
Rcpp
Making R Applications Go Faster and Further

Dirk Eddelbuettel
EARL 2015 Keynote Address
September 16, 2015
Released under a Creative Commons Attribution-ShareAlike 4.0 International License.

1/59

http://creativecommons.org/licenses/by-sa/4.0/

Introduction

2/59

A Very Kind Tweet

3/59

And Another Tweet

4/59

And Yet Another Tweet

5/59

And Why Not Another Tweet

6/59

And Last But Not Least

7/59

Extending R

8/59

Why R? : Programming with Data

Chambers,
Computational
Methods for Data
Analysis. Wiley,
1977.

Becker, Chambers,
and Wilks. The
New S Language.
Chapman & Hall,
1988.

Chambers and
Hastie. Statistical
Models in S.
Chapman & Hall,
1992.

Chambers.
Programming with
Data. Springer,
1998.

Chambers.
Software for Data
Analysis:
Programming with
R. Springer, 2008

Thanks to John Chambers for sending me high-resolution scans of the covers of his books.

9/59

A Simple Example

xx <- faithful[,"eruptions"]
fit <- density(xx)
plot(fit)

10/59

A Simple Example

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

11/59

A Simple Example - Refined

xx <- faithful[,"eruptions"]
fit1 <- density(xx)
fit2 <- replicate(10000, {

x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))$y

})
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x,rev(fit1$x)), c(fit3[1,],rev(fit3[2,])),

col='grey', border=F)
lines(fit1)

12/59

A Simple Example - Refined

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

13/59

So Why R?

R enables us to

· work interactively
· explore and visualize data
· access, retrieve and/or generate data
· summarize and report into pdf, html, …

making it the key language for statistical computing, and a
preferred environment for many data analysts.

14/59

So Why R?

R has always been extensible via

· C via a bare-bones interface described in Writing R
Extensions

· Fortran which is also used internally by R
· Java via rJava by Simon Urbanek
· C++ but essentially at the bare-bones level of C

So while in theory this always worked – it was tedious in
practice

15/59

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and
Fortran:

Since the core of R is in fact a program written in
the C language, it’s not surprising that the most
direct interface to non-R software is for code written
in C, or directly callable from C. All the same,
including additional C code is a serious step, with
some added dangers and often a substantial amount
of programming and debugging required. You should
have a good reason.

16/59

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and
Fortran:

Since the core of R is in fact a program written in
the C language, it’s not surprising that the most
direct interface to non-R software is for code written
in C, or directly callable from C. All the same,
including additional C code is a serious step, with
some added dangers and often a substantial amount
of programming and debugging required. You should
have a good reason.

17/59

Why Extend R?

Chambers proceeds with this rough map of the road ahead:

· Against:
· It’s more work
· Bugs will bite
· Potential platform dependency
· Less readable software

· In Favor:
· New and trusted computations
· Speed
· Object references

18/59

Why Extend R?

The Why? boils down to:

· speed: Often a good enough reason for us … and a focus
for us in this workshop.

· new things: We can bind to libraries and tools that would
otherwise be unavailable in R

· references: Chambers quote from 2008 foreshadowed the
work on Reference Classes now in R and built upon via
Rcpp Modules, Rcpp Classes (and also RcppR6)

19/59

And Why C++?

· Asking Google leads to about ~ 50 million hits.
· Wikipedia: C++ is a statically typed, free-form,

multi-paradigm, compiled, general-purpose, powerful
programming language

· C++ is industrial-strength, vendor-independent,
widely-used, and still evolving

· In science & research, one of the most frequently-used
languages: If there is something you want to use /
connect to, it probably has a C/C++ API

· As a widely used language it also has good tool support
(debuggers, profilers, code analysis)

20/59

http://en.wikipedia.org/wiki/C%2B%2B\protect \char "007D\relax \protect \char "007B\relax Wikipedia

Why C++?

Scott Meyers: View C++ as a federation of languages

· C provides a rich inheritance and interoperability as Unix,
Windows, … are all build on C.

· Object-Oriented C++ (maybe just to provide endless
discussions about exactly what OO is or should be)

· Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

· The Standard Template Library (STL) is a specific
template library which is powerful but has its own
conventions.

· C++11 (and C++14 and beyond) add enough to be
called a fifth language.

NB: Meyers original list of four languages appeared years before C++11. 21/59

Why C++?

· Mature yet current
· Strong performance focus:

· You don’t pay for what you don’t use
· Leave no room for another language between the

machine level and C++

· Yet also powerfully abstract and high-level
· C++11 is a big deal giving us new language features
· While there are complexities, Rcpp users are mostly

shielded

22/59

Interface Vision

23/59

Bell Labs, May 1976

24/59

Interface Vision

R offers us the best of both worlds:

· Compiled code with
· Access to proven libraries and algorithms in

C/C++/Fortran
· Extremely high performance (in both serial and parallel

modes)
· Interpreted code with

· An accessible high-level language made for Programming
with Data

· An interactive workflow for data analysis
· Support for rapid prototyping, research, and

experimentation

25/59

Why Rcpp?

· Easy to learn as it really does not have to be that
complicated – we will see numerous few examples

· Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

· Expressive as it allows for vectorised C++ using Rcpp
Sugar

· Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, …

· Speed gains for a variety of tasks Rcpp excels precisely
where R struggles: loops, function calls, …

· Extensions greatly facilitates access to external libraries
using eg Rcpp modules

26/59

Speed

27/59

Speed Example (due to StackOverflow)

Consider a function defined as

f(n) such that
 n when n < 2

f(n − 1) + f(n − 2) when n ≥ 2

28/59

Speed Example in R

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

Using it on first 11 arguments
sapply(0:10, f)

[1] 0 1 1 2 3 5 8 13 21 34 55

29/59

Speed Example Timed

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

test replications elapsed relative
1 f(10) 100 0.026 1.000
2 f(15) 100 0.327 12.577
3 f(20) 100 3.796 146.000

30/59

Speed Example in C / C++

A C or C++ solution can be equally simple

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

But how do we call it from R?

31/59

Matt’s Example from useR! 2015
#include <R.h>
#include <Rinternals.h>

int fibonacci_c_impl(int n) {
if (n < 2) return n;
return fibonacci_c_impl(n - 1) + fibonacci_c_impl(n - 2);

}

SEXP fibonacci_c(SEXP n) {
SEXP result = PROTECT(allocVector(INTSXP, 1));
INTEGER(result)[0] = fibonacci_c_impl(asInteger(n));
UNPROTECT(1);
return result;

}

/*
need to compile, link, load, ...
fibonacci <- function(n) .Call("fibonacci_c", n)
sapply(0:10, fibonacci)
*/ 32/59

One Minor Modification to Matt’s Example
#include <R.h>
#include <Rinternals.h>

int fibonacci_c_impl(int n) {
if (n < 2) return n;
return fibonacci_c_impl(n - 1) + fibonacci_c_impl(n - 2);

}

// [[Rcpp::export]]
SEXP fibonacci_c(SEXP n) {

SEXP result = PROTECT(allocVector(INTSXP, 1));
INTEGER(result)[0] = fibonacci_c_impl(asInteger(n));
UNPROTECT(1);
return result;

}

/*** R
sapply(0:10, fibonacci_c)
*/

33/59

Speed Example in C / C++

But Rcpp makes this much easier:

Rcpp::cppFunction("int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }")

sapply(0:10, g)

[1] 0 1 1 2 3 5 8 13 21 34 55

34/59

Speed Example Comparing R and C++

Timing:

Rcpp::cppFunction("int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }")

library(rbenchmark)
benchmark(f(25), g(25), order="relative")[,1:4]

test replications elapsed relative
2 g(25) 100 0.099 1.000
1 f(25) 100 47.787 482.697

A nice gain of a few orders of magnitude.
35/59

Another Angle on Speed

Run-time performance is just one example.

Time to code is another metric.

We feel quite strongly that helps you code more succinctly,
leading to fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++
development quite nicely (eg the compiler error message
parsing is very helpful) and also helps with package building.

36/59

Speed Example Footnote Also Due to Matt

#include <Rcpp.h>

// [[Rcpp::plugins("cpp11")]]

constexpr int fibonacci_recursive_constexpr(const int n) {
return n < 2 ? n : (fibonacci_recursive_constexpr(n - 1) +

fibonacci_recursive_constexpr(n - 2));
}

// [[Rcpp::export]]
int constexprFib() {

const int N = 42;
constexpr int result = fibonacci_recursive_constexpr(N);
return result;

}

37/59

Popularity

38/59

Used by 462 CRAN Packages as of last weekend

39/59

Page Rank One (According to Andrie de Vries)

40/59

Application Spotlight: Rblpapi

41/59

History: Basic package using the C (Dirk)

42/59

History: Key package using Java (Ana, then John)

43/59

History: But the vendor API keeps improving

44/59

Present .. and Future (Whit, Dirk, and John)

45/59

Even Better Present and Future

46/59

Third Time Lucky: The Rblpapi package

The new rewrite is different:

· Lighter – no longer uses or requires Java
· Simpler – leverages Rcpp
· More flexible – easy to add new functionality with C++

47/59

http://dirk.eddelbuettel.com/code/rcpp.html

Status: The Rblpapi package

Where we are at now:

· Robust and fast
· Implements most widely-used features
· (Basic) documentation for everything
· Travis CI integration
· On GitHub and in the ghrr repository

NB: And now on CRAN too, see below.

48/59

https://github.com/armstrtw/Rblpapi
http://ghrr.github.io/drat

Examples

Core Functions known from other API accessors:

· bdp(c("ESA Index", "SPY US Equity"), c("PX_LAST", "VOLUME"))
· bds("GOOG US Equity", "TOP_20_HOLDERS_PUBLIC_FILINGS")
· bdh("SPY US Equity", c("PX_LAST", "VOLUME"),
start.date=Sys.Date()-31)

· getBars("ESA Index", startTime=ISOdatetime(2015,1,1,0,0,0))
· getTicks("ESA Index", "TRADE", Sys.time()-60*60))
· fieldSearch("VWAP")

49/59

[Then] Current Status of the Rblpapi package

Things we addressed

· Fixed-dimension retrieval very easy
· Now include shared library with rpath-encoded path
· Builds “everywhere” including on Travis CI

50/59

[Then] Current Status of the Rblpapi package

Things we [then] need[ed] to address:

· DataFrame class caused trouble, need something new
· Builds on “that other OS” very difficult while (vendor)

API library built with VC++
· More features: subscriptions, screens, portfolios…
· Pull requests welcome!

51/59

[Then] Summary: The Rblpapi package

Concluding:

· Bloomberg provides a first-rate API and infrastructure
· So the R Community came up with good packages
· Language/OS choice matter: some vendors still

“different”
· We prefer Open Source; package may not go onto CRAN
· But we have alternatives in GitHub-hosted repositories

NB: That was then …

52/59

http://ghrr.github.io/drat

[Now] Summary and State of the Rblpapi Package

What we learned:

· Powerful APIs are compelling
· Providing working code is key
· Unexpectedly, we got a pull request for Windows support
· With some additional work, this got onto CRAN
· Supporting Linux, OS X and Windows “out of the box”

53/59

The End

54/59

Documentation

· The Rcpp package comes with nine pdf vignettes, and
numerous help pages.

· The introductory vignettes are now published (for Rcpp
and RcppEigen in J Stat Software, for RcppArmadillo in
Comp Stat & Data Anlys)

· The rcpp-devel list is the recommended resource,
generally very helpful, and fairly low volume.

· StackOverflow has almost 900 posts too.
· And a number of blog posts introduce/discuss features.

55/59

http://dirk.eddelbuettel.com/code/rcpp.html

Rcpp Gallery

56/59

The Rcpp book

57/59

Very Last Words

Thank You!
dirk@eddelbuettel.com

http://dirk.eddelbuettel.com/presentations/

58/59

dirk@eddelbuettel.com
http://dirk.eddelbuettel.com/presentations/

Collophon

Made using

· TeXlive 20141024
· Beamer with mtheme
· Pandoc 1.12.4.2
· R 3.2.2
· rmarkdown 0.7
· Emacs 24.4
· Ubuntu 15.04

59/59

http://github.com/matze/mtheme

	Introduction
	Extending R
	Interface Vision
	Speed
	Popularity
	Application Spotlight: Rblpapi
	The End

