
R and ‘Faster Data’
The Case for Rcpp

Dirk Eddelbuettel
ISM HPCCON 2015 & ISM HPC on R Workshop
The Institute of Statistical Mathematics, Tokyo, Japan
October 9 - 12, 2015
Released under a Creative Commons Attribution-ShareAlike 4.0 International License.

1/73

http://creativecommons.org/licenses/by-sa/4.0/

Introduction

2/73

A Very Kind Tweet

3/73

And Another Tweet

4/73

And Yet Another Tweet

5/73

And Why Not Another Tweet

6/73

And Last But Not Least

7/73

Extending R

8/73

Why R? : Programming with Data

Chambers,
Computational
Methods for Data
Analysis. Wiley,
1977.

Becker, Chambers,
and Wilks. The
New S Language.
Chapman & Hall,
1988.

Chambers and
Hastie. Statistical
Models in S.
Chapman & Hall,
1992.

Chambers.
Programming with
Data. Springer,
1998.

Chambers.
Software for Data
Analysis:
Programming with
R. Springer, 2008

Thanks to John Chambers for sending me high-resolution scans of the covers of his books.

9/73

A Simple Example

xx <- faithful[,"eruptions"]
fit <- density(xx)
plot(fit)

10/73

A Simple Example

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

11/73

A Simple Example - Refined

xx <- faithful[,"eruptions"]
fit1 <- density(xx)
fit2 <- replicate(10000, {

x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))$y

})
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x,rev(fit1$x)), c(fit3[1,],rev(fit3[2,])),

col='grey', border=F)
lines(fit1)

12/73

A Simple Example - Refined

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

13/73

So Why R?

R enables us to

· work interactively
· explore and visualize data
· access, retrieve and/or generate data
· summarize and report into pdf, html, …

making it the key language for statistical computing, and a
preferred environment for many data analysts.

14/73

So Why R?

R has always been extensible via

· C via a bare-bones interface described in Writing R
Extensions

· Fortran which is also used internally by R
· Java via rJava by Simon Urbanek
· C++ but essentially at the bare-bones level of C

So while in theory this always worked – it was tedious in
practice

15/73

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and
Fortran:

Since the core of R is in fact a program written in
the C language, it’s not surprising that the most
direct interface to non-R software is for code written
in C, or directly callable from C. All the same,
including additional C code is a serious step, with
some added dangers and often a substantial amount
of programming and debugging required. You should
have a good reason.

16/73

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and
Fortran:

Since the core of R is in fact a program written in
the C language, it’s not surprising that the most
direct interface to non-R software is for code written
in C, or directly callable from C. All the same,
including additional C code is a serious step, with
some added dangers and often a substantial amount
of programming and debugging required. You should
have a good reason.

17/73

Why Extend R?

Chambers proceeds with this rough map of the road ahead:

· Against:
· It’s more work
· Bugs will bite
· Potential platform dependency
· Less readable software

· In Favor:
· New and trusted computations
· Speed
· Object references

18/73

Why Extend R?

The Why? boils down to:

· speed: Often a good enough reason for us … and a focus
for us in this workshop.

· new things: We can bind to libraries and tools that would
otherwise be unavailable in R

· references: Chambers quote from 2008 foreshadowed the
work on Reference Classes now in R and built upon via
Rcpp Modules, Rcpp Classes (and also RcppR6)

19/73

And Why C++?

· Asking Google leads to about ~ 50 million hits.
· Wikipedia: C++ is a statically typed, free-form,

multi-paradigm, compiled, general-purpose, powerful
programming language

· C++ is industrial-strength, vendor-independent,
widely-used, and still evolving

· In science & research, one of the most frequently-used
languages: If there is something you want to use /
connect to, it probably has a C/C++ API

· As a widely used language it also has good tool support
(debuggers, profilers, code analysis)

20/73

http://en.wikipedia.org/wiki/C%2B%2B\protect \char "007D\relax \protect \char "007B\relax Wikipedia

Why C++?

Scott Meyers: View C++ as a federation of languages

· C provides a rich inheritance and interoperability as Unix,
Windows, … are all build on C.

· Object-Oriented C++ (maybe just to provide endless
discussions about exactly what OO is or should be)

· Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

· The Standard Template Library (STL) is a specific
template library which is powerful but has its own
conventions.

· C++11 (and C++14 and beyond) add enough to be
called a fifth language.

NB: Meyers original list of four languages appeared years before C++11. 21/73

Why C++?

· Mature yet current
· Strong performance focus:

· You don’t pay for what you don’t use
· Leave no room for another language between the

machine level and C++

· Yet also powerfully abstract and high-level
· C++11 is a big deal giving us new language features
· While there are complexities, Rcpp users are mostly

shielded

22/73

Interface Vision

23/73

Bell Labs, May 1976

24/73

Interface Vision

R offers us the best of both worlds:

· Compiled code with
· Access to proven libraries and algorithms in

C/C++/Fortran
· Extremely high performance (in both serial and parallel

modes)
· Interpreted code with

· An accessible high-level language made for Programming
with Data

· An interactive workflow for data analysis
· Support for rapid prototyping, research, and

experimentation
25/73

Why Rcpp?

· Easy to learn as it really does not have to be that
complicated – we will see numerous few examples

· Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

· Expressive as it allows for vectorised C++ using Rcpp
Sugar

· Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, …

· Speed gains for a variety of tasks Rcpp excels precisely
where R struggles: loops, function calls, …

· Extensions greatly facilitates access to external libraries
using eg Rcpp modules

26/73

Getting Started

27/73

sourceCpp: Jumping Right In

RStudio makes starting very easy:

28/73

A First Example: Cont’ed

The following file gets created:
#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar). ...

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}

// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.

/*** R
timesTwo(42)
*/

29/73

A First Example: Cont’ed

So what just happened?

· We defined a simple C++ function
· It operates on a numeric vector argument
· We asked Rcpp to ‘source it’ for us
· Behind the scenes Rcpp creates a wrapper
· Rcpp then compiles, links, and loads the wrapper
· The function is available in R under its C++ name

30/73

A First Example: Cont’ed

Try it:

· Save the file as, say, timesTwo.cpp
· You could a temporary directory, or a projects directory,

or your desktop (keep it simple)
· Either press the Source: button or call
sourceCpp("thefile.cpp") to compile it

· Then at the R prompt:

simple
timesTwo(21)
more interesting
timesTwo(c(1,2,3,44,101))

31/73

cppFunction

cppFunction() creates, compiles and links a C++ file, and
creates an R function to access it.

cppFunction("int times2(int x) { return 2*x; }")
times2(21) # same identifier as C++ function

32/73

evalCpp

evalCpp() evaluates a single C++ expression. Includes and
dependencies can be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp("2 + 2") # simple test

[1] 4

evalCpp("std::numeric_limits<double>::max()")

[1] 1.797693e+308

33/73

Speed

34/73

Speed Example (due to StackOverflow)

Consider a function defined as

f(n) such that
 n when n < 2

f(n − 1) + f(n − 2) when n ≥ 2

35/73

Speed Example in R

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

Using it on first 11 arguments
sapply(0:10, f)

[1] 0 1 1 2 3 5 8 13 21 34 55

36/73

Speed Example Timed

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

test replications elapsed relative
1 f(10) 100 0.023 1.000
2 f(15) 100 0.542 23.565
3 f(20) 100 6.172 268.348

37/73

Speed Example in C / C++

A C or C++ solution can be equally simple

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

But how do we call it from R?

38/73

Matt’s Example from useR! 2015
#include <R.h>
#include <Rinternals.h>

int fibonacci_c_impl(int n) {
if (n < 2) return n;
return fibonacci_c_impl(n - 1) + fibonacci_c_impl(n - 2);

}

SEXP fibonacci_c(SEXP n) {
SEXP result = PROTECT(allocVector(INTSXP, 1));
INTEGER(result)[0] = fibonacci_c_impl(asInteger(n));
UNPROTECT(1);
return result;

}

/*
need to compile, link, load, ...
fibonacci <- function(n) .Call("fibonacci_c", n)
sapply(0:10, fibonacci)
*/ 39/73

One Minor Modification to Matt’s Example
#include <R.h>
#include <Rinternals.h>

int fibonacci_c_impl(int n) {
if (n < 2) return n;
return fibonacci_c_impl(n - 1) + fibonacci_c_impl(n - 2);

}

// [[Rcpp::export]]
SEXP fibonacci_c(SEXP n) {

SEXP result = PROTECT(allocVector(INTSXP, 1));
INTEGER(result)[0] = fibonacci_c_impl(asInteger(n));
UNPROTECT(1);
return result;

}

/*** R
sapply(0:10, fibonacci_c)
*/

40/73

Speed Example in C / C++

But Rcpp makes this much easier:

Rcpp::cppFunction("int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }")

sapply(0:10, g)

[1] 0 1 1 2 3 5 8 13 21 34 55

41/73

Speed Example Comparing R and C++

Timing:

Rcpp::cppFunction("int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }")

library(rbenchmark)
benchmark(f(25), g(25), order="relative")[,1:4]

test replications elapsed relative
2 g(25) 100 0.20 1.0
1 f(25) 100 66.22 331.1

A nice gain of a few orders of magnitude.
42/73

Another Angle on Speed

Run-time performance is just one example.

Time to code is another metric.

We feel quite strongly that helps you code more succinctly,
leading to fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++
development quite nicely (eg the compiler error message
parsing is very helpful) and also helps with package building.

43/73

Speed Example Footnote Also Due to Matt

#include <Rcpp.h>

// [[Rcpp::plugins("cpp11")]]

constexpr int fibonacci_recursive_constexpr(const int n) {
return n < 2 ? n : (fibonacci_recursive_constexpr(n - 1) +

fibonacci_recursive_constexpr(n - 2));
}

// [[Rcpp::export]]
int constexprFib() {

const int N = 42;
constexpr int result = fibonacci_recursive_constexpr(N);
return result;

}

44/73

Popularity

45/73

Used by 483 CRAN Packages as of this week

46/73

Page Rank One (According to Andrie de Vries)

47/73

Case Study

48/73

Time Series Dashboard

Previous Status

· We have a lot of data circulating at work
· Market prices, positions, risk estimates, profit/loss, …
· The used to be displayed in a one-off ‘display grid’
· But no history, and no plots

49/73

Time Series Dashboard

Easy R Fix

· Use Redis to cache data
· Redis is simple, well-established, widely used
· Excellent R package rredis by Bryan Lewis
· Use Shiny to access Redis and create ‘dashboards’
· We need to be fast enough to keep users engaged
· Goal is ~ 250 msec (in-line with web UI research)

50/73

http://www.redis.io/
https://cran.rstudio.com/web/packages/rredis/index.html

Time Series Dashboard

What does Redis do?

· Essentially a very fast and lightweight key/value store:
· After SET key value
· Do GET key to retrieve value

· APIs for multiple languages: C/C++, Python, Java, …
· Can also store lists, sets, …
· Can be coaxed to provide simple columnar data store
· Basic access: store strings, retrieve strings

51/73

Time Series Dashboard

What is wrong with that?

· String conversion ‘expensive’ when done repeatedly for a
few thousand points

· Do string conversion in compiled code – RcppRedis
· A step better: R serialization and deserialization using

RApiSerialize

52/73

https://cran.rstudio.com/web/packages/RcppRedis/index.html
https://cran.rstudio.com/web/packages/RApiSerialize/index.html

Time Series Dashboard

Getting Data

library(Quandl)
Quandl.api_key(yourAPIkeyhere) # register, obtain key; anon possible too
sp <- Quandl("CHRIS/CME_SP1" , type="xts")
saveRDS(sp, file="data/quandl-sp1.rds") # longer series
es <- Quandl("CHRIS/CME_ES1" , type="xts")
saveRDS(sp, file="data/quandl-es1.rds") # more active
head(sp, 3)

53/73

Time Series Dashboard: Monthly Plot

Apr
1982

Jan
1984

Jan
1986

Jan
1988

Jan
1990

Jan
1992

Jan
1994

Jan
1996

Jan
1998

Jan
2000

Jan
2002

Jan
2004

Jan
2006

Jan
2008

Jan
2010

Jan
2012

Jan
2014

Oct
2015

SP Apr 1982 / Oct 2015

 200

 400

 600

 800

1000

1200

1400

1600

1800

2000

 200

 400

 600

 800

1000

1200

1400

1600

1800

2000

54/73

Time Series Dashboard

Setter: Version 1 via rredis

insertXtsR <- function(x, key) {
xm <- coredata(x)
xi <- as.integer(index(x))
for (i in seq_len(nrow(xm))) {

dat <- unname(c(xi[i], xm[i, , drop=TRUE]))
redisRPush(key, dat)

}
invisible(NULL)

}

55/73

Time Series Dashboard

Getter: Base Version via rredis

getXtsR <- function(key) {
n <- as.integer(redisLLen(key))
vals <- redisLRange(key, 0, n)
m <- length(vals)
mat <- matrix(NA, n, 8)
dat <- rep(NA, n)
for (i in 1:n) {

z <- vals[[i]]
dat[i] <- z[1]
mat[i,] <- z[-1]

}
x <- xts(mat, order.by=as.Date(dat, origin="1970-01-01"))
colnames(x) <- colnams
x

}

56/73

Time Series Dashboard

Getter: Rcpp Version 1

getXtsRcpp1 <- function(key) {
n <- as.integer(redis$llen(key))
vals <- redis$lrange(key, 0, n)
m <- length(vals)
mat <- matrix(NA, n, 8)
dat <- rep(NA, n)
for (i in 1:n) {

z <- vals[[i]]
dat[i] <- z[1]
mat[i,] <- z[-1]

}
x <- xts(mat, order.by=as.Date(dat, origin="1970-01-01"))
colnames(x) <- colnams
x

}

57/73

Time Series Dashboard

Getter: Rcpp Version 2

getXtsRcpp2 <- function(key) {
mat <- redis$listToMatrix(redis$lrange(key, 0, -1))
x <- xts(mat[,-1], order.by=as.Date(mat[,1], origin="1970-01-01"))
colnames(x) <- colnams
x

}

58/73

Time Series Dashboard

Timings

key <- "quandl:cme:sp1"
res <- benchmark(getXtsR(key),

getXtsRcpp1(key),
getXtsRcpp2(key),
order="relative", replications=25)[,1:4]

print(res)

test replications elapsed relative
3 getXtsRcpp2(key) 25 0.608 1.000
2 getXtsRcpp1(key) 25 1.768 2.908
1 getXtsR(key) 25 29.063 47.801

59/73

Time Series Dashboard

Can we do better?

· Yes: Redis also offers a binary type
· We grab each data row as a vector
· Pointer plus length a common form of expression

60/73

Time Series Dashboard

New Rcpp Function: R Side

insertXtsRcpp <- function(x, key) {
xm <- coredata(x)
xi <- as.numeric(index(x))
dat <- unname(cbind(xi, xm))
for (i in seq_len(nrow(xm))) {

redis$listRPush(key, dat[i,])
}
invisible(NULL)

}

61/73

Time Series Dashboard

New Rcpp Function: Setter

// redis "append to list" -- without R serialization
std::string listRPush(std::string key, Rcpp::NumericVector x) {

// uses binary protocol, see hiredis docs
redisReply *reply =

static_cast<redisReply*>(redisCommand(prc_, "RPUSH %s %b",
key.c_str(),
x.begin(), x.size()*szdb));

std::string res = "";
freeReplyObject(reply);
return(res);

}

62/73

Time Series Dashboard

New Rcpp Function: Getter

// redis "get from list from start to end" -- without R serialization
Rcpp::List listRange(std::string key, int start, int end) {

redisReply *reply =
static_cast<redisReply*>(redisCommand(prc_, "LRANGE %s %d %d",

key.c_str(), start, end));
checkReplyType(reply, replyArray_t); // ensure we got array
unsigned int len = reply->elements;
Rcpp::List x(len);
for (unsigned int i = 0; i < len; i++) {

checkReplyType(reply->element[i], replyString_t); // ensure binary
int nc = reply->element[i]->len;
Rcpp::NumericVector v(nc/szdb);
memcpy(v.begin(), reply->element[i]->str, nc);
x[i] = v;

}
freeReplyObject(reply);
return(x);

} 63/73

Time Series Dashboard

Use This Way

getXtsRcpp3 <- function(key) {
mat <- redis$listToMatrix(redis$listRange(key, 0, -1))
x <- xts(mat[,-1], order.by=as.Date(mat[,1], origin="1970-01-01"))
colnames(x) <- colnams
x

}

64/73

Time Series Dashboard

Timings

key2 <- "quandl:cme:sp1:rcpp"
res2 <- benchmark(getXtsR(key),

getXtsRcpp1(key),
getXtsRcpp2(key),
getXtsRcpp3(key2),
order="relative", replications=25)[,1:4]

print(res2)

test replications elapsed relative
4 getXtsRcpp3(key2) 25 0.364 1.000
3 getXtsRcpp2(key) 25 0.582 1.599
2 getXtsRcpp1(key) 25 1.747 4.799
1 getXtsR(key) 25 29.481 80.992

65/73

Time Series Dashboard

Status

· Not so bad: ~ 80-fold increase for RcppRedis over rredis
· Inner retrieval (outside of xts creation) about 100 times

faster
· 25 retrieval in 364 msec is clearly ‘good enough’
· Limitation: Storing small binary vectors not elegant
· Possible fix: MessagePack
· Alternative to ‘binary JSON’ and alternative
· Easy to use API

66/73

https://cran.rstudio.com/web/packages/RcppRedis/index.html
https://cran.rstudio.com/web/packages/rredis/index.html
http://msgpack.org/index.html

Time Series Dashboard

Simple MessagePack buffer creation, then sending
MessagePack buffer as binary load.

typedef msgpack::type::tuple<double, int, int, int> msg_t;

msgpack::sbuffer buffer;
msg_t m(v[0], (int)v[1], (int)v[2], (int)v[3]); // fill the message type
msgpack::pack(buffer, m); // and pack it

replynew =
static_cast<redisReply*>(redisCommand(d, "RPUSH %s %b",

key.c_str(),
buffer.data(), buffer.size()));

freeReplyObject(replynew);

67/73

Time Series Dashboard

Conclusion

· Simple things remain simple
· Memory allocation, loops, conversions, … faster in C++
· Yet easily accessible from R
· Leverage R strength (eg shiny) by overcoming bottlenecks
· Leads to Seamless Integration of R and C++ for

accelerated modeling

68/73

The End

69/73

Documentation

· The Rcpp package comes with nine pdf vignettes, and
numerous help pages.

· The introductory vignettes are now published (for Rcpp
and RcppEigen in J Stat Software, for RcppArmadillo in
Comp Stat & Data Anlys)

· The rcpp-devel list is the recommended resource,
generally very helpful, and fairly low volume.

· StackOverflow has over 900 posts too, and And
· A number of blog posts introduce/discuss features.

70/73

https://cran.rstudio.com/web/packages/Rcpp/index.html

Rcpp Gallery

71/73

The Rcpp book

72/73

Very Last Words

Thank You!
dirk@eddelbuettel.com

73/73

dirk@eddelbuettel.com

	Introduction
	Extending R
	Interface Vision
	Getting Started
	Speed
	Popularity
	Case Study
	The End

