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Introduction
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A Very Kind Tweet
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And Another Tweet
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And Yet Another Tweet
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And Why Not Another Tweet
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And Last But Not Least
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Extending R
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Why R? : Programming with Data

Chambers,
Computational
Methods for Data
Analysis. Wiley,
1977.

Becker, Chambers,
and Wilks. The
New S Language.
Chapman & Hall,
1988.

Chambers and
Hastie. Statistical
Models in S.
Chapman & Hall,
1992.

Chambers.
Programming with
Data. Springer,
1998.

Chambers.
Software for Data
Analysis:
Programming with
R. Springer, 2008

Thanks to John Chambers for sending me high-resolution scans of the covers of his books.
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A Simple Example

xx <- faithful[,"eruptions"]
fit <- density(xx)
plot(fit)
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A Simple Example
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A Simple Example - Refined

xx <- faithful[,"eruptions"]
fit1 <- density(xx)
fit2 <- replicate(10000, {

x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))$y

})
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x,rev(fit1$x)), c(fit3[1,],rev(fit3[2,])),

col='grey', border=F)
lines(fit1)

12/73



A Simple Example - Refined
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So Why R?

R enables us to

· work interactively
· explore and visualize data
· access, retrieve and/or generate data
· summarize and report into pdf, html, …

making it the key language for statistical computing, and a
preferred environment for many data analysts.
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So Why R?

R has always been extensible via

· C via a bare-bones interface described in Writing R
Extensions

· Fortran which is also used internally by R
· Java via rJava by Simon Urbanek
· C++ but essentially at the bare-bones level of C

So while in theory this always worked – it was tedious in
practice
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Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and
Fortran:

Since the core of R is in fact a program written in
the C language, it’s not surprising that the most
direct interface to non-R software is for code written
in C, or directly callable from C. All the same,
including additional C code is a serious step, with
some added dangers and often a substantial amount
of programming and debugging required. You should
have a good reason.
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Why Extend R?

Chambers proceeds with this rough map of the road ahead:

· Against:
· It’s more work
· Bugs will bite
· Potential platform dependency
· Less readable software

· In Favor:
· New and trusted computations
· Speed
· Object references
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Why Extend R?

The Why? boils down to:

· speed: Often a good enough reason for us … and a focus
for us in this workshop.

· new things: We can bind to libraries and tools that would
otherwise be unavailable in R

· references: Chambers quote from 2008 foreshadowed the
work on Reference Classes now in R and built upon via
Rcpp Modules, Rcpp Classes (and also RcppR6)
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And Why C++?

· Asking Google leads to about ~ 50 million hits.
· Wikipedia: C++ is a statically typed, free-form,

multi-paradigm, compiled, general-purpose, powerful
programming language

· C++ is industrial-strength, vendor-independent,
widely-used, and still evolving

· In science & research, one of the most frequently-used
languages: If there is something you want to use /
connect to, it probably has a C/C++ API

· As a widely used language it also has good tool support
(debuggers, profilers, code analysis)
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Why C++?

Scott Meyers: View C++ as a federation of languages

· C provides a rich inheritance and interoperability as Unix,
Windows, … are all build on C.

· Object-Oriented C++ (maybe just to provide endless
discussions about exactly what OO is or should be)

· Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

· The Standard Template Library (STL) is a specific
template library which is powerful but has its own
conventions.

· C++11 (and C++14 and beyond) add enough to be
called a fifth language.

NB: Meyers original list of four languages appeared years before C++11. 21/73



Why C++?

· Mature yet current
· Strong performance focus:

· You don’t pay for what you don’t use
· Leave no room for another language between the

machine level and C++

· Yet also powerfully abstract and high-level
· C++11 is a big deal giving us new language features
· While there are complexities, Rcpp users are mostly

shielded
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Interface Vision
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Bell Labs, May 1976
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Interface Vision

R offers us the best of both worlds:

· Compiled code with
· Access to proven libraries and algorithms in

C/C++/Fortran
· Extremely high performance (in both serial and parallel

modes)
· Interpreted code with

· An accessible high-level language made for Programming
with Data

· An interactive workflow for data analysis
· Support for rapid prototyping, research, and

experimentation
25/73



Why Rcpp?

· Easy to learn as it really does not have to be that
complicated – we will see numerous few examples

· Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

· Expressive as it allows for vectorised C++ using Rcpp
Sugar

· Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, …

· Speed gains for a variety of tasks Rcpp excels precisely
where R struggles: loops, function calls, …

· Extensions greatly facilitates access to external libraries
using eg Rcpp modules
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Getting Started
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sourceCpp: Jumping Right In

RStudio makes starting very easy:

28/73



A First Example: Cont’ed

The following file gets created:
#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar). ...

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}

// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.

/*** R
timesTwo(42)
*/
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A First Example: Cont’ed

So what just happened?

· We defined a simple C++ function
· It operates on a numeric vector argument
· We asked Rcpp to ‘source it’ for us
· Behind the scenes Rcpp creates a wrapper
· Rcpp then compiles, links, and loads the wrapper
· The function is available in R under its C++ name
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A First Example: Cont’ed

Try it:

· Save the file as, say, timesTwo.cpp
· You could a temporary directory, or a projects directory,

or your desktop (keep it simple)
· Either press the Source: button or call
sourceCpp("thefile.cpp") to compile it

· Then at the R prompt:

## simple
timesTwo(21)
## more interesting
timesTwo(c(1,2,3,44,101))
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cppFunction

cppFunction() creates, compiles and links a C++ file, and
creates an R function to access it.

cppFunction("int times2(int x) { return 2*x; }")
times2(21) # same identifier as C++ function
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evalCpp

evalCpp() evaluates a single C++ expression. Includes and
dependencies can be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp("2 + 2") # simple test

## [1] 4

evalCpp("std::numeric_limits<double>::max()")

## [1] 1.797693e+308
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Speed
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Speed Example (due to StackOverflow)

Consider a function defined as

f(n) such that
 n when n < 2

f(n − 1) + f(n − 2) when n ≥ 2
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Speed Example in R

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

## Using it on first 11 arguments
sapply(0:10, f)

## [1] 0 1 1 2 3 5 8 13 21 34 55
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Speed Example Timed

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

## test replications elapsed relative
## 1 f(10) 100 0.023 1.000
## 2 f(15) 100 0.542 23.565
## 3 f(20) 100 6.172 268.348
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Speed Example in C / C++

A C or C++ solution can be equally simple

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

But how do we call it from R?
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Matt’s Example from useR! 2015
#include <R.h>
#include <Rinternals.h>

int fibonacci_c_impl(int n) {
if (n < 2) return n;
return fibonacci_c_impl(n - 1) + fibonacci_c_impl(n - 2);

}

SEXP fibonacci_c(SEXP n) {
SEXP result = PROTECT(allocVector(INTSXP, 1));
INTEGER(result)[0] = fibonacci_c_impl(asInteger(n));
UNPROTECT(1);
return result;

}

/*
## need to compile, link, load, ...
fibonacci <- function(n) .Call("fibonacci_c", n)
sapply(0:10, fibonacci)
*/ 39/73



One Minor Modification to Matt’s Example
#include <R.h>
#include <Rinternals.h>

int fibonacci_c_impl(int n) {
if (n < 2) return n;
return fibonacci_c_impl(n - 1) + fibonacci_c_impl(n - 2);

}

// [[Rcpp::export]]
SEXP fibonacci_c(SEXP n) {

SEXP result = PROTECT(allocVector(INTSXP, 1));
INTEGER(result)[0] = fibonacci_c_impl(asInteger(n));
UNPROTECT(1);
return result;

}

/*** R
sapply(0:10, fibonacci_c)
*/
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Speed Example in C / C++

But Rcpp makes this much easier:

Rcpp::cppFunction("int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }")

sapply(0:10, g)

## [1] 0 1 1 2 3 5 8 13 21 34 55
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Speed Example Comparing R and C++

Timing:

Rcpp::cppFunction("int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }")

library(rbenchmark)
benchmark(f(25), g(25), order="relative")[,1:4]

## test replications elapsed relative
## 2 g(25) 100 0.20 1.0
## 1 f(25) 100 66.22 331.1

A nice gain of a few orders of magnitude.
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Another Angle on Speed

Run-time performance is just one example.

Time to code is another metric.

We feel quite strongly that helps you code more succinctly,
leading to fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++
development quite nicely (eg the compiler error message
parsing is very helpful) and also helps with package building.
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Speed Example Footnote Also Due to Matt

#include <Rcpp.h>

// [[Rcpp::plugins("cpp11")]]

constexpr int fibonacci_recursive_constexpr(const int n) {
return n < 2 ? n : (fibonacci_recursive_constexpr(n - 1) +

fibonacci_recursive_constexpr(n - 2));
}

// [[Rcpp::export]]
int constexprFib() {

const int N = 42;
constexpr int result = fibonacci_recursive_constexpr(N);
return result;

}
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Popularity
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Used by 483 CRAN Packages as of this week
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Page Rank One (According to Andrie de Vries)

47/73



Case Study
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Time Series Dashboard

Previous Status

· We have a lot of data circulating at work
· Market prices, positions, risk estimates, profit/loss, …
· The used to be displayed in a one-off ‘display grid’
· But no history, and no plots
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Time Series Dashboard

Easy R Fix

· Use Redis to cache data
· Redis is simple, well-established, widely used
· Excellent R package rredis by Bryan Lewis
· Use Shiny to access Redis and create ‘dashboards’
· We need to be fast enough to keep users engaged
· Goal is ~ 250 msec (in-line with web UI research)
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Time Series Dashboard

What does Redis do?

· Essentially a very fast and lightweight key/value store:
· After SET key value
· Do GET key to retrieve value

· APIs for multiple languages: C/C++, Python, Java, …
· Can also store lists, sets, …
· Can be coaxed to provide simple columnar data store
· Basic access: store strings, retrieve strings
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Time Series Dashboard

What is wrong with that?

· String conversion ‘expensive’ when done repeatedly for a
few thousand points

· Do string conversion in compiled code – RcppRedis
· A step better: R serialization and deserialization using

RApiSerialize
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Time Series Dashboard

Getting Data

library(Quandl)
Quandl.api_key(yourAPIkeyhere) # register, obtain key; anon possible too
sp <- Quandl("CHRIS/CME_SP1" , type="xts")
saveRDS(sp, file="data/quandl-sp1.rds") # longer series
es <- Quandl("CHRIS/CME_ES1" , type="xts")
saveRDS(sp, file="data/quandl-es1.rds") # more active
head(sp, 3)
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Time Series Dashboard: Monthly Plot
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Time Series Dashboard

Setter: Version 1 via rredis

insertXtsR <- function(x, key) {
xm <- coredata(x)
xi <- as.integer(index(x))
for (i in seq_len(nrow(xm))) {

dat <- unname(c(xi[i], xm[i, , drop=TRUE]))
redisRPush(key, dat)

}
invisible(NULL)

}
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Time Series Dashboard

Getter: Base Version via rredis

getXtsR <- function(key) {
n <- as.integer(redisLLen(key))
vals <- redisLRange(key, 0, n)
m <- length(vals)
mat <- matrix(NA, n, 8)
dat <- rep(NA, n)
for (i in 1:n) {

z <- vals[[i]]
dat[i] <- z[1]
mat[i, ] <- z[-1]

}
x <- xts(mat, order.by=as.Date(dat, origin="1970-01-01"))
colnames(x) <- colnams
x

}
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Time Series Dashboard

Getter: Rcpp Version 1

getXtsRcpp1 <- function(key) {
n <- as.integer(redis$llen(key))
vals <- redis$lrange(key, 0, n)
m <- length(vals)
mat <- matrix(NA, n, 8)
dat <- rep(NA, n)
for (i in 1:n) {

z <- vals[[i]]
dat[i] <- z[1]
mat[i, ] <- z[-1]

}
x <- xts(mat, order.by=as.Date(dat, origin="1970-01-01"))
colnames(x) <- colnams
x

}
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Time Series Dashboard

Getter: Rcpp Version 2

getXtsRcpp2 <- function(key) {
mat <- redis$listToMatrix(redis$lrange(key, 0, -1))
x <- xts(mat[,-1], order.by=as.Date(mat[,1], origin="1970-01-01"))
colnames(x) <- colnams
x

}
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Time Series Dashboard

Timings

key <- "quandl:cme:sp1"
res <- benchmark(getXtsR(key),

getXtsRcpp1(key),
getXtsRcpp2(key),
order="relative", replications=25)[,1:4]

print(res)

## test replications elapsed relative
## 3 getXtsRcpp2(key) 25 0.608 1.000
## 2 getXtsRcpp1(key) 25 1.768 2.908
## 1 getXtsR(key) 25 29.063 47.801
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Time Series Dashboard

Can we do better?

· Yes: Redis also offers a binary type
· We grab each data row as a vector
· Pointer plus length a common form of expression
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Time Series Dashboard

New Rcpp Function: R Side

insertXtsRcpp <- function(x, key) {
xm <- coredata(x)
xi <- as.numeric(index(x))
dat <- unname(cbind(xi, xm))
for (i in seq_len(nrow(xm))) {

redis$listRPush(key, dat[i,])
}
invisible(NULL)

}
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Time Series Dashboard

New Rcpp Function: Setter

// redis "append to list" -- without R serialization
std::string listRPush(std::string key, Rcpp::NumericVector x) {

// uses binary protocol, see hiredis docs
redisReply *reply =

static_cast<redisReply*>(redisCommand(prc_, "RPUSH %s %b",
key.c_str(),
x.begin(), x.size()*szdb));

std::string res = "";
freeReplyObject(reply);
return(res);

}
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Time Series Dashboard

New Rcpp Function: Getter

// redis "get from list from start to end" -- without R serialization
Rcpp::List listRange(std::string key, int start, int end) {

redisReply *reply =
static_cast<redisReply*>(redisCommand(prc_, "LRANGE %s %d %d",

key.c_str(), start, end));
checkReplyType(reply, replyArray_t); // ensure we got array
unsigned int len = reply->elements;
Rcpp::List x(len);
for (unsigned int i = 0; i < len; i++) {

checkReplyType(reply->element[i], replyString_t); // ensure binary
int nc = reply->element[i]->len;
Rcpp::NumericVector v(nc/szdb);
memcpy(v.begin(), reply->element[i]->str, nc);
x[i] = v;

}
freeReplyObject(reply);
return(x);

} 63/73



Time Series Dashboard

Use This Way

getXtsRcpp3 <- function(key) {
mat <- redis$listToMatrix(redis$listRange(key, 0, -1))
x <- xts(mat[,-1], order.by=as.Date(mat[,1], origin="1970-01-01"))
colnames(x) <- colnams
x

}

64/73



Time Series Dashboard

Timings

key2 <- "quandl:cme:sp1:rcpp"
res2 <- benchmark(getXtsR(key),

getXtsRcpp1(key),
getXtsRcpp2(key),
getXtsRcpp3(key2),
order="relative", replications=25)[,1:4]

print(res2)

## test replications elapsed relative
## 4 getXtsRcpp3(key2) 25 0.364 1.000
## 3 getXtsRcpp2(key) 25 0.582 1.599
## 2 getXtsRcpp1(key) 25 1.747 4.799
## 1 getXtsR(key) 25 29.481 80.992
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Time Series Dashboard

Status

· Not so bad: ~ 80-fold increase for RcppRedis over rredis
· Inner retrieval (outside of xts creation) about 100 times

faster
· 25 retrieval in 364 msec is clearly ‘good enough’
· Limitation: Storing small binary vectors not elegant
· Possible fix: MessagePack
· Alternative to ‘binary JSON’ and alternative
· Easy to use API
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Time Series Dashboard

Simple MessagePack buffer creation, then sending
MessagePack buffer as binary load.

typedef msgpack::type::tuple<double, int, int, int> msg_t;

msgpack::sbuffer buffer;
msg_t m(v[0], (int)v[1], (int)v[2], (int)v[3]); // fill the message type
msgpack::pack(buffer, m); // and pack it

replynew =
static_cast<redisReply*>(redisCommand(d, "RPUSH %s %b",

key.c_str(),
buffer.data(), buffer.size()));

freeReplyObject(replynew);
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Time Series Dashboard

Conclusion

· Simple things remain simple
· Memory allocation, loops, conversions, … faster in C++
· Yet easily accessible from R
· Leverage R strength (eg shiny) by overcoming bottlenecks
· Leads to Seamless Integration of R and C++ for

accelerated modeling
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The End
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Documentation

· The Rcpp package comes with nine pdf vignettes, and
numerous help pages.

· The introductory vignettes are now published (for Rcpp
and RcppEigen in J Stat Software, for RcppArmadillo in
Comp Stat & Data Anlys)

· The rcpp-devel list is the recommended resource,
generally very helpful, and fairly low volume.

· StackOverflow has over 900 posts too, and And
· A number of blog posts introduce/discuss features.
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Rcpp Gallery
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The Rcpp book
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Very Last Words

Thank You!
dirk@eddelbuettel.com
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