EXTENDING R WITH C++

MOTIVATION, EXAMPLES, AND CONTEXT

Dirk Eddelbuettel

Invited Keynote, ICORS-LACSC 2019

Escuela Superior Politécnica del Litoral (ESPOL)
Guayaquil, Ecuador

May 30, 2019

I ILLINOIS

Brief Bio
- Finance Quantitative Research Professional for 20+ years
- (Adjunct) Clinical Professor at U of Illinois for 2 years
- Open Source for around 25 years

- Debian developer (~ 170 packages)
- R package author (~ 50 packages)
- Rcpp, Rocker, ...

- R and Statistics

- JSS Associate Editor
- R Foundation Board member

- PhD, MA Econometrics; MSc Ind.Eng. (Comp.Sci./OR)

ICORS-LACSC 2/76

OVERVIEW

ICORS-LACSC 3/76

OUTLINE

Extending R with C++

- WhyR?

- Why Extending R ?

- Why C++ and Rcpp ?
- (Briefly) How ?

- Context

- Outlook

ICORS-LACSC 4/76

WHY R: VIEW FROM ACADEMIA

ICORS-LACSC 5/76

COMPUTER-AGE STATISTICAL INFERENCE

Almost all topics in
twenty-first-century statistics are now
computer-dependent [...]

Here and in all our examples we are
i1 s iy g : employing the language R, itself one
of the key developments in
computer-based statistical

methodology.
Efron and Hastie, 2016

pages xv and 6 (footnote 3)

ICORS-LACSC 6/76

A VIEW OF THE WORLD

Computational Statistics in Practice

- Statistics is now computational (Efron & Hastie, 2016)
- Within (computational) statistics, reigning tool is R
- Given R, Rcpp key for two angles:

- Performance always matters, ease of use a sweetspot
- “Extending R” (Chambers, 2016)

ICORS-LACSC 7176

WHY R: VIEW FROM PRACTITIONERS

ICORS-LACSC 8/76

WHY R? PAT BURN'’S VIEW

l‘ Why the R Language?
Jurns

Screen shot on the left part of
Why use the R Language? short essay at Burns-Stat

A brief outine of why you might want to make the effortto learn R.

Translations

Russian: iru-why-use the-r-language translated by Timur
Kadirov

What is R, and S?
“This used o be called “An Introduction o the S Language. R is a dialect of the S (a n d fre e) Wri tl n gs

language, and has come to be — by far — the dominant dialect

His site has more truly excellent

S started as a research project at Bell Labs a few decades ago, t s a language
that was developed for data

tatstical modeling, simulation and
ose language with some powertul features

graphics. However, It s a ger
e moved

The (much longer) R Inferno

It should be used for many of the tasks that spreadsheets are currently used for. If
atasks non-ivialto do In @ spreadsheet, then amost always It would more
P safely) be done with R * odiction” talks about

(free pdf, also paperback) is
Why the R Language?

« Ris notjust a statstics package, its a language.

highly recommended.

« Ris designed to operate the way that problems are thought about.

« Ris botn flexible and powerful

ICORS-LACSC 9/76

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/
https://www.burns-stat.com/documents/books/the-r-inferno/

WHY R? PAT BURN'’S VIEW

Why the R Language?

- Ris not just a statistics package, it's a

:'. u rns language.

- Ris designed to operate the way that
problems are thought about.
- Ris both flexible and powerful.

Source: https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

ICORS-LACSC 10/76

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

WHY R? PAT BURN'’S VIEW

Why R for data analysis?

iR R is not the only language that can be used for data
-
| u rnS analysis. Why R rather than another? Here is a list:

- interactive language

- data structures

- graphics

- missing values

- functions as first class objects
- packages

© community
Source: https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

ICORS-LACSC 11/76

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

WHY R: PROGRAMMING WITH DATA

ICORS-LACSC 12/76

WHY R? R AS MIDDLE MAN

R as an Extensible Environment
- As R users we know that R can

- ingest data in many formats from many sources
- aggregate, slice, dice, summarize, ...

- visualize in many forms, ...

- model in just about any way

- report in many useful and scriptable forms

- It has become central for programming with data

- Sometimes we want to extend it further than R code goes

ICORS-LACSC 13/76

R AS CENTRAL POINT

ICORS-LACSC 14/76

R AS CENTRAL POINT

From any one of via into any one of
csv < otxt
txt - html
xlsx - latex and pdf
xml, json, ... htmland js
web scraping, ... word
hdf5, netcdf, ... shiny

sas, stata, spss, ... most graphics formats

various SQL + NOSQL DBs other dashboards

various binary protocols - web frontends

ICORS-LACSC 15/76

WHY R: HISTORICAL PERSPECTIVE

ICORS-LACSC 16/76

R AS ‘THE INTERFACE’

Ihe Algocithm Twte cfoce s/s/7¢
Ac geweval
(PORTRANY
a\x..u\...

YARC: FoRTRAN
subrautine to
pravide intecface
betwean ARS &
banguage andlor
WA ViR Rrograms
xAsc (TNSTR , OUTSTRY

*ABDC

Taput TINSTR —>

ouTSTR —>

Note: Names ace
aeningul 4o Aqueithn
ast -\!c;(e(-vllhl +o

cotnters [Values
Tyees (Modesd>
Result Names

Lanquage

ICORS-LACSC

A design sketch called ‘The Interface’

AT&T Research lab meeting notes

Describes an outer ‘user interface’

layer to core Fortran algorithms

Key idea of abstracting away inner
details giving higher-level more

accessible view for user / analyst
Lead to “The Interface”

Which became S which lead to R

Source: John Chambers, personal communication

17/76

WHY R? : PROGRAMMING WITH DATA FROM 1977 TO 2016

Omputational The S La
Methods —
For Data
Analysis

PROGRAMMIN
WiTH DATA

Thanks to John Chambers for high-resolution cover images. The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.

ICORS-LACSC 18/76

CHAMBERS (2008)

ICORS-LACSC

John M. Chambers

Statistics and Computing

Software For Data Analysis

Chapters 10 and 11 devoted to
Interfaces I: C and Fortran and

Interfaces Il: Other Systems.

19/76

CHAMBERS (2016)

The R Series Extending R

EXtendlng R Object: Everything that exists in

Ris an object

Function: Everything happens in
Ris a function call

Interface: Interfaces to other
software are part of R

2
g
3
H
3

John M. Chambers

@ CRC Press

®

ICORS-LACSC 20/76

CHAMBERS (2016)

The R Series Extending R, Chapter 4

Extending R The fundamental lesson about

programming in the large is that
requires a correspondingly broad
and flexible response. In particular,
no single language or software
system os likely to be ideal for all

aspects. Interfacing multiple

2
g
3
H
3

systems is the essence. Part IV

John M. Chambers explores the design of of interfaces

from R.

CRC Press

®

ICORS-LACSC 21/76

WHY C++ AND RCPP

ICORS-LACSC 22/76

R AND C/C++

A good fit, it turns out

- A good part of R is written in C (besides R and Fortran code)
- The principle interface to external code is a function .Call()
- It takes one or more of the high-level data structures R uses

- ...and returns one. Formally:

SEXP .Call(SEXP a, SEXP b, ...)

ICORS-LACSC 23/76

R AND C/C++

A good fit, it turns out (cont.)

- An SEXP (or S-Expression Pointer) is used for everything

- (An older C trick approximating object-oriented programming)

- We can ignore the details but retain that

- everything in R is a SEXP
- the SEXP is self-describing
- can matrix, vector, list, function, ...

- 27 types in total

- The key thing for Rcpp is that via C++ features we can map

ICORS-LACSC

- each of the (limited number of) SEXP types
- 1o a specific C++ class representing that type
- and the conversion is automated back and forth

24/76

R AND C/C++

Other good reasons
- It is fast — compiled C++ is hard to beat in other languages
- (That said, you can of course write bad and slow code....)
- Itis very general and widely used

- many libraries

- many tools
- Itis fairly universal:

- just about anything will have C interface so C++ can play

- just about any platform / OS will have it

ICORS-LACSC 25/76

R AND C/C++

Key Features

- (Fairly) Easy to learn as it really does not have to be that
complicated - there are numerous examples

- Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

- Expressive as it allows for vectorised C++ using Rcpp Sugar

- Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, ...

- Speed gains for a variety of tasks Rcpp excels precisely where R
struggles: loops, function calls, ...

- Extensions greatly facilitates access to external libraries directly
or via eg Rcpp modules

ICORS-LACSC 26/76

RCPP SPEED ILLUSTRATION

Benchmark on Fibonacci(20) between C++ and R - note the log scale!

fibCpp(20) -

fibR(20) -

100 1000 10000
Time [microseconds]

ICORS-LACSC 27176

Growth of Rcpp usage on CRAN

1500
1

1000
1

—— Number of CRAN packages using Rcpp (left axis)
Percentage of CRAN packages using Rcpp (right axis)

2010 2012 2014

Data current as of May 12, 2019.

ICORS-LACSC

2016

2018

12

10

28/76

USERS ON CORE REPOSITORIES

Rcpp is currently used by

- 1655 CRAN packages
- 176 BioConductor packages (with 38 added since last year)

- an unknown (but “large”) number of GitHub projects

ICORS-LACSC 29/76

PAGERANK

suppressMessages(library(utils))
library(pagerank) # cf github.com/andrie/pagerank

cran <- "http://cloud.r-project.org”

pr <- compute_pagerank(cran)
round(100+pr[1:5], 3)

#it Rcpp ggplot2 MASS dplyr Matrix
et 2.744 1.370 1.356 0.935 0.768

ICORS-LACSC 30/76

PAGERANK

Top 30 of Page Rank as of May 2019

Repp
ggplot2 °
MASS o
dplyr

Matrix
mvtnorm
magrittr

stringr

survival

plyr

jsonlite
ReppArmadillo
data.table o
httr °
igraph
foreach

purrr
doParallel °
RColorBrewer o
200 °
coda o
°
°

raster
lubridate
0.005 0.010 0.015 0.020 0.025

ICORS-LACSC 31/76

PERCENTAGE OF COMPILED PACKAGES

db <- tools::CRAN_package_db() # added in R 3.4.0

rows: number of pkgs, cols: different attributes

nTot <- nrow(db)

all direct Rcpp reverse depends, ie packages using Rcpp

nRcpp <- length(tools::dependsOnPkgs(”Rcpp”, recursive=FALSE,
installed=db))

nCompiled <- table(db[, "NeedsCompilation”])[[”yes”]]

propRcpp <- nRcpp / nCompiled * 100

data.frame(tot=nTot, totRcpp

nRcpp, totCompiled = nCompiled,
RcppPctOfCompiled = propRcpp)

##t tot totRcpp totCompiled RcppPctOfCompiled
1 14312 1655 3591 46.08744

ICORS-LACSC 32/76

How: BRIEF RCPP INTRO

ICORS-LACSC 33/76

FIRST STEPS: EVALCPP()

This function can validate your installation.

library(Rcpp) It takes the supplied expression, wraps enough
evalCpp(”2 + 2") code around it to make a compilable function,

compiles, links and loads it - to evaluate the
[1] 4 C++ expression.

Here we skip all details about Rcpp
installations. It just works e.g. on the (free)
RStudio Cloud and in most normal system -
see the documentation for more. As always,
Windows may be hardest as you may have to
install another R toolchain: Rtools.

ICORS-LACSC 34/76

FIRST STEPS: CPPFUNCTION()

library(Rcpp)

cppFunction(”double fib(double n) { \
if (n < 2) return(n); \
return(fib(n-1) + fib(n-2)); \

")

fib(30)

[1] 832040

ICORS-LACSC

Creates R-callable
function from a C++
function.

Finds function
identifier in supplied
string, creates R
function of same

name.
Useful for quick tests.

Can use additional
headers and library

(see documentation).

35/76

FIRST STEPS: SOURCECPP()

sourceCpp()

- ‘sources’ a file and compiles, links, loads

- file can contain multiple functions

- functions that are ‘tagged’ with // [[Rcpp: :export]]
become callable

- can contain non-exported helper functions

- use:

sourceCpp(”someFile.cpp”) # with or without path

ICORS-LACSC 36/76

FIRST STEPS: SOURCECPP()

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;

/x%*x R
timesTwo(42)
*/

This is a shortened (comments-removed) version of the file currently

included when you say ‘File -> New File -> C++" in RStudio.
ICORS-LACSC 37/76

FIRST STEPS: SOURCECPP()

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;

/**x* R
timesTwo(42)
*/

ICORS-LACSC

Key features:

Rcpp header and

namespace
One exported

function timesTwo()

An automatically
executed (!) R call for

tests and demos

Try it!

38/76

FIRST STEPS: SOURCECPP()

Quick Demo

Rcpp: :sourceCpp(”code/timestwo.cpp”) # runs demo too

##
> timesTwo(42)
##t [1] 84

timesTwo(c(5,10,20)) # vectorized like R

[1] 10 20 40

ICORS-LACSC 39/76

EXAMPLE: COLUMN SuMms

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp: :NumericVector colSums(Rcpp::NumericMatrix mat) {
size_t cols = mat.cols();
Rcpp: :NumericVector res(cols);
for (size_t i=0; i<cols; i++) {
res[i] = sum(mat.column(i));
}

return(res);

ICORS-LACSC 40/76

COLUMN Sums

Key Elements

- NumericMatrix and NumericVector go-to types for matrix
and vector operations on floating point variables

- We prefix with Rcpp: : to make the namespace explicit

- Accessor functions .rows() and .cols() for dimensions

- Result vector allocated based on number of columns column

- Function column(i) extracts a column, gets a vector, and
sum() operates on it

- That last sum(') was internally vectorised, no need to loop over
all elements

ICORS-LACSC 41/76

COLUMN Sums

Rcpp: :sourceCpp(”code/colSums.cpp”)

test it
colSums(matrix(1:16, 4, 4))

[1] 10 26 42 58

base R for comparison
apply(matrix(1:16, 4, 4), 2, sum)

[1] 10 26 42 58

ICORS-LACSC 42/76

FIRST STEPS: PACKAGES

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can
be created by Rcpp.package.skeleton()

The vignette Rcpp-packages has fuller details.

As of May 2019, there are 1655 CRAN and 176 BioConductor packages
which use Rcpp all offering working, tested, and reviewed examples.

ICORS-LACSC 43/76

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-packages.pdf

PACKAGES AND RCPP

Best way to organize R code with Rcpp is via a package

File Edit Code View Plots
A= 3

3] foo.cpp

#include <Rcpp.h>
using namespace Rcpp;

/i For nore on using

/1 Below is a sinple examp

11-
12
13

Boomaanswnn

int timesTwo(int x)
return x * 2;

}

session Build
Souceonsave | Q Jiv 7

source this funckion in
/J function (or via New Project

: R

Debug Tools Help

& project: (None) ~

)| Environment History

L Souce | 2 [J % importDotaset- o Clear (&
A () Global Environment -
Functions
le of exporting a C++ function to R. Yof tinesTwo funetion (x)
et e i
Back Create R Package
Type: Package name:
Package w/Repp v Viewer
Create package based on source Files:
2 N
o Analysis

Create project as subdirectory of:

=0

List~

=0

|| Browse..
Y ———| __ Create a git repository for this project |

o1 |
e) open in new window Create Project | | Cancel
ST e
> sourceCpp("files/tinesTwo.cpp") Anlntroductionto R~ The R Language Definition
Error: file not found: 'files/tinesTwoA.cpp' R Installation and
In addition: Warning message Writing R Extensions Adminisiration
In normalizepath(file, winslash = "/"))

path[1]="files/tinesTwoA.cpp": No such file or directory B Data Import/Export B Intemals.
> getwd()
[1] " /home/edd"
N Reference

ICORS-LACSC

4476

PACKAGES AND RCPP

Rcpp.package.skeleton() and its derivatives. e.g.

RcppArmadillo.package.skeleton() create working packages.

// another simple example: outer product of a vector,

// returning a matrix

//

// [[Rcpp::export]]

arma::mat rcpparma_outerproduct(const arma::colvec & x) {
arma::mat m = x * x.t();

return m;

// and the inner product returns a scalar

//

// [[Rcpp::export]]

double rcpparma_innerproduct(const arma::colvec & x) {
double v = arma::as_scalar(x.t() * x);
return v;

}
ICORS-LACSC 45/76

PACKAGES AND RCPP

Two (or three) ways to link to external libraries

- Full copies: Do what several packages (e.g. ReppMLPACK (v1),

RVowpalWabbit) do and embed a full copy; larger build time,
harder to update, self-contained

- With linking of libraries: Do what RcppGSL or RcppMLPACK (v2)

do and use hooks in the package startup to store compiler and

linker flags which are passed to environment variables

- With C++ template headers only: Do what RcppArmadillo and

other do and just point to the headers

- More details in extra vignettes.

ICORS-LACSC

46/76

KEY EXTENSION PACKAGE RCPPARMADILLO

\\\ Armadillo

Dy C++libraryfor inear algebra & scientifc computing
o

About Questions License Documentation Speed Contact Download

« Armadillo is a high quality linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use
+ Provides high-level syntax and functionality deliberately similar to Matiab

+ Useful for algorithm development directly in C++, or quick conversion of research code into production environments (g. software & hardware
products)

« Provides efficient classes for vectors, matrices and cubes (1st, 2nd and 3rd order tensors); dense and sparse matrices are supported
+ Integer, floating point and complex numbers are supported

* Various matrix decompositions are provided through integration with LAPACK, or one of its high performance drop-in replacements (eg. multi-threaded
Intel MKL, or OpenBLAS)

« Asophisticated expression evaluator (based on template b | operations to increase speed and
efficiency
* can use OpenMP. ding to speed up expensive operations

+ Available under a permissive license, useful for both open-source and proprietary (closed-source) software

Can be used for machine learning, pattern recognition, computer vision, signal processing, biinformatics, statistics, finance, etc

+ download latest version | GitLab repo | browse documentation

Supported by:
> 7
U e
61
ARROYO N7

Source: http://arma.sf.net

ICORS-LACSC

4776

http://arma.sf.net

ARMADILLO

What is Armadillo?

- Armadillo is a C++ linear algebra library (matrix maths) aiming
towards a good balance between speed and ease of use.

- The syntax is deliberately similar to Matlab.

- Integer, floating point and complex numbers are supported.

- A delayed evaluation approach is employed (at compile-time) to
combine several operations into one and reduce (or eliminate)
the need for temporaries.

- Useful for conversion of research code into production
environments, or if C++ has been decided as the language of

choice, due to speed and/or integration capabilities.

Source: http://arma.sf.net

ICORS-LACSC 48/76

http://arma.sf.net

ARMADILLO HIGHLIGHTS

Key Points

- Provides integer, floating point and complex vectors, matrices,
cubes and fields with all the common operations.

- Very good documentation and examples

- website,

- technical report (Sanderson, 2010),

- CSDA paper (Sanderson and Eddelbuettel, 2014),
- JOSS paper (Sanderson and Curtin, 2016),

- ICMS paper (Sanderson and Curtin, 2018).

- Modern code, extending from earlier matrix libraries.
- Responsive and active maintainer, frequent updates.
- Used eg by MLPACK, see Curtin et al (JMLR 2013, JOSS 2018).

ICORS-LACSC 49/76

http://arma.sf.net
http://elec.uq.edu.au/~conrad/code.html
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://joss.theoj.org/papers/10.21105/joss.00026
http://arma.sourceforge.net/arma_spmat_icms_2018.pdf
http://www.mlpack.org
http://jmlr.org/papers/volume14/curtin13a/curtin13a.pdf‎
https://www.mlpack.org/papers/mlpack2018.pdf

RCPPARMADILLO HIGHLIGHTS

Key Points

- Template-only builds—no linking, and available whereever R
and a compiler work (but Rcpp is needed)

- Easy to use, just add LinkingTo: RcppArmadillo, Rcpp to
DESCRIPTION (i.e. no added cost beyond Rcpp)

- Really easy from R via Rcpp and automatic converters

- Frequently updated, widely used - now over 600 CRAN packages

ICORS-LACSC 50/76

EXAMPLE: COLUMN SuMms

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]

arma::rowvec colSums(arma::mat mat) {
size_t cols = mat.n_cols;
arma::rowvec res(cols);
for (size_t i=0; i<cols; i++) {

res[i] = sum(mat.col(i));

return(res);

ICORS-LACSC 51/76

EXAMPLE: COLUMN SuMms

Key Features

- The [[Rcpp: :depends(RcppArmadillo)]] tag tells R to tell
g++ about the need for Armadillo headers — needed for
compilation

- Dimension accessor via member variables n_rows and n_cols;
not function calls

- We return a rowvec; default vec is alias for colvec

- Column accessor is just col(i) here

- This is a normal example of how similar features may have
slightly different names across libraries

ICORS-LACSC 52/76

CONTEXT / EXAMPLES

ICORS-LACSC 53/76

EXAMPLE: WORDCLOUD

Background

- The wordcloud package by lan Fellows computes wordclouds
- Initial release(s) had (only) an R version
- Basic algorithm:

- ‘trial and error’ of placing words in a grid on page

- constraint is to not overlap ...
- Loops and trial and error are not fast
- so0 an Rcpp version was added
- One of few packages that does ‘before’ and ‘after’

ICORS-LACSC 54/76

https://cran.r-project.org/package=wordcloud

EXAMPLE: WORDCLOUD

Using Moby Dick with min. freq=5 is a large enough task:

suppressMessages({library(wordcloud); library(tm)})

moby <- readLines(”http://www.gutenberg.org/files/2701/2701-0.txt")

system.time(wordcloud(moby, min.freq = 5, random.order=FALSE,
use.r.layout = TRUE))

user system elapsed
393.352 0.214 393.876

system.time(wordcloud(moby, min.freq = 5, random.order=FALSE,
use.r.layout = FALSE))

##t user system elapsed
87.377 0.004 87.396

Decent speedup - but not as dramatic as Fibonacci above.

ICORS-LACSC 55/76

EXAMPLE: WORDCLOUD

wordcloud(moby, min.freq = 250, colors=brewer.pal(6,”Blues”),
random.order=FALSE)

ICORS-LACSC 56/76

EXAMPLE: WINSORIZE

Background
- Excellent CRAN package robustHD by Andreas Alfons

- Offers a variety of routines ...

- .. butalso pulls in a number of dependencies

- For a small (private) project | needed a subset of robustHD
- So we created winsorize (GitHub-only)

- (Partial) code examples follow showing

- simple and clean C++

- taking advantage of (Rcpp)Armadillo

ICORS-LACSC 57/76

https://cran.r-project.org/web/packages/robustHD/index.html
https://cran.r-project.org/web/packages/robustHD/index.html
https://github.com/eddelbuettel/winsorize

WINSORIZE CODE (1 OF 2)

double corPearson(const vec& x, const vecs y) {
// arma function cor() always returns matrix

return as_scalar(cor(x, y));

double winsorize(const double§ x, const double§& cm,
const double& cp) {
if(x < cm) {
return cm;
} else if(x > cp) {
return cp;

} else return x;

}

ICORS-LACSC 58/76

WINSORIZE CODE (1 OF 2)

double corHuberUni(const vec& x, const vec§ vy,
const double§ c) {
// negative winsorization constant
const double cm = -c;
const uword n = x.n_elem;
vec wx(n), wy(n);
for(uword 1 = 0; i < n; i++) {
wx(1) = winsorize(x(i), cm, c);
wy(i) = winsorize(y(i), cm, c);
}
// call barebones function for Pearson correlation
// with winsorized data

return corPearson(wx, wy);

ICORS*L}ACSC 59/76

A RELATED APPROACH

ICORS-LACSC 60/76

GENERIC PYTHON WRAPPING

R Interface to Python

The reticulate package provides a comprehensive set of tools for interopability between Python and R. The
package includes facilites for:

* Translation between R and Python objects (for example, between R and
Pandas data frames, or between R matrices and NumPy arrays).

Calling Python from R in a variety of ways including R Markdown,
sourcing Pythen scripts, importing Python modules, and using Python
interactively within an R session.

Flexible binding to different versions of Pythen including virtual
environments and Conda environments.

Reticulate embeds a Python session within your R session, enabling seamless, high-performance
interoperability. If you are an R developer that uses Python for some of your work or a member of data science
team that uses both languages, reticulate can dramatically streamline your workflow!

Source: https://rstudio.github.io/reticulate/

ICORS-LACSC 61/76

https://rstudio.github.io/reticulate/

GENERIC PYTHON WRAPPING

reticulate

- Written to support tensorflow and keras

- Already used by several packages including

- greta: think stan or bugs, but on tensorflow
- spacyr: accesses the spaCy NLP engine

- h2o04gpu: access to h2o.ai GPU-based ML solvers

- Also used by XRPython
- Uses Rcpp

ICORS-LACSC 62/76

http://spacy.io
https://www.h2o.ai/

GENERIC PYTHON WRAPPING

The RcppCNPy package lets us load and save NumPy files (by
wrapping the C library cnpy).

library(RcppCNPy)
mat <- npyLoad(”fmat.npy”)

vec <- npyLoad(”fvec.npy”)

mat2 <- npyLoad(”fmat.npy.gz")

ICORS-LACSC 63/76

GENERIC PYTHON WRAPPING

But reticulate lets us load and save NumPy files directly!

library(reticulate)

np <- import(”numpy”)

mat <- np$load(”fmat.npy”))
vec <- np$load(”fvec.npy”))

compressed data: import gzip
gz <- import(”gzip”)
use it to create handle to uncompressed file

mat2 <- np$load(gz$GzipFile(”"fmat.npy.gz”,”r"))

See the vignettes in the RcppCNPy package for more.

ICORS-LACSC 64/76

OTHER APPROACHES

ICORS-LACSC 65/76

Simple service definition

sing Protocol Buffers, a powerful binary serialization tc

Works across languages and platforms

y generate idioma

s for your service riety of la

Ruby Client

gRPC Server

C4+ Service

Pron
© Responsel(s)

Android-Java Client

Source: https://grpc.io

ICORS-LACSC 66/76

https://grpc.io

Different Approach

- define an interface (as Protocol Buffer)

- have code generated for both server and client side

- across 0Ss: Linux, Windows, Android, i0S, ...

- across languages: C++, Python, Go, Javascript, Ruby, C#, PHP, ...

ICORS-LACSC 67/76

Apache Arrow

A cross-language development platform for in-memory data

Install 0 Release - 18 December 2017)

See Latest News

Apache Arow is a cross-language development platform for in-memory data. It specifies a standardized language-independent columnar memory
format for flat and hierarchical data, organized for efficient analytic operations on modem hardware. It also provides computational libraries and zero-
copy streaming messaging and interprocess communication. Languages currently supported include C, C++, Java, JavaScript, Python, and Ruby.

Fast

Apache Arrow™ enables execution engines to
take advantage of the latest SIMD (Single input
multiple data) operations included in modem
procassors, for native vectorized optimization of
analytical data processing. Columnar layout is
optimized for data locality for better performance
on modern hardware like CPUs and GPUs.

The Arrow memory format supports zero-copy

reads for lightning-fast data access without
serialization overhead.

Flexible

Arfow acts as a new high-performance interface
between various systems. It s also focused on
supporting a wide variety of industry-standard
programming languages. Java, C, C++, Python,
Ruby, and JavaScript implementations are in
progress and more languages are welcome

Source: https://arrow.apache.org/

ICORS-LACSC

Standard

Apache Arrow is backed by key developers of 13
major open source projects, including Calcite,
Cassandra, Drill, Hadoop, HBase, Ibis, Impala,
Kudu, Pandas, Parquet, Phoenix, Spark, and
Storm making it the de-facto standard for
columnar in-memory analytics,

Learn more about projects that are Powered By
Apache Arow

68/76

https://arrow.apache.org/

XTENSOR

The C++ Tensor Algebra Library

Multi-dimensional arrays with broadcasting and lazy computing - all open-source.

o Browse the Code

9 Documentation

> Try itNow
Introduction

xtensor is a C++ library meant for numerical analysis with multi-dimensional array expressions.

xtensor provides

® an extensible expression system enabling lazy broadcasting.
® an API following the idioms of the C++standard library.
® tools to manipulate array expressions and build upon xtensor.

Source: http://quantstack.net/xtensor

ICORS-LACSC 69/76

http://quantstack.net/xtensor

SUMMARY

ICORS-LACSC 70/76

CONCLUSION

Key Points

- Statistics is now a computational discipline

- Within Statistics, the R language is the lingua franca
- Rcpp permits extending R in (relatively) easy ways

- Other approaches exist, some build upon Rcpp

- Interfaces to other software are part of R.

ICORS-LACSC 7/76

APPENDIX: MORE ON RCPP

ICORS-LACSC 72176

RESOURCES

Documentation and Examples

- The package comes with nine pdf vignettes, and help pages.

- The introductory vignettes are now published (Rcpp and
RcppEigen in J Stat Software, RcppArmadillo in Comp Stat &
Data Anlys, Rcpp again in TAS)

- The rcpp-devel list is the recommended resource, generally very
helpful, and fairly low volume.

- StackOverflow has a fair number of posts too.

- And a number of blog posts introduce/discuss features.

ICORS-LACSC 73176

RcPP GALLERY

Repp Gallery - Google Chrome

[Repp Gallery

Ay
m

¢ @ [[) gallery.repp.org o
RCpp Projects- Gallery Book Evemis More~

Featured Articles
Quick conversion of a listof I
This post shows one method for ereating a data iame quickly
Passing user-supplied C++ functions

This example shows how to select user-supplied C++ functions

into a data frame

Using Repp to access the C AP of xi
This post shows how to use the exported API functions of xts

Timing normal RNGs

This post compares drawing N(0.1) vectors from R, Boostand Cr+11
Afirst lambda function with C++11 and Repp

This post shows how o play with lambda functions in C++11

First steps in using C++11 with Repp
This post shows how to experiment with C++11 features

Using Reout for output synchronised with R
This post shows how to use Reout (and Reer) for output
Using the Repp sugar function clamp

This post llustrates the sugar function clamp

Using the Repp Timer
This post shows how to use the Timer class in Rpp

Calling R Functions from C#+
This post discusses calling R functions from C+-+

More »

Recently Published

ing the ReppArmadillo-based Implementation of R's sample()

» Dynamic Wrapping and Recurs
» Using bigmemary with Repp
» Generating a multivariate gaus:

jon with Ropp

n distribution using ReppArmadillo

» Using Ropp with BoostRegex for regular expression
» Fastfactor generation with Repp 5

ICORS-LACSC 74/76

THE RCPP BOOK

Dirk Eddelbuettel

On sale since June 2013.

@ Springer

ICORS-LACSC 75/76

THANK YOU!

slides http://dirk.eddelbuettel.com/presentations/
web http://dirk.eddelbuettel.com/
mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

ICORS-LACSC 76/76

http://dirk.eddelbuettel.com/presentations/
http://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Overview
	Why R: View from Academia
	Why R: View from Practitioners
	Why R: Programming with Data
	Why R: Historical Perspective
	Why C++ and Rcpp
	How: Brief Rcpp Intro
	Context / Examples
	A Related Approach
	Other Approaches
	Summary
	Appendix: More on Rcpp

