package_db() # R 3.4.0 or later
nrow(db)

## [1] 11573

## all Rcpp reverse depends
(c(n_rcpp <- length(tools::dependsOnPkgs(”Rcpp”, recursive=FALSE,

installed=db)),
n_compiled <- table(db[, ”NeedsCompilation”])[[”yes”]]))

## [1] 1181 3050

## Rcpp percentage of packages with compiled code
n_rcpp / n_compiled

## [1] 0.3872131
Talk @ Civis, Oct 2017 61/78



How does it work?
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There is only one interface from R

SEXP .Call(”someFunction”, SEXP a, SEXP b, SEXP c, ...)
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So what is a SEXP? It’s complicated…

Source: Seth Falcon, https://www.slideshare.net/userprimary/native-interfaces, 2010.
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In a Nutshell, …

• Rcpp mapping for every existing SEXP
• Meaning we can pass any R object
• And receive and modify it on the C++ side
• And return it, or newly created objects
• “Seamlessly”
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Interface Vision @ Bell Labs, May 1976

Source: John Chamber, personal communication
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Multi-lingual Computing
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(Simple) Real-world examples

• The RcppCNPy packages uses a C library from GitHub to read
and write NumPy files to/from R

• The RcppAnnoy package wraps Annoy by Erik Bernhardsson /
Spotify: a clean and simple ANN library in C++ with an existing
Python interface
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Possible Game Changer

• The reticulate package by JJ Allaire et al wraps Python
• It is already being used to access Tensorflow and Keras from R
• This may be general enough most (if not all) Python projects!
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Potentially Very Exciting I
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Potentially Very Exciting II
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Finally
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Open-Source Infighting

• We are wasting precious time fighting each other
• Particularly “license posts” are mostly toxic
• There are moral overtones I really dislike
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One more balanced view

Lars Wirzenius “Which license is the most free?”
Free software licences can be roughly grouped into permissive and copyleft ones.
[…] A permissive licence lets you do things that a copyleft one forbids, so clearly the
permissive licence is more free. A copyleft licence means software using it won’t
ever become non-free against the wills of the copyright holders, so clearly a
copyleft licence is more free than a permissive one.

Both sides are both right and wrong, of course, which is why this argument will
continue forever. […]

If a discussion about the relative freedom of licence types becomes heated, step
away. It’s not worth participating anymore.

http://yakking.branchable.com/posts/comparative-freeness/
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Another more balanced view

Source: https://meshedinsights.com/2017/05/03/is-the-gpl-really-declining/
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So let’s do more awesome

• Multi-lingual computing is real
• It’s likely here to stay
• Let’s not fight each other
• Rather:

• Let’s build more awesome things
• That interact and combine better
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Final Words

Thank You!
http://dirk.eddelbuettel.com/

dirk@eddelbuettel.com

@eddelbuettel
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