
Extending R with C++

Motivation, Examples, and Context

Dirk Eddelbuettel

Invited Keynote, ICORS-LACSC 2019
Escuela Superior Politécnica del Litoral (ESPOL)
Guayaquil, Ecuador
May 30, 2019

Who Am I?

Brief Bio

• Finance Quantitative Research Professional for 20+ years

• (Adjunct) Clinical Professor at U of Illinois for 2 years

• Open Source for around 25 years

• Debian developer (~ 170 packages)
• R package author (~ 50 packages)
• Rcpp, Rocker, …

• R and Statistics

• JSS Associate Editor
• R Foundation Board member

• PhD, MA Econometrics; MSc Ind.Eng. (Comp.Sci./OR)

ICORS-LACSC 2/76

Overview

ICORS-LACSC 3/76

Outline

Extending R with C++

• Why R ?
• Why Extending R ?
• Why C++ and Rcpp ?
• (Briefly) How ?
• Context
• Outlook

ICORS-LACSC 4/76

Why R: View from Academia

ICORS-LACSC 5/76

Computer-Age Statistical Inference

Almost all topics in
twenty-first-century statistics are now
computer-dependent […]

Here and in all our examples we are
employing the language R, itself one
of the key developments in
computer-based statistical
methodology.

Efron and Hastie, 2016
pages xv and 6 (footnote 3)

ICORS-LACSC 6/76

A View of the World

Computational Statistics in Practice

• Statistics is now computational (Efron & Hastie, 2016)
• Within (computational) statistics, reigning tool is R
• Given R, Rcpp key for two angles:

• Performance always matters, ease of use a sweetspot
• “Extending R” (Chambers, 2016)

ICORS-LACSC 7/76

Why R: View from Practitioners

ICORS-LACSC 8/76

Why R? Pat Burn’s View

Why the R Language?

Screen shot on the left part of
short essay at Burns-Stat

His site has more truly excellent
(and free) writings.

The (much longer) R Inferno
(free pdf, also paperback) is
highly recommended.

ICORS-LACSC 9/76

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/
https://www.burns-stat.com/documents/books/the-r-inferno/

Why R? Pat Burn’s View

Why the R Language?

• R is not just a statistics package, it’s a
language.

• R is designed to operate the way that
problems are thought about.

• R is both flexible and powerful.

Source: https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

ICORS-LACSC 10/76

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

Why R? Pat Burn’s View

Why R for data analysis?

R is not the only language that can be used for data
analysis. Why R rather than another? Here is a list:

• interactive language
• data structures
• graphics
• missing values
• functions as first class objects
• packages
• community

Source: https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

ICORS-LACSC 11/76

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

Why R: Programming with Data

ICORS-LACSC 12/76

Why R? R as Middle Man

R as an Extensible Environment

• As R users we know that R can

• ingest data in many formats from many sources
• aggregate, slice, dice, summarize, …
• visualize in many forms, …
• model in just about any way
• report in many useful and scriptable forms

• It has become central for programming with data
• Sometimes we want to extend it further than R code goes

ICORS-LACSC 13/76

R as central point

ICORS-LACSC 14/76

R as central point

From any one of
• csv

• txt

• xlsx

• xml, json, ...

• web scraping, ...

• hdf5, netcdf, ...

• sas, stata, spss, ...

• various SQL + NOSQL DBs

• various binary protocols

via into any one of
• txt

• html

• latex and pdf

• html and js

• word

• shiny

• most graphics formats

• other dashboards

• web frontends

ICORS-LACSC 15/76

Why R: Historical Perspective

ICORS-LACSC 16/76

R as ‘The Interface’

A design sketch called ‘The Interface’

AT&T Research lab meeting notes

Describes an outer ‘user interface’
layer to core Fortran algorithms

Key idea of abstracting away inner
details giving higher-level more
accessible view for user / analyst

Lead to “The Interface”

Which became S which lead to R
Source: John Chambers, personal communication

ICORS-LACSC 17/76

Why R? : Programming with Data from 1977 to 2016

Thanks to John Chambers for high-resolution cover images. The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.

ICORS-LACSC 18/76

Chambers (2008)

Software For Data Analysis

Chapters 10 and 11 devoted to
Interfaces I: C and Fortran and
Interfaces II: Other Systems.

ICORS-LACSC 19/76

Chambers (2016)

Extending R

Object: Everything that exists in
R is an object

Function: Everything happens in
R is a function call

Interface: Interfaces to other
software are part of R

ICORS-LACSC 20/76

Chambers (2016)

Extending R, Chapter 4

The fundamental lesson about
programming in the large is that
requires a correspondingly broad
and flexible response. In particular,
no single language or software
system os likely to be ideal for all
aspects. Interfacing multiple
systems is the essence. Part IV
explores the design of of interfaces
from R.

ICORS-LACSC 21/76

Why C++ and Rcpp

ICORS-LACSC 22/76

R and C/C++

A good fit, it turns out

• A good part of R is written in C (besides R and Fortran code)
• The principle interface to external code is a function .Call()
• It takes one or more of the high-level data structures R uses
• … and returns one. Formally:

SEXP .Call(SEXP a, SEXP b, ...)

ICORS-LACSC 23/76

R and C/C++

A good fit, it turns out (cont.)

• An SEXP (or S-Expression Pointer) is used for everything
• (An older C trick approximating object-oriented programming)
• We can ignore the details but retain that

• everything in R is a SEXP
• the SEXP is self-describing
• can matrix, vector, list, function, …
• 27 types in total

• The key thing for Rcpp is that via C++ features we can map

• each of the (limited number of) SEXP types
• to a specific C++ class representing that type
• and the conversion is automated back and forth

ICORS-LACSC 24/76

R and C/C++

Other good reasons

• It is fast – compiled C++ is hard to beat in other languages

• (That said, you can of course write bad and slow code….)

• It is very general and widely used

• many libraries
• many tools

• It is fairly universal:

• just about anything will have C interface so C++ can play
• just about any platform / OS will have it

ICORS-LACSC 25/76

R and C/C++

Key Features

• (Fairly) Easy to learn as it really does not have to be that
complicated – there are numerous examples

• Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

• Expressive as it allows for vectorised C++ using Rcpp Sugar
• Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, …

• Speed gains for a variety of tasks Rcpp excels precisely where R
struggles: loops, function calls, …

• Extensions greatly facilitates access to external libraries directly
or via eg Rcpp modules

ICORS-LACSC 26/76

Rcpp Speed Illustration

Benchmark on Fibonacci(20) between C++ and R – note the log scale!

fibR(20)

fibCpp(20)

100 1000 10000

Time [microseconds]

ICORS-LACSC 27/76

Growth

2010 2012 2014 2016 2018

0
50

0
10

00
15

00

Growth of Rcpp usage on CRAN

n

Number of CRAN packages using Rcpp (left axis)
Percentage of CRAN packages using Rcpp (right axis)

0
50

0
10

00
15

00

2010 2012 2014 2016 2018

0
2

4
6

8
10

12

Data current as of May 12, 2019.

ICORS-LACSC 28/76

Users on Core Repositories

Rcpp is currently used by

• 1655 CRAN packages

• 176 BioConductor packages (with 38 added since last year)

• an unknown (but “large”) number of GitHub projects

ICORS-LACSC 29/76

Pagerank

suppressMessages(library(utils))
library(pagerank) # cf github.com/andrie/pagerank

cran <- ”http://cloud.r-project.org”
pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Rcpp ggplot2 MASS dplyr Matrix
2.744 1.370 1.356 0.935 0.768

ICORS-LACSC 30/76

Pagerank

lubridate
raster
coda
zoo
RColorBrewer
doParallel
purrr
rlang
reshape2
tidyr
shiny
sp
lattice
tibble
foreach
igraph
httr
data.table
RcppArmadillo
jsonlite
plyr
survival
stringr
magrittr
mvtnorm
Matrix
dplyr
MASS
ggplot2
Rcpp

0.005 0.010 0.015 0.020 0.025

Top 30 of Page Rank as of May 2019

ICORS-LACSC 31/76

Percentage of Compiled Packages

db <- tools::CRAN_package_db() # added in R 3.4.0
rows: number of pkgs, cols: different attributes
nTot <- nrow(db)
all direct Rcpp reverse depends, ie packages using Rcpp
nRcpp <- length(tools::dependsOnPkgs(”Rcpp”, recursive=FALSE,

installed=db))
nCompiled <- table(db[, ”NeedsCompilation”])[[”yes”]]
propRcpp <- nRcpp / nCompiled * 100
data.frame(tot=nTot, totRcpp = nRcpp, totCompiled = nCompiled,

RcppPctOfCompiled = propRcpp)

tot totRcpp totCompiled RcppPctOfCompiled
1 14312 1655 3591 46.08744

ICORS-LACSC 32/76

How: Brief Rcpp Intro

ICORS-LACSC 33/76

First Steps: evalCpp()

library(Rcpp)
evalCpp(”2 + 2”)

[1] 4

This function can validate your installation.

It takes the supplied expression, wraps enough
code around it to make a compilable function,
compiles, links and loads it – to evaluate the
C++ expression.

Here we skip all details about Rcpp
installations. It just works e.g. on the (free)
RStudio Cloud and in most normal system –
see the documentation for more. As always,
Windows may be hardest as you may have to
install another R toolchain: Rtools.

ICORS-LACSC 34/76

First Steps: cppFunction()

library(Rcpp)
cppFunction(”double fib(double n) { \

if (n < 2) return(n); \
return(fib(n-1) + fib(n-2)); \

}”)
fib(30)

[1] 832040

Creates R-callable
function from a C++
function.

Finds function
identifier in supplied
string, creates R
function of same
name.

Useful for quick tests.

Can use additional
headers and library
(see documentation).

ICORS-LACSC 35/76

First Steps: sourceCpp()

sourceCpp()

• ‘sources’ a file and compiles, links, loads
• file can contain multiple functions
• functions that are ‘tagged’ with // [[Rcpp::export]]
become callable

• can contain non-exported helper functions
• use:

sourceCpp(”someFile.cpp”) # with or without path

ICORS-LACSC 36/76

First Steps: sourceCpp()

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}

/*** R
timesTwo(42)
*/

This is a shortened (comments-removed) version of the file currently
included when you say ‘File -> New File -> C++’ in RStudio.

ICORS-LACSC 37/76

First Steps: sourceCpp()

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}

/*** R
timesTwo(42)
*/

Key features:

Rcpp header and
namespace

One exported
function timesTwo()

An automatically
executed (!!) R call for
tests and demos

Try it!

ICORS-LACSC 38/76

First Steps: sourceCpp()

Quick Demo

Rcpp::sourceCpp(”code/timestwo.cpp”) # runs demo too

##
> timesTwo(42)
[1] 84

timesTwo(c(5,10,20)) # vectorized like R

[1] 10 20 40

ICORS-LACSC 39/76

Example: Column Sums

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector colSums(Rcpp::NumericMatrix mat) {

size_t cols = mat.cols();
Rcpp::NumericVector res(cols);
for (size_t i=0; i<cols; i++) {

res[i] = sum(mat.column(i));
}
return(res);

}

ICORS-LACSC 40/76

Column Sums

Key Elements

• NumericMatrix and NumericVector go-to types for matrix
and vector operations on floating point variables

• We prefix with Rcpp:: to make the namespace explicit
• Accessor functions .rows() and .cols() for dimensions
• Result vector allocated based on number of columns column
• Function column(i) extracts a column, gets a vector, and
sum() operates on it

• That last sum() was internally vectorised, no need to loop over
all elements

ICORS-LACSC 41/76

Column Sums

Rcpp::sourceCpp(”code/colSums.cpp”)

test it
colSums(matrix(1:16, 4, 4))

[1] 10 26 42 58

base R for comparison
apply(matrix(1:16, 4, 4), 2, sum)

[1] 10 26 42 58

ICORS-LACSC 42/76

First Steps: Packages

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can
be created by Rcpp.package.skeleton()

The vignette Rcpp-packages has fuller details.

As of May 2019, there are 1655 CRAN and 176 BioConductor packages
which use Rcpp all offering working, tested, and reviewed examples.

ICORS-LACSC 43/76

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-packages.pdf

Packages and Rcpp

Best way to organize R code with Rcpp is via a package:

ICORS-LACSC 44/76

Packages and Rcpp

Rcpp.package.skeleton() and its derivatives. e.g.
RcppArmadillo.package.skeleton() create working packages.
// another simple example: outer product of a vector,
// returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
//
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}

ICORS-LACSC 45/76

Packages and Rcpp

Two (or three) ways to link to external libraries

• Full copies: Do what several packages (e.g. RcppMLPACK (v1),
RVowpalWabbit) do and embed a full copy; larger build time,
harder to update, self-contained

• With linking of libraries: Do what RcppGSL or RcppMLPACK (v2)
do and use hooks in the package startup to store compiler and
linker flags which are passed to environment variables

• With C++ template headers only: Do what RcppArmadillo and
other do and just point to the headers

• More details in extra vignettes.

ICORS-LACSC 46/76

Key Extension Package RcppArmadillo

Source: http://arma.sf.net

ICORS-LACSC 47/76

http://arma.sf.net

Armadillo

What is Armadillo?

• Armadillo is a C++ linear algebra library (matrix maths) aiming
towards a good balance between speed and ease of use.

• The syntax is deliberately similar to Matlab.
• Integer, floating point and complex numbers are supported.
• A delayed evaluation approach is employed (at compile-time) to
combine several operations into one and reduce (or eliminate)
the need for temporaries.

• Useful for conversion of research code into production
environments, or if C++ has been decided as the language of
choice, due to speed and/or integration capabilities.

Source: http://arma.sf.net

ICORS-LACSC 48/76

http://arma.sf.net

Armadillo Highlights

Key Points

• Provides integer, floating point and complex vectors, matrices,
cubes and fields with all the common operations.

• Very good documentation and examples

• website,
• technical report (Sanderson, 2010),
• CSDA paper (Sanderson and Eddelbuettel, 2014),
• JOSS paper (Sanderson and Curtin, 2016),
• ICMS paper (Sanderson and Curtin, 2018).

• Modern code, extending from earlier matrix libraries.
• Responsive and active maintainer, frequent updates.
• Used eg by MLPACK, see Curtin et al (JMLR 2013, JOSS 2018).

ICORS-LACSC 49/76

http://arma.sf.net
http://elec.uq.edu.au/~conrad/code.html
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://joss.theoj.org/papers/10.21105/joss.00026
http://arma.sourceforge.net/arma_spmat_icms_2018.pdf
http://www.mlpack.org
http://jmlr.org/papers/volume14/curtin13a/curtin13a.pdf‎
https://www.mlpack.org/papers/mlpack2018.pdf

RcppArmadillo Highlights

Key Points

• Template-only builds—no linking, and available whereever R
and a compiler work (but Rcpp is needed)

• Easy to use, just add LinkingTo: RcppArmadillo, Rcpp to
DESCRIPTION (i.e. no added cost beyond Rcpp)

• Really easy from R via Rcpp and automatic converters
• Frequently updated, widely used – now over 600 CRAN packages

ICORS-LACSC 50/76

Example: Column Sums

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::rowvec colSums(arma::mat mat) {

size_t cols = mat.n_cols;
arma::rowvec res(cols);

for (size_t i=0; i<cols; i++) {
res[i] = sum(mat.col(i));

}

return(res);
}

ICORS-LACSC 51/76

Example: Column Sums

Key Features

• The [[Rcpp::depends(RcppArmadillo)]] tag tells R to tell
g++ about the need for Armadillo headers – needed for
compilation

• Dimension accessor via member variables n_rows and n_cols;
not function calls

• We return a rowvec; default vec is alias for colvec
• Column accessor is just col(i) here
• This is a normal example of how similar features may have
slightly different names across libraries

ICORS-LACSC 52/76

Context / Examples

ICORS-LACSC 53/76

Example: Wordcloud

Background

• The wordcloud package by Ian Fellows computes wordclouds
• Initial release(s) had (only) an R version
• Basic algorithm:

• ‘trial and error’ of placing words in a grid on page
• constraint is to not overlap …

• Loops and trial and error are not fast

• so an Rcpp version was added

• One of few packages that does ‘before’ and ‘after’

ICORS-LACSC 54/76

https://cran.r-project.org/package=wordcloud

Example: Wordcloud

Using Moby Dick with min.freq=5 is a large enough task:

suppressMessages({library(wordcloud); library(tm)})
moby <- readLines(”http://www.gutenberg.org/files/2701/2701-0.txt”)
system.time(wordcloud(moby, min.freq = 5, random.order=FALSE,

use.r.layout = TRUE))

user system elapsed
393.352 0.214 393.876

system.time(wordcloud(moby, min.freq = 5, random.order=FALSE,
use.r.layout = FALSE))

user system elapsed
87.377 0.004 87.396

Decent speedup – but not as dramatic as Fibonacci above.

ICORS-LACSC 55/76

Example: Wordcloud

wordcloud(moby, min.freq = 250, colors=brewer.pal(6,”Blues”),
random.order=FALSE)

w
ha

le
no

w

but
the

lik
e

ol
d

man ahab

w
ill

ship sea

and
yet

time

still
gr

ea
tsaid

...

se
e

ICORS-LACSC 56/76

Example: winsorize

Background

• Excellent CRAN package robustHD by Andreas Alfons

• Offers a variety of routines …
• .. but also pulls in a number of dependencies

• For a small (private) project I needed a subset of robustHD
• So we created winsorize (GitHub-only)
• (Partial) code examples follow showing

• simple and clean C++
• taking advantage of (Rcpp)Armadillo

ICORS-LACSC 57/76

https://cran.r-project.org/web/packages/robustHD/index.html
https://cran.r-project.org/web/packages/robustHD/index.html
https://github.com/eddelbuettel/winsorize

winsorize code (1 of 2)

double corPearson(const vec& x, const vec& y) {
// arma function cor() always returns matrix
return as_scalar(cor(x, y));

}

double winsorize(const double& x, const double& cm,
const double& cp) {

if(x < cm) {
return cm;

} else if(x > cp) {
return cp;

} else return x;
}

ICORS-LACSC 58/76

winsorize code (1 of 2)

double corHuberUni(const vec& x, const vec& y,
const double& c) {

// negative winsorization constant
const double cm = -c;
const uword n = x.n_elem;
vec wx(n), wy(n);
for(uword i = 0; i < n; i++) {

wx(i) = winsorize(x(i), cm, c);
wy(i) = winsorize(y(i), cm, c);

}
// call barebones function for Pearson correlation
// with winsorized data
return corPearson(wx, wy);

}
ICORS-LACSC 59/76

A Related Approach

ICORS-LACSC 60/76

Generic Python wrapping

Source: https://rstudio.github.io/reticulate/

ICORS-LACSC 61/76

https://rstudio.github.io/reticulate/

Generic Python wrapping

reticulate

• Written to support tensorflow and keras
• Already used by several packages including

• greta: think stan or bugs, but on tensorflow
• spacyr: accesses the spaCy NLP engine
• h2o4gpu: access to h2o.ai GPU-based ML solvers

• Also used by XRPython
• Uses Rcpp

ICORS-LACSC 62/76

http://spacy.io
https://www.h2o.ai/

Generic Python wrapping

The RcppCNPy package lets us load and save NumPy files (by
wrapping the C library cnpy).

library(RcppCNPy)
mat <- npyLoad(”fmat.npy”)
vec <- npyLoad(”fvec.npy”)

mat2 <- npyLoad(”fmat.npy.gz”)

ICORS-LACSC 63/76

Generic Python wrapping

But reticulate lets us load and save NumPy files directly!

library(reticulate)
np <- import(”numpy”)
mat <- np$load(”fmat.npy”))
vec <- np$load(”fvec.npy”))

compressed data: import gzip
gz <- import(”gzip”)
use it to create handle to uncompressed file
mat2 <- np$load(gz$GzipFile(”fmat.npy.gz”,”r”))

See the vignettes in the RcppCNPy package for more.

ICORS-LACSC 64/76

Other Approaches

ICORS-LACSC 65/76

gRPC

Source: https://grpc.io

ICORS-LACSC 66/76

https://grpc.io

gRPC

Different Approach

• define an interface (as Protocol Buffer)
• have code generated for both server and client side
• across OSs: Linux, Windows, Android, iOS, …
• across languages: C++, Python, Go, Javascript, Ruby, C#, PHP, …

ICORS-LACSC 67/76

Arrow

Source: https://arrow.apache.org/

ICORS-LACSC 68/76

https://arrow.apache.org/

XTensor

Source: http://quantstack.net/xtensor

ICORS-LACSC 69/76

http://quantstack.net/xtensor

Summary

ICORS-LACSC 70/76

Conclusion

Key Points

• Statistics is now a computational discipline
• Within Statistics, the R language is the lingua franca
• Rcpp permits extending R in (relatively) easy ways
• Other approaches exist, some build upon Rcpp
• Interfaces to other software are part of R.

ICORS-LACSC 71/76

Appendix: More on Rcpp

ICORS-LACSC 72/76

Resources

Documentation and Examples

• The package comes with nine pdf vignettes, and help pages.
• The introductory vignettes are now published (Rcpp and
RcppEigen in J Stat Software, RcppArmadillo in Comp Stat &
Data Anlys, Rcpp again in TAS)

• The rcpp-devel list is the recommended resource, generally very
helpful, and fairly low volume.

• StackOverflow has a fair number of posts too.
• And a number of blog posts introduce/discuss features.

ICORS-LACSC 73/76

Rcpp Gallery

ICORS-LACSC 74/76

The Rcpp book

On sale since June 2013.

ICORS-LACSC 75/76

Thank you!

slides http://dirk.eddelbuettel.com/presentations/

web http://dirk.eddelbuettel.com/

mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

ICORS-LACSC 76/76

http://dirk.eddelbuettel.com/presentations/
http://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Overview
	Why R: View from Academia
	Why R: View from Practitioners
	Why R: Programming with Data
	Why R: Historical Perspective
	Why C++ and Rcpp
	How: Brief Rcpp Intro
	Context / Examples
	A Related Approach
	Other Approaches
	Summary
	Appendix: More on Rcpp

