
Tools Measure Faster Compile Parallel OoMem

Introduction to
High-Performance Computing with R

Dirk Eddelbuettel, Ph.D.
Dirk.Eddelbuettel@R-Project.org

edd@debian.org

The Institute of Statistical Mathematics
Tachikawa, Tokyo, Japan

27 November 2009

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Dirk.Eddelbuettel@R-Project.org
edd@debian.org

Tools Measure Faster Compile Parallel OoMem

Outline

1 Motivation

2 Tools for automation and scripting

3 Measuring and profiling

4 Speeding up

5 Compiled Code

6 Explicitly and Implicitly Parallel

7 Out-of-memory processing

8 Summary

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem

Motivation: What describes our current situation?

Source: http://en.wikipedia.org/wiki/Moore’s_law

Moore’s Law: Processors
keep getting faster and
faster

Yet our datasets get
bigger and bigger and an
even faster rate.

So we’re still waiting and
waiting . . .

Result: An urgent need
for high(er) performance
computing with R.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://en.wikipedia.org/wiki/Moore's_law
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem

Motivation: Data sets keep growing

There are a number of reasons behind ’big data’:

more collection: everything from faster DNA sequencing to
larger experiments to per-item RFID scanning in retail —
our ability to originate data keeps increasing
more networking: (internet) capacity, transmission speeds
and usage keep growing leading to easier ways to
assemble data sets from different sources
more storage as what used to be disk capacity is now
provided by usb keychains, while data warehousing / data
marts are aiming beyond petabytes

Not all large data sets are suitable for R, and data is frequently
pruned, filtered or condensed down to manageable size (where
the exact meaning of manageable will vary by user).

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem

Motivation: Presentation Roadmap

We look at ways to ’script’ running R code which is helpful for
both automation and debugging.

We will then measure using profiling tools to analyse and
visualize performance; we will also look at debugging tools and
tricks.

We will look at vectorisation, a key method for speed as well as
various ways to compile and use code before a brief discussion
and example of GPU computing.

Next, we will discuss several ways to get more things done at
the same time by using simple parallel computing approaches.

We will then look at computations beyond the memory limits.

A discussion and question sesssion finishes.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem

Typographics conventions

R itself is highlighted, packages like Rmpi get a different color.

External links to e.g. Wikipedia are clickable in the pdf file.

R input and output in different colors, and usually set flush-left
so that can show long lines:

cat("Hello\n")

Hello

Source code listings are boxed and with lines numbers

1 cubed <− function (n) {
2 m <− n^3
3 return (m)
4 }

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.wikipedia.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview littler Rscript RPy

Outline

1 Motivation

2 Tools for automation and scripting

3 Measuring and profiling

4 Speeding up

5 Compiled Code

6 Explicitly and Implicitly Parallel

7 Out-of-memory processing

8 Summary

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview littler Rscript RPy

Tools: Using R in batch mode

Non-interactive use of R is possible:
Using R in batch mode:
$ R --slave < cmdfile.R
$ cat cmdfile.R | R --slave
$ R CMD BATCH cmdfile.R

Using R in here documents is awkward:
#!/bin/sh
cat << EOF | R --slave

a <- 1.23; b <- 4.56
cat("a times b is", a*b, "\n")

EOF

However, this feels somewhat cumbersome. Variable
expansion by the shell may interfere as well.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://en.wikipedia.org/wiki/Here_document

Tools Measure Faster Compile Parallel OoMem Overview littler Rscript RPy

Tools: littler

The r frontend provided by the littler package was released by
Horner and Eddelbuettel in September 2006 based on Horner’s
work on rapache.

execute scripts:
$ r somefile.R

run Unix pipelines:
$ echo ’cat(pi^2, "\n")’ | r

use arguments:
$ r -lboot -e’example(boot.ci)’

write Shebang scripts such as install.r (see next slide)

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://dirk.eddelbuettel.com/code/littler.htnl
http://biostat.mc.vanderbilt.edu/rapache/index.html
http://en.wikipedia.org/wiki/Shebang_(Unix)

Tools Measure Faster Compile Parallel OoMem Overview littler Rscript RPy

littler ’Shebang’ example

Consider the following code from the littler examples
directory:
#!/usr/bin/env r
a simple example to install one or more packages
if (is.null(argv) | length(argv)<1) {

cat("Usage: installr.r pkg1 [pkg2 pkg3 ...]\n")
q()

}
adjust as necessary, see help(’download.packages’)
repos <- "http://cran.us.r-project.org"
lib.loc <- "/usr/local/lib/R/site-library"
install.packages(argv, lib.loc, repos)

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview littler Rscript RPy

Tools: littler cont.

If saved as install.r, we can call it via
$ install.r ff bigmemory

The getopt and optparse package make it easy for r and
Rscript to support command-line options.

For debugging, the following proves useful:
r --package pkgA,pkgB --eval "code(1,2)"

We will use a combination of these commands throughout the
tutorial.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview littler Rscript RPy

Tools: littler cont.

A simple example about using pipes:
$ du -csk /usr/local/lib/R/site-library/* | \

awk ’!/total$/ {print $1}’ | \
~/svn/littler/examples/fsizes.r

Min. 1st Qu. Median Mean 3rd Qu. Max.
4 218 540 864 972 3620

The decimal point is 3 digit(s) to the right of the |

0 | 0112335689
1 | 079
2 |
3 | 6

This shows that I have a number of small packages installed,
as well as one larger one.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview littler Rscript RPy

Tools: Rscript

Rscript, which was first released with R 2.5.0, can be used in
a similar fashion.

Due to implementation details, r starts up faster than Rscript.

On the other hand, Rscript is also available on Windows
whereas r is limited to Linux and OS X.

By providing r and Rscript, we can now write ’R scripts’ that
are executable. This allows for automation in cron jobs,
Makefile, job queues, ...

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview littler Rscript RPy

RPy

The RPy and RPy2 packages provides access from Python:

1 from rpy import ∗
2 set_ d e f a u l t _mode(NO_CONVERSION) # avoid automat ic convers ion
3 r . l i b r a r y (" nnet ")
4 model = r (" Fxy~x+y ")
5 df = r . data_ frame (x = r . c (0 ,2 ,5 ,10 ,15)
6 , y = r . c (0 ,2 ,5 ,8 ,10)
7 , Fxy = r . c (0 ,2 ,5 ,8 ,10))
8 NNModel = r . nnet (model , data = df
9 , s i ze =10 , decay =1e−3

10 , l i n e o u t =True , sk ip=True
11 , maxi t =1000 , Hess =True)
12 XG = r . expand_ g r i d (x = r . seq (0 ,7 ,1) , y = r . seq (0 ,7 ,1))
13 x = r . seq (0 ,7 ,1)
14 y = r . seq (0 ,7 ,1)
15

16 set_ d e f a u l t _mode(BASIC_CONVERSION) # automat ic conv . back on
17 f i t = r . p r e d i c t (NNModel ,XG)
18 pr in t f i t

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Outline

1 Motivation

2 Tools for automation and scripting

3 Measuring and profiling

4 Speeding up

5 Compiled Code

6 Explicitly and Implicitly Parallel

7 Out-of-memory processing

8 Summary

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Profiling

We need to know where our code spends the time it takes to
compute our tasks.
Measuring—using profiling tools—is critical.
R already provides the basic tools for performance analysis.

the system.time function for simple measurements.
the Rprof function for profiling R code.
the Rprofmem function for profiling R memory usage.

In addition, the profr and proftools package on CRAN can
be used to visualize Rprof data.
We will also look at a script from the R Wiki for additional
visualization.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Profiling cont.

The chapter Tidying and profiling R code in the R Extensions
manual is a good first source for documentation on profiling and
debugging.

Simon Urbanek has a page on benchmarks (for Macs) at
http://r.research.att.com/benchmarks/

One can also profile compiled code, either directly (using the
gcc option -pg) or by using e.g. the Google perftools
library.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://r.research.att.com/benchmarks/

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

RProf example

Consider the problem of repeatedly estimating a linear model,
e.g. in the context of Monte Carlo simulation.

The lm() workhorse function is a natural first choice.

However, its generic nature as well the rich set of return
arguments come at a cost. For experienced users, lm.fit()
provides a more efficient alternative.

But how much more efficient?

We will use both functions on the longley data set.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

RProf example cont.

This code runs both approaches 2000 times:
data(longley)

using lm()
Rprof("longley.lm.out")
invisible(replicate(2000,

lm(Employed ~ ., data=longley)))
Rprof(NULL)

using lm.fit()
longleydm <- data.matrix(data.frame(intcp=1, longley))
Rprof("longley.lm.fit.out")
invisible(replicate(2000,

lm.fit(longleydm[,-8], # X
longleydm[,8]))) # y

Rprof(NULL)

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

RProf example cont.

We can analyse the output two different ways. First, directly
from R into an R object:
data <- summaryRprof("longley.lm.out")
print(str(data))

Second, from the command-line (on systems having Perl)
R CMD Rprof longley.lm.out | less

The CRAN package / function profr by Hadley Wickham can
profile, evaluate, and optionally plot, an expression directly. Or
we can use parse_profr() to read the previously recorded
output:
plot(parse_rprof("longley.lm.out"),

main="Profile of lm()")
plot(parse_rprof("longley.lm.fit.out"),

main="Profile of lm.fit()")

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

RProf example cont.

0 2 4 6 8 10 12 14

0
5

10
15

Profile of lm()

time

replicate
sapply
lapply
FUN
lm

inherits is.factor
mode inherits inherits

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10

Profile of lm.fit()

replicate
sapply
lapply
FUN
lm.fit

%in%

is.factor
inherits

Source: Our calculations.

Notice the different x
and y axis scales

For the same number
of runs, lm.fit() is
about fourteen times
faster as it makes
fewer calls to other
functions.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

RProf example cont.

In addition, the proftools package by L. Tierney can read
profiling data and summarize directly in R.

The flatProfile function aggregates the data, optionally
with totals.
lmfitprod <- readProfileData("longley.lm.fit.out"))
plotProfileCallGraph(lmfitprof)

And plotProfileCallGraph() can be used to visualize
profiling information using the Rgraphviz package (which is
no longer on CRAN).

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

RProf example cont.

<

−

!

array as.vector

colnames

colnames<− dimnames<−

.FortranFUN

%in%

inherits

is.data.frame

is.factor

lapply

list

lm.fit

match

mat.or.vec

NCOL

NROW

numeric

rep.int

replicate sapply

structure

unlist

vector

Color is used to
indicate which nodes
use the most of
amount of time.

Use of color and other
aspects can be
configured.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Another profiling example

Both packages can be very useful for their quick visualisation of
the RProf output. Consider this contrived example:
sillysum <- function(N) {s <- 0;

for (i in 1:N) s <- s + i; s}
ival <- 1/5000
plot(profr(a <- sillysum(1e6), ival))

and for a more efficient solution where we use a larger N:
efficientsum <- function(N) {
sum(as.numeric(seq(1,N))) }
ival <- 1/5000
plot(profr(a <- efficientsum(1e7), ival))

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Another profiling example (cont.)

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

time

le
ve

l

force

sillysum

+

0.000 0.001 0.002 0.003 0.004

1
2

3
4

5

time

le
ve

l

force

efficientsum

seq as.numeric sum

seq.default

:

+sillysum :

as.numeric

efficientsum seq seq.default

sum

profr and
proftools
complement each
other.

Numerical values in
profr provide
information too.

Choice of colour is
useful in proftools.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Additional profiling visualizations

Romain Francois has contributed a Perl script1 which can be
used to visualize profiling output via the dot program (part of
graphviz):
./prof2dot.pl longley.lm.out | dot -Tpdf \

> longley_lm.pdf
./prof2dot.pl longley.lm.fit.out | dot -Tpdf \

> longley_lmfit.pdf

Its key advantages are the ability to include, exclude or restrict
functions.

1http://wiki.r-project.org/rwiki/doku.php?id=tips:
misc:profiling:current

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://wiki.r-project.org/rwiki/doku.php?id=tips:misc:profiling:current
http://wiki.r-project.org/rwiki/doku.php?id=tips:misc:profiling:current

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Additional profiling visualizations (cont.)

For lm(), this yields:

[[
1.64 seconds

[[.data.frame
1.14 seconds

1.14s

na.omit.data.frame
1.74 seconds

0.46s

[
1.66 seconds

1.06s

pmatch
0.46 seconds

model.frame.default
6.48 seconds

0.42s

sapply
19.46 seconds

2.26s

na.omit
1.8 seconds

1.8s

identical
0.26 seconds

0.14s

makepredictcall
0.52 seconds

0.52s

terms
0.28 seconds0.28s

unique
1.2 seconds

1.2s

array
0.32 seconds

0.32s

lapply
18.66 seconds

17.5s

[.data.frame
1.64 seconds

1.64s

model.frame
6.54 seconds

6.48s

duplicated
0.16 seconds

1.74s

unique.default
0.46 seconds

0.46s

unlist
0.7 seconds0.52s

%in%
1.44 seconds

match
2.52 seconds

1.32s

as.vector
0.24 seconds

0.16s

match.call
0.12 seconds

inherits
2.5 seconds

1.04s

mode
0.24 seconds

0.22s

as.list
0.42 seconds

as.list.data.frame
0.2 seconds

0.2s

as.list.default
0.14 seconds

0.14s

replicate
13.72 seconds

13.72s

is.factor
2.44 seconds 2.18s

is.data.frame
0.12 seconds

model.matrix.default
2.24 seconds

0.26s

0.62s

0.12s

1.06s

deparse
0.14 seconds

0.14s

dim
0.18 seconds

structure
0.42 seconds

0.12s!
0.1 seconds

length
0.1 seconds

FUN
17.08 seconds

1.26s

0.22s

lm
13.36 seconds

13.36s

.deparseOpts
1.2 seconds

1.14s

makepredictcall.default
0.2 seconds

0.2s

match.fun
0.1 seconds

eval
13.18 seconds

6.54s

6.54s

0.44s

0.16s

0.34s

terms.formula
0.22 seconds

0.22s

is.vector
0.72 seconds

0.6s

model.matrix
2.28 seconds

2.24s

is.na
0.12 seconds

model.response
0.24 seconds

<Anonymous>
0.46 seconds

.getXlevels
2.68 seconds1.82s

0.84s

$<-
0.18 seconds

NextMethod
0.1 seconds

-
0.16 seconds

0.32s 0.42s

17.06s

0.72s

2.14s 0.12s

6.54s

2.28s

0.24s

2.68s

0.18s

lm.fit
0.9 seconds

0.9s

0.46s

0.46s

and for lm.fit(), this yields:

replicate
1 seconds

sapply
1 seconds

1s lapply
0.94 seconds

0.94s

structure
0.22 seconds

FUN
0.94 seconds

0.94s lm.fit
0.94 seconds

0.94s

0.22s

.Fortran
0.12 seconds

0.12s

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

RProfmem

When R has been built with the enable-memory-profiling
option, we can also look at use of memory and allocation.

To continue with the R Extensions manual example, we issue
calls to Rprofmem to start and stop logging to a file as we did
for Rprof. This can be a helpful check for code that is
suspected to have an error in its memory allocations.

We also mention in passing that the tracemem function can log
when copies of a (presumably large) object are being made.
Details are in section 3.3.3 of the R Extensions manual.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Profiling compiled code

Profiling compiled code typically entails rebuilding the binary
and libraries with the -pg compiler option. In the case of R, a
complete rebuild is required as R itself needs to be compiled
with profiling options.

Add-on tools like valgrind and kcachegrind can be very
helpful and may not require rebuilds.

Two other options for Linux are mentioned in the R Extensions
manual. First, sprof, part of the C library, can profile shared
libraries. Second, the add-on package oprofile provides a
daemon that has to be started (stopped) when profiling data
collection is to start (end).

A third possibility is the use of the Google Perftools which we
will illustrate.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Profiling with Google Perftools

The Google Perftools provide four modes of performance
analysis / improvement:

a thread-caching malloc (memory allocator),
a heap-checking facility,
a heap-profiling facility and
cpu profiling.

Here, we will focus on the last feature.

There are two possible modes of running code with the cpu
profiler.

The preferred approach is to link with -lprofiler.
Alternatively, one can dynamically pre-load the profiler library.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Profiling with Google Perftools (cont.)

turn on profiling and provide a profile log file
LD_PRELOAD="/usr/lib/libprofiler.so.0" \
CPUPROFILE=/tmp/rprof.log \
r profilingSmall.R

We can then analyse the profiling output in the file. The profiler
(renamed from pprof to google-pprof on Debian) has a
large number of options. Here just use two different formats:
show text output
google-pprof --cum --text \

/usr/bin/r /tmp/rprof.log | less

or analyse call graph using gv
google-pprof --gv /usr/bin/r /tmp/rprof.log

The shell script googlePerftools.sh runs the complete
example.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Profiling with Google Perftools

This can generate complete (yet complex) graphs.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Profiling with Google Perftools

Another output format is used by the callgrind analyser that is
part of valgrind—a frontend to a variety of analysis tools such
as cachegrind (cache simulator), callgrind (call graph tracer),
helpgrind (race condition analyser), massif (heap profiler), and
memcheck (fine-grained memory checker).

For example, the KDE frontend kcachegrind can be used to
visualize the profiler output as follows:
google-pprof --callgrind \

/usr/bin/r /tmp/gpProfile.log \
> googlePerftools.callgrind

kcachegrind googlePerftools.callgrind

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Profiling with Google Perftools

Kcachegrind running on the the profiling output looks as follows:

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview RProf RProfmem Profiling

Profiling with Google Perftools

One problem with the ’global’ approach to profiling is that a
large number of internal functions are being reported as
well—this may obscure our functions of interest.
An alternative is to re-compile the portion of code that we want
to profile, and to bracket the code with
ProfilerStart()

// ... code to be profiled here ...

ProfilerEnd()

which are defined in google/profiler.h which needs to be
included. One uses the environment variable CPUPROFILE to
designate an output file for the profiling information, or
designates a file as argument to ProfilerStart().

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Outline

1 Motivation

2 Tools for automation and scripting

3 Measuring and profiling

4 Speeding up

5 Compiled Code

6 Explicitly and Implicitly Parallel

7 Out-of-memory processing

8 Summary

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Vectorisation

Revisiting our trivial trivial example from the preceding section:
> sillysum <- function(N) { s <- 0;

for (i in 1:N) s <- s + i; return(s) }
> system.time(print(sillysum(1e7)))

[1] 5e+13
user system elapsed

13.617 0.020 13.701
>

> system.time(print(sum(as.numeric(seq(1,1e7)))))

[1] 5e+13
user system elapsed

0.224 0.092 0.315
>

Replacing the loop yielded a gain of a factor of more than 40. It
really pays to know the corpus of available functions.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Vectorisation cont.

A more interesting example is provided in a case study on the
Ra (c.f. next section) site and taken from the S Programming
book:

Consider the problem of finding the distribution of the
determinant of a 2 x 2 matrix where the entries are
independent and uniformly distributed digits 0, 1, . . .,
9. This amounts to finding all possible values of
ac − bd where a, b, c and d are digits.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.milbo.users.sonic.net/ra/dist-of-dets8.html

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Vectorisation cont.

The brute-force solution is using explicit loops over all
combinations:
dd.for.c <- function() {

val <- NULL
for (a in 0:9)

for (b in 0:9)
for (d in 0:9)

for (e in 0:9)
val <- c(val, a*b - d*e)

table(val)
}

The naive time is
> mean(replicate(10, system.time(dd.for.c())["elapsed"]))

[1] 0.2678

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Vectorisation cont.

The case study discusses two important points that bear
repeating:

pre-allocating space helps with performance:
val <- double(10000)
and using val[i <- i + 1] as the left-hand side
reduces the time to 0.1204, or less than half.
switching to faster functions can help as well as tabulate
outperforms table and reduced the time further to 0.1180.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Vectorisation cont.

However, by far the largest improvement comes from
eliminating the four loops with two calls each to outer:
dd.fast.tabulate <- function() {

val <- outer(0:9, 0:9, "*")
val <- outer(val, val, "-")
tabulate(val)

}

The time for the most efficient solution is:
> mean(replicate(10,

system.time(dd.fast.tabulate())["elapsed"]))

[1] 0.0014

which is orders of magnitude faster than the initial naive
approach.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Accelerated R with just-in-time compilation

Stephen Milborrow maintains “Ra”, a set of patches to R that
allow ’just-in-time compilation’ of loops and arithmetic
expressions. Together with his jit package on CRAN, this can
be used to obtain speedups of standard R operations.

Our trivial example run in Ra:
library(jit)
sillysum <- function(N) { jit(1); s <- 0; \

for (i in 1:N) s <- s + i; return(s) }

> system.time(print(sillysum(1e7)))
[1] 5e+13

user system elapsed
1.548 0.028 1.577

which gets a speed increase of a factor of five—not bad at all.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Accelerated R with just-in-time compilation

The last looping example can be improved with jit:
dd.for.pre.tabulate.jit <- function() {

jit(1)
val <- double(10000)
i <- 0
for (a in 0:9) for (b in 0:9)

for (d in 0:9) for (e in 0:9) {
val[i <- i + 1] <- a*b - d*e

}
tabulate(val)

}

> mean(replicate(10, system.time(dd.for.pre.tabulate.jit())["elapsed"]))
[1] 0.0053
or only about three to four times slower than the non-looped
solution using ’outer’—a rather decent improvement.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Accelerated R with just-in-time compilation

naive naive+prealloc n+p+tabulate outer

Comparison of R and Ra on 'dd' example

tim
e

in
 s

ec
on

ds

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

R
Ra

Source: Our calculations

Ra achieves very good
decreases in total
computing time in these
examples but cannot
improve the efficient
solution any further.

Ra and jit are still fairly
new and not widely
deployed yet, but readily
available in Debian and
Ubuntu.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Optimised BLAS

BLAS (’basic linear algebra subprogram’) are standard building
blocks for linear algebra. Highly-optimised libraries exist that
can provide considerable performance gains.

R can be built using so-called optimised BLAS such as Atlas
(open source), Goto (not ’free’), or the Intel MKL or AMD
AMCL; see the ’R Admin’ manual, section A.3 ’Linear Algebra’.

The speed gains can be noticeable. For Debian/Ubuntu, one
can simply install one of the atlas-base-* packages.

An example from the old README.Atlas, running with a R 2.8.1
on a four-core machine follow.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://en.wikipedia.org/wiki/Blas
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

Optimised Blas cont.

with Atlas
> mm <- matrix(rnorm(4*10^6), ncol = 2*10^3)
> mean(replicate(10,

system.time(crossprod(mm))["elapsed"]),trim=0.1)

[1] 2.6465

with basic. non-optmised Blas,
> mm <- matrix(rnorm(4*10^6), ncol = 2*10^3)
> mean(replicate(10,

system.time(crossprod(mm))["elapsed"]),trim=0.1)

[1] 16.42813

For linear algebra problems, we may get an improvement by an
integer factor that may be as large (or even larger) than the
number of cores as we benefit from both better code and
multithreaded execution. Even higher increases are possibly by
’tuning’ the library, see the Atlas documentation.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

From Blas to GPUs.

The next frontier for hardware acceleration is computing on
GPUs (’graphics programming units’).
GPUs are essentially hardware that is optimised for I/O and
floating point operations, leading to much faster code execution
than standard CPUs on floating-point operations.
The key development environments that are available are

Nvidia CUDA (Compute Unified Device Architecture)
introduced in 2007 and provides C-like programming
OpenCL (Open Computing Language) introduced in 2009
provides a vendor-independent interface to GPU hardware.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://en.wikipedia.org/wiki/GPU
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/OpenCL

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

GPU resources

These are some of the resources and libraries for GPU
programming:

Vendor-specific:
CUDA for NVidia hardware
ATI Stream SDL for AMD hardware

Vendor-independent: OpenCL
For CUDA / NVividia:

BLAS on GPUs: Magma for Multicore/GPU
STL-alike containers: Thrust
Commercial CUDA libraries: CULAtools

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.nvidia.com/object/cuda_learn.html
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx
http://www.khronos.org/opencl/
http://icl.cs.utk.edu/magma/index.html
http://code.google.com/p/thrust/
http://www.culatools.com/

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

CUDA Example

Consider a simple vector multiplication. In C, we write

1 vo id vecMult_h (i n t ∗A, i n t ∗B, unsigned long long N) {
2 for (unsigned long long i =0; i <N; i ++) {
3 B[i] = A [i] ∗2;
4 }
5 }
6

7 / / which gets c a l l e d as . . .
8 a_h = (i n t ∗) mal loc (s i z e o f (i n t) ∗n) ;
9 b_h = (i n t ∗) mal loc (s i z e o f (i n t) ∗n) ;

10 / / . . . f i l l a_h
11 vecMult_h (a_h , b_h , n) ;

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

CUDA Example

With CUDA, we create so-called kernels which access the data
in parallel using multiple threads. The equivalent function is

1 __ g loba l __ vo id vecMult_d (i n t ∗A, i n t ∗B, i n t N) {
2 i n t i = b lock Idx . x ∗ blockDim . x + th read Idx . x ;
3 i f (i <N) {
4 B[i] = A [i] ∗2;
5 }
6 }
7

8 / / which gets c a l l e d as . . .
9 cudaMalloc ((vo id ∗∗)&a_d , n∗ s i z e o f (i n t)) ; / / a l l o c . on device

10 cudaMalloc ((vo id ∗∗)&b_d , n∗ s i z e o f (i n t)) ;
11 dim3 dimBlock (b locks i ze) ;
12 dim3 dimGrid (c e i l (f l o a t (n) / f l o a t (dimBlock . x))) ;
13 cudaMemcpy (a_d , a_h , n∗ s i z e o f (i n t) , cudaMemcpyHostToDevice) ;
14 vecMult_d<<<dimGrid , dimBlock >>>(a_d , b_d , n) ;
15 cudaThreadSynchronize () ;
16 cudaMemcpy (b_h , b_d , n∗ s i z e o f (i n t) , cudaMemcpyDeviceToHost) ;

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

GPU programming for R

Currently, two packages provide GPU computing for R:

gputools by Josh Buckner and Mark Seligman provides a
number of basic routines (among them are e.g. gpuCor,
gpuDistClust, gpuFastICA, gpuGranger,
gpuHclust, gpuLm, gpuMatMult, gpuSolve, gpuSvd,
gpuSvmPredict, gpuSvmTrain).
cudaBayesreg by Adelino Ferreira da Silva reimplements
Bayesian multilevel modeling for fMRI data.

Both use the CUDA toolchain for NVidia hardware.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

GPU performance with R

A simple example, using a matrix of size 720 x 98 containing
almost three years of daily returns data on the SP100:
using R
> system.time(cor(X, method="kendall"))
using GPU
> system.time(gpuCor(X, method="kendall"))

user system elapsed
8.350 0.070 8.434
user system elapsed

59.220 0.000 59.224

This correspond to about a seven-fold increase in speed.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

GPU performance with R

Now let’s redo the example using a matrix of size 1206 x 477
containing almost five years of daily returns data on the SP500:
using R
> system.time(cor(X, method="kendall"))
using GPU
> system.time(gpuCor(X, method="kendall"))

user system elapsed
148.650 0.070 148.716

user system elapsed
3925.730 0.010 3925.735

This correspond to about a twenty-six-fold increase in speed!

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Vec Ra BLAS GPUs

How is GPU programming different?

As R or C/C++ programmers on modern hardware, our life is
relatively easy: flat and large memory spaces, little direct
consideration of hardware representation.

This makes for a nice level of abstraction.

With GPU, this abstraction goes away and we have to worry
(again) about memory layout, access, ...

So while there is a clear promise of increased performance,
there is clearly ’No Free Lunch’.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Outline

1 Motivation

2 Tools for automation and scripting

3 Measuring and profiling

4 Speeding up

5 Compiled Code

6 Explicitly and Implicitly Parallel

7 Out-of-memory processing

8 Summary

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Compiled Code

Beyond smarter code (using e.g. vectorised expression and/or
just-in-time compilation), hardware-driven acceleration or
optimised libraries, the most direct speed gain comes from
switching to compiled code.

This section covers two possible approaches:
inline for automated wrapping of simple expression
Rcpp for easing the interface between R and C++

A different approach is to keep the core logic ’outside’ but to
embed R into the application. There is some documentation in
the ’R Extensions’ manual—and the RInside package offers
C++ classes to automate this.

This requires some familiarity with R internals though the Rcpp
and RInside packages aim to hide much of this complexity.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Compiled Code: The Basics

R offers several functions to access compiled code: .C and
.Fortran as well as .Call and .External. (R Extensions,
sections 5.2 and 5.9; Software for Data Analysis). .C and
.Fortran are older and simpler, but more restrictive in the
long run.

The canonical example in the documentation is the convolution
function:

1 vo id convolve (double ∗a , i n t ∗na , double ∗b ,
2 i n t ∗nb , double ∗ab)
3 {
4 i n t i , j , nab = ∗na + ∗nb − 1;
5

6 for (i = 0 ; i < nab ; i ++)
7 ab [i] = 0 . 0 ;
8 for (i = 0 ; i < ∗na ; i ++)
9 for (j = 0 ; j < ∗nb ; j ++)

10 ab [i + j] += a [i] ∗ b [j] ;
11 }

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Compiled Code: The Basics cont.

The convolution function is called from R by

1 conv <− function (a , b)
2 .C(" convolve " ,
3 as . double (a) ,
4 as . integer (length (a)) ,
5 as . double (b) ,
6 as . integer (length (b)) ,
7 ab = double (length (a) + length (b) − 1)) $ab

As stated in the manual, one must take care to coerce all the
arguments to the correct R storage mode before calling .C as
mistakes in matching the types can lead to wrong results or
hard-to-catch errors.

The script convolve.C.sh compiles and links the source
code, and then calls R to run the example.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Compiled Code: The Basics cont.

Using .Call, the example becomes
1 #include <R. h>
2 #include <Rdefines . h>
3

4 SEXP convolve2 (SEXP a , SEXP b)
5 {
6 i n t i , j , na , nb , nab ;
7 double ∗xa , ∗xb , ∗xab ;
8 SEXP ab ;
9

10 PROTECT(a = AS_NUMERIC(a)) ;
11 PROTECT(b = AS_NUMERIC(b)) ;
12 na = LENGTH(a) ; nb = LENGTH(b) ; nab = na + nb − 1;
13 PROTECT(ab = NEW_NUMERIC(nab)) ;
14 xa = NUMERIC_POINTER(a) ; xb = NUMERIC_POINTER(b) ;
15 xab = NUMERIC_POINTER(ab) ;
16 for (i = 0 ; i < nab ; i ++) xab [i] = 0 . 0 ;
17 for (i = 0 ; i < na ; i ++)
18 for (j = 0 ; j < nb ; j ++) xab [i + j] += xa [i] ∗ xb [j] ;
19 UNPROTECT(3) ;
20 return (ab) ;
21 }

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Compiled Code: The Basics cont.

Now the call becomes easier by just using the function name
and the vector arguments—all other handling is done at the
C/C++ level:
conv <- function(a, b) .Call("convolve2", a, b)

The script convolve.Call.sh compiles and links the source
code, and then calls R to run the example.

In summary, we see that
there are different entry points
using different calling conventions
leading to code that may need to do more work at the
lower level.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the
function cfunction that can wrap Fortran, C or C++ code.

1 ## A simple For t ran example
2 code <− "
3 i n t e g e r i
4 do 1 i =1 , n (1)
5 1 x (i) = x (i) ∗∗3
6 "
7 cubefn <− c f un c t i on (s igna tu re (n=" i n t e g e r " , x= " numeric ") ,
8 code , convent ion=" . For t ran ")
9 x <− as . numeric (1 : 1 0)

10 n <− as . integer (10)
11 cubefn (n , x) $x

cfunction takes care of compiling, linking, loading, . . . by
placing the resulting dynamically-loadable object code in the
per-session temporary directory used by R.
Run this via cat inline.Fortan.R | R -no-save.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Compiled Code: inline cont.

inline defaults to using the .Call() interface:
1 ## Use of . Ca l l convent ion w i th C code
2 ## Mu l t yp l y i ng each image i n a stack wi th a 2D Gaussian a t a given p o s i t i o n
3 code <− "
4 SEXP res ;
5 i n t np ro tec t = 0 , nx , ny , nz , x , y ;
6 PROTECT(res = Rf_ d u p l i c a te (a)) ; np ro tec t ++;
7 nx = INTEGER(GET_DIM(a)) [0] ;
8 ny = INTEGER(GET_DIM(a)) [1] ;
9 nz = INTEGER(GET_DIM(a)) [2] ;

10 double sigma2 = REAL(s) [0] ∗ REAL(s) [0] , d2 ;
11 double cx = REAL(cent re) [0] , cy = REAL(cent re) [1] , ∗data , ∗ rda ta ;
12 f o r (i n t im = 0; im < nz ; im++) {
13 data = &(REAL(a) [im∗nx∗ny]) ; rda ta = &(REAL(res) [im∗nx∗ny]) ;
14 f o r (x = 0 ; x < nx ; x++)
15 f o r (y = 0 ; y < ny ; y++) {
16 d2 = (x−cx)∗ (x−cx) + (y−cy)∗ (y−cy) ;
17 rda ta [x + y∗nx] = data [x + y∗nx] ∗ exp(−d2 / sigma2) ;
18 }
19 }
20 UNPROTECT(np ro tec t) ;
21 r e t u r n res ;
22 "
23 funx <− c f un c t i on (s igna tu re (a=" ar ray " , s= " numeric " , cent re=" numeric ") , code)
24
25 x <− ar ray (r u n i f (50∗50) , c (50 ,50 ,1))
26 res <− funx (a=x , s=10 , cent re=c (25 ,15)) ## ac tua l c a l l o f compiled f u n c t i o n
27 i f (i n t e r a c t i v e ()) image (res [, , 1])

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Compiled Code: inline cont.

We can revisit the earlier distribution of determinants example.
If we keep it very simple and pre-allocate the temporary vector
in R , the example becomes

1 code <− "
2 i f (isNumeric (vec)) {
3 i n t ∗pv = INTEGER(vec) ;
4 i n t n = leng th (vec) ;
5 i f (n = 10000) {
6 i n t i = 0 ;
7 f o r (i n t a = 0; a < 9; a++)
8 f o r (i n t b = 0; b < 9; b++)
9 f o r (i n t c = 0 ; c < 9; c++)

10 f o r (i n t d = 0; d < 9; d++)
11 pv [i ++] = a∗b − c∗d ;
12 }
13 }
14 r e t u r n (vec) ;
15 "
16

17 funx <− c f un c t i on (s igna tu re (vec=" numeric ") , code)

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Compiled Code: inline cont.

We can use the inlined function in a new function to be timed:
dd.inline <- function() {

x <- integer(10000)
res <- funx(vec=x)
tabulate(res)

}
> mean(replicate(100,system.time(dd.inline())["elapsed"]))

[1] 0.00051

Even though it uses the simplest algorithm, pre-allocates
memory in R and analyses the result in R , it is still more than
twice as fast as the previous best solution.

The script dd.inline.r runs this example.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Compiled Code: Rcpp

Rcpp makes it easier to interface C++ and R code.

Using the .Call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.

One major advantage of using .Call is that vectors (or
matrices) can be passed directly between R and C++ without
the need for explicit passing of dimension arguments. And by
using the C++ class layers, we do not need to directly
manipulate the SEXP objects.

So let us rewrite the ’distribution of determinant’ example one
more time.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Rcpp example

The simplest version can be set up as follows:

1 #include <Rcpp . h>
2
3 RcppExport SEXP dd_ rcpp (SEXP v) {
4 SEXP r l = R_ Ni lVa lue ; / / Use th is when noth ing i s re tu rned
5
6 RcppVector< int > vec (v) ; / / vec parameter viewed as vec to r o f doubles
7 i n t n = vec . s ize () , i = 0 ;
8
9 for (i n t a = 0; a < 9; a++)

10 for (i n t b = 0; b < 9; b++)
11 for (i n t c = 0; c < 9; c++)
12 for (i n t d = 0; d < 9; d++)
13 vec (i ++) = a∗b − c∗d ;
14
15 RcppResultSet rs ; / / Bu i ld r e s u l t se t re turned as l i s t to R
16 rs . add (" vec " , vec) ; / / vec as named element w i th name ’ vec ’
17 r l = rs . ge tRe tu rnL i s t () ; / / Get the l i s t to be re turned to R.
18
19 return r l ;
20 }

but it is actually preferable to use the exception-handling
feature of C++ as in the slightly longer next version.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Rcpp example cont.

1 #include <Rcpp . h>
2
3 RcppExport SEXP dd_ rcpp (SEXP v) {
4 SEXP r l = R_ Ni lVa lue ; / / Use th is when there i s noth ing to be re turned .
5 char∗ exceptionMesg = NULL; / / msg var i n case of e r r o r
6
7 t ry {
8 RcppVector< int > vec (v) ; / / vec parameter viewed as vec to r o f i n t s .
9 i n t n = vec . s ize () , i = 0 ;

10 i f (n ! = 10000) throw s td : : l eng th _ e r r o r ("Wrong vec to r s ize ") ;
11 for (i n t a = 0; a < 9; a++)
12 for (i n t b = 0; b < 9; b++)
13 for (i n t c = 0; c < 9; c++)
14 for (i n t d = 0; d < 9; d++)
15 vec (i ++) = a∗b − c∗d ;
16
17 RcppResultSet rs ; / / Bu i ld r e s u l t se t to be re turned as a l i s t to R.
18 rs . add (" vec " , vec) ; / / vec as named element w i th name ’ vec ’
19 r l = rs . ge tRe tu rnL i s t () ; / / Get the l i s t to be re turned to R.
20 } catch (s td : : except ion& ex) {
21 exceptionMesg = copyMessageToR (ex . what ()) ;
22 } catch (. . .) {
23 exceptionMesg = copyMessageToR (" unknown reason ") ;
24 }
25
26 i f (exceptionMesg ! = NULL) Rf_ e r r o r (exceptionMesg) ;
27
28 return r l ;
29 }

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Rcpp example cont.

We can create a shared library from the source file as follows:
PKG_CPPFLAGS=‘r -e’Rcpp:::CxxFlags()’‘ \

PKG_LIBS=‘r -e’Rcpp:::LdFlags()’‘ \
R CMD SHLIB dd.rcpp.cpp

g++ -I/usr/share/R/include \
-I/usr/lib/R/site-library/Rcpp/lib \
-fpic -g -O2 \
-c dd.rcpp.cpp -o dd.rcpp.o

g++ -shared -o dd.rcpp.so dd.rcpp.o \
-L/usr/lib/R/site-library/Rcpp/lib \
-lRcpp -Wl,-rpath,/usr/lib/R/site-library/Rcpp/lib \
-L/usr/lib/R/lib -lR

Note how we let the Rcpp package tell us where header and
library files are stored.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Rcpp example cont.

We can then load the file using dyn.load and proceed as in
the inline example.
dyn.load("dd.rcpp.so")

dd.rcpp <- function() {
x <- integer(10000)
res <- .Call("dd_rcpp", x)
tabulate(res$vec)

}

mean(replicate(100,system.time(dd.rcpp())["elapsed"])))

[1] 0.00047

This beats the inline example by a neglible amount which is
probably due to some overhead in the easy-to-use inlining.

The file dd.rcpp.sh runs the full Rcpp example.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Basic Rcpp usage

Rcpp eases data transfer from R to C++, and back. We always
convert to and from SEXP, and return a SEXP to R.

The key is that we can consider this to be a ’variant’ type
permitting us to extract using appropriate C++ classes. We
pass data from R via named lists that may contain different
types:

list(intnb=42, fltnb=6.78, date=Sys.Date(),
txt="some thing", bool=FALSE)

by initialising a RcppParams object and extracting as in
RcppParams param(inputsexp);
int nmb = param.getIntValue("intnb");
double dbl = param.getDoubleValue("fltnb");
string txt = param.getStringValue("txt");
bool flg = param.getBoolValue("bool";
RcppDate dt = param.getDateValue("date");

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Basic Rcpp usage (cont.)

Similarly, we can constructs vectors and matrics of double,
int, as well as vectors of types string and date and
datetime. The key is that we never have to deal with
dimensions and / or memory allocations — all this is shielded
by C++ classes.

Similarly, for the return, we declare an object of type
RcppResultSet and use the add methods to insert named
elements before coverting this into a list that is assigned to the
returned SEXP.

Back in R, we access them as elements of a standard R list by
position or name.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Another Rcpp example

Let us revisit the lm() versus lm.fit() example. How fast
could compiled code be? Let’s wrap a GNU GSL function.

1 #include <cs td io >
2 extern "C" {
3 #include <gs l / gs l _ m u l t i f i t . h>
4 }
5 #include <Rcpp . h>
6
7 RcppExport SEXP gs l _ m u l t i f i t (SEXP Xsexp , SEXP Ysexp) {
8 SEXP r l =R_ Ni lVa lue ;
9 char ∗exceptionMesg=NULL;

10
11 t ry {
12 RcppMatrixView <double> Xr (Xsexp) ;
13 RcppVectorView<double> Yr (Ysexp) ;
14
15 i n t i , j , n = Xr . dim1 () , k = Xr . dim2 () ;
16 double chisq ;
17
18 gs l _ mat r i x ∗X = gs l _ mat r i x _ a l l o c (n , k) ;
19 gs l _ vec to r ∗y = gs l _ vec to r _ a l l o c (n) ;
20 gs l _ vec to r ∗c = gs l _ vec to r _ a l l o c (k) ;
21 gs l _ mat r i x ∗cov = gs l _ mat r i x _ a l l o c (k , k) ;
22 for (i = 0 ; i < n ; i ++) {
23 for (j = 0 ; j < k ; j ++)
24 gs l _ mat r i x _set (X, i , j , Xr (i , j)) ;
25 gs l _ vec to r _set (y , i , Yr (i)) ;
26 }

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Another Rcpp example (cont.)

27 gs l _ m u l t i f i t _ l i n e a r _workspace ∗work = gs l _ m u l t i f i t _ l i n e a r _ a l l o c (n , k) ;
28 gs l _ m u l t i f i t _ l i n e a r (X, y , c , cov , &chisq , work) ;
29 gs l _ m u l t i f i t _ l i n e a r _ f r ee (work) ;
30
31 RcppMatrix <double> CovMat (k , k) ;
32 RcppVector<double> Coef (k) ;
33 for (i = 0 ; i < k ; i ++) {
34 for (j = 0 ; j < k ; j ++)
35 CovMat (i , j) = gs l _ mat r i x _get (cov , i , j) ;
36 Coef (i) = gs l _ vec to r _get (c , i) ;
37 }
38 gs l _ mat r i x _ f r ee (X) ;
39 gs l _ vec to r _ f r ee (y) ;
40 gs l _ vec to r _ f r ee (c) ;
41 gs l _ mat r i x _ f r ee (cov) ;
42
43 RcppResultSet rs ;
44 rs . add (" coef " , Coef) ;
45 rs . add (" covmat " , CovMat) ;
46
47 r l = rs . ge tRe tu rnL i s t () ;
48
49 } catch (s td : : except ion& ex) {
50 exceptionMesg = copyMessageToR (ex . what ()) ;
51 } catch (. . .) {
52 exceptionMesg = copyMessageToR (" unknown reason ") ;
53 }
54 i f (exceptionMesg ! = NULL) Rf_ e r r o r (exceptionMesg) ;
55 return r l ;
56 }

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Another Rcpp example (cont.)

We can build a shared library for R via
RCPP_CXXFLAGS=‘Rscript -e ’Rcpp:::CxxFlags()’‘
RCPP_LIBS=‘Rscript -e ’Rcpp:::LdFlags()’‘

PKG_CPPFLAGS="-W ${RCPP_CXXFLAGS}" \
PKG_LIBS="-lgsl -lblas ${RCPP_LIBS}" \
R CMD SHLIB gsl_multifit_in_R.cpp

and run the example code via
dyn.load("gsl_multifit_in_R.so")
generate X and y
N <- 100
mean(replicate(N, system.time(val <-

.Call("gsl_multifit", X, y))["elapsed"]),trim=0.05)

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Another Rcpp example (cont.)

lm lm.fit lm via C

Comparison of R and linear model fit routines

tim
e

in
 s

ec
on

ds

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

longley (16 x 7 obs)
simulated (1000 x 50)

Source: Our calculations

The small longley
example exhibits less
variability between
methods, but the larger
data set shows the gains
more clearly.

The lm.fit() approach
appears unchanged
between longley and
the larger simulated data
set.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Another Rcpp example (cont.)

lm lm.fit lm via C

Comparison of R and linear model fit routines

re
gr

es
si

on
s

pe
r

se
co

nd
s

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

longley (16 x 7 obs)
simulated (1000 x 50)

Source: Our calculations

By inverting the times to
see how many
’regressions per second’
we can fit, the merits of
the compiled code
become clearer.

One caveat,
measurements depends
critically on the size of the
data as well as the cpu
and libraries that are
used.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Revisiting profiling

We can also use the preceding example to illustrate how to
profile subroutines.
We can add the following to the top of the function:
ProfilerStart("/tmp/ols.profile");
for (unsigned int i=1; i<10000; i++) {

and similarly
}
ProfilerStop();
at end before returning. If we then call this function just once
from R as in
print(system.time(invisible(val <-

.Call("gsl_multifit", X, y))))

we can then call the profiling tools on the output:
google-pprof --gv /usr/bin/r /tmp/ols.profile

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Revisiting profiling

/usr/bin/r
Total samples: 47
Focusing on: 47
Dropped nodes with <= 0 abs(samples)
Dropped edges with <= 0 samples

gsl_multifit
1 (2.1%)

of 44 (93.6%)

_init
1 (2.1%)

of 44 (93.6%)

1

gsl_multifit_linear
0 (0.0%)

of 30 (63.8%)

30

gsl_multifit_linear_free
1 (2.1%)

of 2 (4.3%)

2

RcppResultSet
add
0 (0.0%)

of 2 (4.3%)

2

gs l_vector_free
0 (0.0%)

of 2 (4.3%)

1
gs l_vector_alloc

0 (0.0%)
of 1 (2.1%)

1

gsl_matrix_set
1 (2.1%)

1

strlen
1 (2.1%)

1

RcppMatrix
RcppMatrix

0 (0.0%)
of 1 (2.1%)

1

RcppResultSet
~RcppResultSet

1 (2.1%)

1

gsl_vector_get
1 (2.1%)

1

RcppResultSet
getReturnLis t

0 (0.0%)
of 1 (2.1%)

1

__libc_start_main
0 (0.0%)

of 44 (93.6%)

44

Rf_applyClosure
0 (0.0%)

of 44 (93.6%)

Rf_eval
0 (0.0%)

of 44 (93.6%)

176

Rf_allocS4Object
0 (0.0%)

of 44 (93.6%)

44

Rf_set_iconv
0 (0.0%)

of 44 (93.6%)

44

176 44

880

call_S
0 (0.0%)

of 44 (93.6%)

44

Rf_usemethod
0 (0.0%)

of 44 (93.6%)

44

R_isMethodsDispatchOn
0 (0.0%)

of 44 (93.6%)

44

44

44

44

R_tryEval
0 (0.0%)

of 44 (93.6%)

44

R_ToplevelExec
0 (0.0%)

of 44 (93.6%)

44

44

44

gsl_multifit_linear_svd
2 (4.3%)

of 30 (63.8%)

30

gsl_linalg_SV_decomp_mod
1 (2.1%)

of 23 (48.9%)

23

gsl_linalg_balance_columns
1 (2.1%)

of 2 (4.3%)

2

gsl_matrix_memcpy
1 (2.1%)

1

gsl_blas_ddot
1 (2.1%)

1

cblas_ddot
1 (2.1%)

1

gsl_linalg_SV_decomp
7 (14.9%)

of 14 (29.8%)

14

gsl_linalg_householder_transform
3 (6.4%)

of 5 (10.6%)

3

gsl_linalg_householder_hm
3 (6.4%)

1

cblas_daxpy
1 (2.1%)

1

gsl_linalg_householder_hm1
1 (2.1%)

1

ATL_daxpy
1 (2.1%)

1

gsl_matrix_column
1 (2.1%)

1

gsl_linalg_bidiag_decomp
0 (0.0%)

of 5 (10.6%)

5

gsl_vector_subvector
2 (4.3%)

1

gsl_linalg_bidiag_unpack2
0 (0.0%)

of 1 (2.1%)

1

2 1

gsl_linalg_householder_mh
2 (4.3%)

2

1

__ieee754_hypot
1 (2.1%)

1

ATL_dscal
1 (2.1%)

1

1

Rf_setAttrib
1 (2.1%)

of 2 (4.3%)

Rf_dimgets
0 (0.0%)

of 1 (2.1%)

1

ATL_daxpy_xp1yp1aXbX
2 (4.3%)

free
2 (4.3%)

Rf_allocMatrix
0 (0.0%)

of 1 (2.1%)

1

RcppMatrix
cMatrix
0 (0.0%)

of 1 (2.1%)

1

R_alloc
1 (2.1%)

of 2 (4.3%)

Rf_allocVector
0 (0.0%)

of 1 (2.1%)

1

1
gsl_block_free

0 (0.0%)
of 1 (2.1%)

1

gsl_block_alloc
1 (2.1%)

1

1

malloc
0 (0.0%)

of 1 (2.1%)

1

1

1

_int_malloc
1 (2.1%)

1

Rf_coerceVector
1 (2.1%)

ATL_dnrm2_xp1yp0aXbX
1 (2.1%)

1

1

1

1

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Rcpp and package building

Two tips for easing builds with Rcpp:

For command-line use, a shortcut is to copy Rcpp.h to
/usr/local/include, and libRcpp.so to
/usr/local/lib. The earlier example reduces to

R CMD SHLIB dd.rcpp.cpp

as header and library will be found in the default locations.

For package building, we can have a file src/Makevars with
compile flag providing header directory
PKG_CXXFLAGS=‘Rscript -e ’Rcpp:::CxxFlags()’‘
link flag providing libary and path
PKG_LIBS=‘Rscript -e ’Rcpp:::LdFlags()’‘

See help(Rcpp-package) for more details.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

RInside and bringing R to C++

Sometimes we may want to go the other way and add R to and
existing C++ project.

This can be simplified using RInside:

1 #include " RInside . h " / / for the embedded R v ia RInside
2 #include "Rcpp . h " / / for the R / Cpp i n t e r f a c e
3
4 i n t main (i n t argc , char ∗argv []) {
5
6 RInside R(argc , argv) ; / / create an embedded R ins tance
7
8 std : : s t r i n g t x t = " Hel lo , wor ld ! \ n " ; / / assign a standard C++ s t r i n g to ’ t x t ’
9 R. assign (t x t , " t x t ") ; / / assign s t r i n g var to R v a r i a b l e ’ t x t ’

10
11 std : : s t r i n g e v a l s t r = " cat (t x t) " ;
12 R. parseEvalQ (e v a l s t r) ; / / eval the i n i t s t r i n g , i gno r i ng any re tu rns
13
14 e x i t (0) ;
15 }

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

RInside and bringing R to C++ (cont)

1 #include " RInside . h " / / for the embedded R v ia RInside
2 #include "Rcpp . h " / / for the R / Cpp i n t e r f a c e used for t r a n s f e r
3
4 std : : vector < std : : vector < double > > crea teMat r i x (const i n t n) {
5 s td : : vector < std : : vector < double > > mat ;
6 for (i n t i =0; i <n ; i ++) {
7 s td : : vector <double> row ;
8 for (i n t j =0; j <n ; j ++) row . push_back ((i∗10+ j)) ;
9 mat . push_back (row) ;

10 }
11 return (mat) ;
12 }
13
14 i n t main (i n t argc , char ∗argv []) {
15 const i n t mdim = 4;
16 std : : s t r i n g e v a l s t r = " cat (’ Running l s () \ n ’) ; p r i n t (l s ()) ; \
17 cat (’ Showing M\ n ’) ; p r i n t (M) ; ca t (’ Showing colSums () \ n ’) ; \
18 Z <− colSums (M) ; p r i n t (Z) ; Z" ; ## re tu rns Z
19 RInside R(argc , argv) ;
20 SEXP ans ;
21 std : : vector < std : : vector < double > > myMatrix = c rea teMat r i x (mdim) ;
22 R. assign (myMatrix , "M") ; / / assign STL mat r i x to R ’ s ’M ’ var
23 R. parseEval (ev a l s t r , ans) ; / / eval the i n i t s t r i n g −− Z i s now i n ans
24 RcppVector<double > vec (ans) ; / / now vec conta ins Z v ia ans
25 vector <double > v = vec . s t l V e c t o r () ; / / conver t RcppVector to STL vec to r
26 f o r (unsigned i n t i =0; i < v . s i ze () ; i ++)
27 std : : cout << " In C++ element " << i << " i s " << v [i] << std : : endl ;
28 e x i t (0) ;
29 }

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Debugging example: valgrind

Analysis of compiled code is mainly undertaken with a
debugger like gdb, or a graphical frontend like ddd.

Another useful tool is valgrind which can find memory leaks.
We can illustrate its use with a recent real-life example.

RMySQL had recently been found to be leaking memory when
database connections are being established and closed. Given
how RPostgreSQL shares a common heritage, it seemed like
a good idea to check.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Debugging example: valgrind

We create a small test script which opens and closes a
connection to the database in a loop and sends a small ’select’
query. We can run this in a way that is close to the suggested
use from the ’R Extensions’ manual:
R -d "valgrind -tool=memcheck
-leak-check=full" -vanilla < valgrindTest.R
which creates copious output, including what is on the next
slide.

Given the source file and line number, it is fairly straightforward
to locate the source of error: a vector of pointers was freed
without freeing the individual entries first.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Debugging example: valgrind

The state before the fix:
[...]
#==21642== 2,991 bytes in 299 blocks are definitely lost in loss record 34 of 47
#==21642== at 0x4023D6E: malloc (vg_replace_malloc.c:207)
#==21642== by 0x6781CAF: RS_DBI_copyString (RS-DBI.c:592)
#==21642== by 0x6784B91: RS_PostgreSQL_createDataMappings (RS-PostgreSQL.c:400)
#==21642== by 0x6785191: RS_PostgreSQL_exec (RS-PostgreSQL.c:366)
#==21642== by 0x40C50BB: (within /usr/lib/R/lib/libR.so)
#==21642== by 0x40EDD49: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40F00DC: (within /usr/lib/R/lib/libR.so)
#==21642== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40F0186: (within /usr/lib/R/lib/libR.so)
#==21642== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40F16E6: Rf_applyClosure (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40ED99A: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642==
#==21642== LEAK SUMMARY:
#==21642== definitely lost: 3,063 bytes in 301 blocks.
#==21642== indirectly lost: 240 bytes in 20 blocks.
#==21642== possibly lost: 9 bytes in 1 blocks.
#==21642== still reachable: 13,800,378 bytes in 8,420 blocks.
#==21642== suppressed: 0 bytes in 0 blocks.
#==21642== Reachable blocks (those to which a pointer was found) are not shown.
#==21642== To see them, rerun with: --leak-check=full --show-reachable=yes

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Overview Inline Rcpp RInside Debug

Debugging example: valgrind
The state after the fix:
[...]
#==3820==
#==3820== 312 (72 direct, 240 indirect) bytes in 2 blocks are definitely lost in loss record 14 of 45
#==3820== at 0x4023D6E: malloc (vg_replace_malloc.c:207)
#==3820== by 0x43F1563: nss_parse_service_list (nsswitch.c:530)
#==3820== by 0x43F1CC3: __nss_database_lookup (nsswitch.c:134)
#==3820== by 0x445EF4B: ???
#==3820== by 0x445FCEC: ???
#==3820== by 0x43AB0F1: getpwuid_r@@GLIBC_2.1.2 (getXXbyYY_r.c:226)
#==3820== by 0x43AAA76: getpwuid (getXXbyYY.c:116)
#==3820== by 0x4149412: (within /usr/lib/R/lib/libR.so)
#==3820== by 0x412779D: (within /usr/lib/R/lib/libR.so)
#==3820== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==3820== by 0x40F00DC: (within /usr/lib/R/lib/libR.so)
#==3820== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==3820==
#==3820== LEAK SUMMARY:
#==3820== definitely lost: 72 bytes in 2 blocks.
#==3820== indirectly lost: 240 bytes in 20 blocks.
#==3820== possibly lost: 0 bytes in 0 blocks.
#==3820== still reachable: 13,800,378 bytes in 8,420 blocks.
#==3820== suppressed: 0 bytes in 0 blocks.
#==3820== Reachable blocks (those to which a pointer was found) are not shown.
#==3820== To see them, rerun with: --leak-check=full --show-reachable=yes

showing that we recovered 3000 bytes.
Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Outline

1 Motivation

2 Tools for automation and scripting

3 Measuring and profiling

4 Speeding up

5 Compiled Code

6 Explicitly and Implicitly Parallel

7 Out-of-memory processing

8 Summary

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Embarassingly parallel

Several CRAN (or R-Forge) packages provide the ability to
execute R code in parallel:

NWS

Rmpi

snow (using MPI, PVM, NWS or sockets)
multicore

foreach with doMC, doSNOW, doMPI
plus several others (rpvm, papply, taskPR . . .)

The paper by Schmidberger, Morgan, Eddelbuettel, Yu, Tierney
and Mansmann (JSS, 2009) provides a survey.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

NWS Intro

NWS ("NetWorkSpaces") is an alternative to MPI (see below).
It is based on Python and cross-platform. NWS is accessible
from R, Python, Matlab, Ruby, and other languages.
NWS is available via Sourceforge and CRAN. An introductory
article appeared in Dr. Dobb’s.
On Debian and Ubuntu, installing the python-nwsserver
package on at least the server node, and installing
r-cran-nws on each client is all that is needed. Other
systems may need to install the twisted framework for
Python first.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://nws-r.sourceforge.net
http://cran.r-project.org/web/packages/nws
http://www.ddj.com/web-development/200001971

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

NWS data store example

A simple example, adapted from demo(nwsExample)

ws <- netWorkSpace(’r place’) # create a ’value store’
nwsStore(ws, ’x’, 1) # place a value (as fifo)

cat(nwsListVars(ws), "\n") # we can list
nwsFind(ws, ’x’) # and lookup
nwsStore(ws, ’x’, 2) # and overwrite
cat(nwsListVars(ws), "\n") # now see two entries

cat(nwsFetch(ws, ’x’), ’\n’) # we can fetch
cat(nwsFetch(ws, ’x’), ’\n’) # we can fetch
cat(nwsListVars(ws), ’\n’) # and none left

cat(nwsFetchTry(ws,’x’,’no go’),’\n’) # can’t fetch

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

NWS sleigh example

The NWS component sleigh is an R class that makes it easy to
write simple parallel programs. Sleigh uses the master / worker
paradigm: The master submits tasks to the workers, who may
or may not be on the same machine as the master.
create a sleigh object on two nodes using ssh
s <- sleigh(nodeList=c("joe", "ron"), launch=sshcmd)

execute a statement on each worker node
eachWorker(s, function() x <<- 1)

get system info from each worker
eachWorker(s, Sys.info)

run a lapply-style funct. over each list elem.
eachElem(s, function(x) {x+1}, list(1:10))

stopSleigh(s)

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

NWS sleigh cont.

Also of note is the extended caretNWS version of caret by
Max Kuhn, and described in a recent JSS article.

caret (short for ’Classification and Regression Training’)
provides a consistent interface for dozens of modern regression
and classification techniques.

caretNWS uses nws and sleigh to execeute embarassingly
parallel task: bagging, boosting, cross-validation,
bootstrapping, . . . This is all done ’behind the scenes’ and thus
easy to deploy.

Schmidberger et al find NWS to be competitive with the other
parallel methods for non-degenerate cases where the ratio
between communication and computation is balanced.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Rmpi

Rmpi is a CRAN package that provides an interface between R
and the Message Passing Interface (MPI), a standard for
parallel computing. (c.f. Wikipedia for more and links to the
Open MPI and MPICH2 projects for implementations).

The preferred implementation for MPI is now Open MPI.
However, the older LAM implementation can be used on those
platforms where Open MPI is unavailable. There is also an
alternate implementation called MPICH2. Lastly, we should
also mention the similar Parallel Virtual Machine (PVM) tool;
see its Wikipedia page for more.

Rmpi allows us to use MPI directly from R and comes with
several examples. However, we will focus on the higher-level
usage via snow.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org
http://www.mpi-forum.org/
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.open-mpi.org
http://en.wikipedia.org/wiki/Parallel_Virtual_Machine
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

MPI Example

Let us look at the MPI variant of the ’Hello, World!’ program:
1 #include < s t d i o . h>
2 #include " mpi . h "
3

4 i n t main (i n t argc , char∗∗ argv)
5 {
6 i n t rank , s ize , nameLen ;
7 char processorName [MPI_MAX_PROCESSOR_NAME] ;
8

9 MPI_ I n i t (&argc , &argv) ;
10 MPI_Comm_ rank (MPI_COMM_WORLD, &rank) ;
11 MPI_Comm_ s ize (MPI_COMM_WORLD, &s ize) ;
12

13 MPI_Get_processor_name(processorName , &nameLen) ;
14

15 p r i n t f (" Hel lo , rank %d , s ize %d on processor %s \ n " ,
16 rank , s ize , processorName) ;
17

18 MPI_ F i n a l i z e () ;
19 return 0;
20 }

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

MPI Example: cont.

We can compile the previous example via
$ mpicc -o mpiHelloWorld mpiHelloWorld.c

If it it has been copied across several Open MPI-equipped
hosts, we can execute it N times on the M listed hosts via:
$ orterun -H ron,joe,tony,mccoy -n 8 /tmp/mpiHelloWorld

Hello, rank 0, size 8 on processor ron
Hello, rank 4, size 8 on processor ron
Hello, rank 7, size 8 on processor mccoy
Hello, rank 3, size 8 on processor mccoy
Hello, rank 2, size 8 on processor tony
Hello, rank 5, size 8 on processor joe
Hello, rank 6, size 8 on processor tony
Hello, rank 1, size 8 on processor joe

Notice how the order of execution is indeterminate.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

MPI Example: cont.

Besides orterun (which replaces the mpirun command used
by other MPI implementations), Open MPI also supplies
ompi_info to query parameter settings.

Open MPi has very fine-grained configuration options that
permit e.g. attaching particular jobs to particular cpus or cores.

Detailed documentation is provided at the web site
http://www.openmpi.org.

We will concentrate on using MPI via the Rmpi package.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.openmpi.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Rmpi

Rmpi, a CRAN package by Hao Yu, wraps many of the MPI API
calls for use by R.

The preceding example can be rewritten in R as

1 # ! / usr / bin / env r
2

3 l i b r a r y (Rmpi) # c a l l s MPI_ I n i t
4

5 rk <− mpi .comm. rank (0)
6 sz <− mpi .comm. s ize (0)
7 name <− mpi . get . processor . name ()
8 cat (" Hel lo , rank " , rk , " s i ze " , sz , " on " , name, " \ n ")

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Rmpi: cont.

$ orterun -H ron,joe,tony,mccoy -n 8 \
/tmp/mpiHelloWorld.r

Hello, rank 4 size 8 on ron
Hello, rank 0 size 8 on ron
Hello, rank 3 size 8 on mccoy
Hello, rank 7 size 8 on mccoy
Hello, rank Hello, rank 21 size 8 on joe
size 8 on tony
Hello, rank 6 size 8 on tony
Hello, rank 5 size 8 on joe

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Rmpi: cont.

We can also exectute this as a one-liner using r (which we
discuss later):
$ orterun -n 8 -H ron,joe,tony,mccoy \

r -lRmpi -e’cat("Hello", \
mpi.comm.rank(0), "of", \
mpi.comm.size(0), "on", \
mpi.get.processor.name(), "\n");
mpi.quit()’

Hello 4 of 8 on ron
Hello 3 of 8 on mccoy
Hello 7 of 8 on mccoy
Hello 0 of 8 on ron
HelloHello 2 of 8 on tony
Hello 1 of 8 on joe

Hello 5 of 8 on joe
6 of 8 on tony

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Rmpi: cont.

Rmpi offers a large number functions, mirroring the rich API
provided by MPI.

Rmpi also offers extensions specific to working with R and its
objects, including a set of apply-style functions to spread load
across the worker nodes.

However, we will use Rmpi mostly indirectly via snow, or via the
new doMPI package.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

snow

The snow package by Tierney et al provides a convenient
abstraction directly from R.

It can be used to initialize and use a compute cluster using one
of the available methods direct socket connections, MPI, PVM,
or (since the most recent release), NWS. We will focus on MPI.

A simple example:
cl <- makeCluster(4, "MPI")
print(clusterCall(cl, function() \

Sys.info()[c("nodename","machine")]))
stopCluster(cl)

which we can as a one-liner as shown on the next slide.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

snow: Example

$ orterun -n 1 -H ron,joe,tony,mccoy r -lsnow,Rmpi \
-e’cl <- makeCluster(4, "MPI"); \

res <- clusterCall(cl, \
function() Sys.info()["nodename"]); \

print(do.call(rbind,res)); \
stopCluster(cl); mpi.quit()’

4 slaves are spawned successfully. 0 failed.
nodename

[1,] "joe"
[2,] "tony"
[3,] "mccoy"
[4,] "ron"

Note that we told orterun to start on only one node – as snow
then starts four instances (which are split evenly over the four
given hosts).

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

snow: Example cont.

The power of snow lies in the ability to use the apply-style
paradigm over a cluster of machines:
params <- c("A", "B", "C", "D", "E", "F", "G", "H")
cl <- makeCluster(4, "MPI")
res <- parSapply(cl, params, \

FUN=function(x) myBigFunction(x))

will ’unroll’ the parameters params one-each over the function
argument given, utilising the cluster cl. In other words, we will
be running four copies of myBigFunction() at once.

So the snow package provides a unifying framework for
parallelly executed apply functions.

We will come back to more examples with snow below.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

papply, biopara and taskPR

We saw that Rmpi and NWS have apply-style functions, and
that snow provides a unified layer. papply is another CRAN
package that wraps around Rmpi to distribute processing of
apply-style functions across a cluster.

However, using the Open MPI-based Rmpi package, I was not
able to get papply to actually successfully distribute – and
retrieve – results across a cluster. So snow remains the
preferred wrapper.

biopara is another package to distribute load across a cluster
using direct socket-based communication. We consider snow
to be a more general-purpose package for the same task.

taskPR uses the MPI protocol directly rather than via Rmpi. It
is however hard-wired to use LAM and failed to launch under
the Open MPI-implementation.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

multicore

The multicore package by Simon Urbanek is a fairly recent
addition to CRAN.

It provides a convenient interface to locally running parallel
computations in R on machines with multiple cores or CPUs.
Jobs can share the entire initial workspace. This is
implemented using the fork system call available for
POSIX-compliant system (i.e. Linux and OS X but not
Windows).

All jobs launched by multicore share the full state of R when
spawned, no data or code needs to be initialized. This make
the actual spawning very fast since no new R instance needs to
be started.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

multicore

The multicore package provides two main interfaces:

mclapply, a parallel / multicore version of lapply
the functions parallel and collect to launch parallel
execution and gather results at end

For setups in which a sufficient number of cores is available
without requiring network traffic, multicore is likely to be a
very compelling package.

Given that future cpu generation will offer 16, 32 or more cores,
this package may become increasingly popular.

One thing to note is that ’anything but Windows’ is required to
take advantage of multicore.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

multicore cont.

We can illustrate the mclapply function with a simple example:
R> system("pgrep R")

28352

R> mclapply(1:2,
+> FUN=function(x) system("pgrep R", intern=TRUE))

[[1]]
[1] "28352" "31512" "31513"

[[2]]
[1] "28352" "31512" "31513"

So two new R processes were started by multicore.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Iterators, foreach and dopar

REvolution Computing released several packages to CRAN to
elegantly work with serial or parallel loops:

iterators

foreach

backends for %dopar% doMC (for multicore) and doSNOW
(for snow)

Another backend package, doMPI for Rmpi, is currently under
active development and should be on CRAN in due course.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

iterators

iterators provides an object that offers one data element at
a time by calling a method nextElem

iterators can be created using the iter method on list,
vector, matrix, or data.frame objects

iterators resemble the Java and Python constructs of the
same name.

iterators are memory-friendly: one element at a time
whereas sequences gets enumerated fully.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

foreach

The foreach package provides a new looping construct which
scan switch transparently between serial and parallel modes.

It can be seen a mix of for loops and lapply-style functional
operation, and similar to foreach operators in other
programming languages.

We can switch foreach to execute in parallel leaning on the
existing snow or multicore (and soon Rmpi) backends

It works like lapply, but without the need for a function:
x <- foreach(i=1:10) %do% {

sqrt(i)
}
and we can switch to %dopar% for parallel execution.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Why is this interesting?

Objects used in the body of foreach are automatically
exported to remote nodes easing parallel programming:
m <- matrix(rnorm(16), 4, 4)
foreach(i=1:ncol(m)) %dopar% {

mean(m[,i]) # makes m available on nodes
}

We can nest this using the : operator:
foreach (i=1:3, .combine=cbind) %:%

foreach (j=1:3, .combine=c) %dopar%
(i+j)

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

foreach example: demo(sincSEQ)

1 l i b r a r y (foreach)
2 # f u n c t i o n t h a t creates an i t e r a t o r t h a t re tu rns subvectors
3 i v e c t o r <− function (x , chunks) {
4 n <− length (x) ; i <− 1
5 nextE l <− function () {
6 i f (chunks <= 0 | | n <= 0) stop (’ S t o p I t e r a t i o n ’)
7 m <− ce i l ing (n / chunks) ; r <− seq (i , length=m)
8 i <<− i + m; n <<− n − m; chunks <<− chunks − 1; x [r]
9 }

10 obj <− l i s t (nextElem=nextE l)
11 class (ob j) <− c (’ a b s t r a c t i t e r ’ , ’ i t e r ’) ; ob j
12 }
13 x <− seq(−10, 10 , by=0.1) # Def ine coord ina te g r i d
14 cat (’ Running s e q u e n t i a l l y \ n ’) ; ntasks <− 4
15 # Compute the value o f the s inc f u n c t i o n a t each g r i d po in t
16 z <− foreach (y= i v e c t o r (x , ntasks) , . combine=cbind) %do% {
17 y <− rep (y , each= length (x)) ; r <− sqrt (x ^ 2 + y ^ 2)
18 matrix (10 ∗ sin (r) / r , length (x))
19 }
20 # P lo t the r e s u l t s as a perspec t i ve p l o t
21 persp (x , x , z , y lab= ’ y ’ , t he ta =30 , ph i =30 ,expand=0.5 , col=" l i g h t b l u e ")

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

foreach example: demo(sincSEQ) cont.

The key in the foreach demo was the line
z <- foreach(y=ivector(x,ntasks),.combine=cbind) %do% {

y <- rep(y, each=length(x))
r <- sqrt(x ^ 2 + y ^ 2)
matrix(10 * sin(r) / r, length(x))

}
where z is computed in a foreach loop using a custom
ivector iterator over the grid x with a given number of task;
results are recombined using cbind.

The actual work is being done in the code block following %do%.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

foreach example: demo(sincMC)

In order to run this code in parallel using multicore, we
simply use
library(doMC)
registerDoMC()
[...]
nw <- getDoParWorkers()
cat(sprintf(’Running with %d worker(s)\n’, nw))
[...]
z <- foreach(y=ivector(x, nw), \

.combine=cbind) %dopar% {
[...]

as can be seen via demo(sincMC).

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

foreach example: demo(sincMPI)

Similarly, in order to run this code in parallel using Rmpi, we
simply use the doMPI package (on R-Forge, soon on CRAN):
library(doMPI)

create and register a doMPI cluster
cl <- startMPIcluster(count=2)
registerDoMPI(cl)
[...]
compute the sinc function in parallel
v <- foreach(y=x, .combine="cbind") %dopar% {

r <- sqrt(x^2 + y^2) + .Machine$double.eps
sin(r) / r

}
[...]
closeCluster(cl)

as can be seen via demo(sincMPI).

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Using all those cores

Multi-core hardware is now a default, and the number of cores
per cpus is expected to increase dramaticlly over the next few
years. It is therefore becoming more important for software to
take advantage of these features.

Two recent (and still ’experimental’) packages by Luke Tierney
are addressing this question:

pnmath uses OpenMP compiler directives for parallel
code;
pnmath0 uses pthreads and implements the same
interface.

They can be found at http:
//www.stat.uiowa.edu/~luke/R/experimental/

Other (related) approaches are of course multicore
discussed above as well as GPU computing.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.stat.uiowa.edu/~luke/R/experimental/
http://www.stat.uiowa.edu/~luke/R/experimental/

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

pnmath and pnmath0

Both pnmath and pnmath0 provide parallelized vector math
functions and support routines.

Upon loading either package, a number of vector math
functions are replaced with versions that are parallelized. The
functions will be run using multiple threads if their results will be
long enough for the parallel overhead to be outweighed by the
parallel gains. On load a calibration calculation is carried out to
asses the parallel overhead and adjust these thresholds.

Profiling is probably the best way to assess the possible
usefulness. As a quick illustration, we compute the qtukey
function on a eight-core machine:

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

pnmath and pnmath0 illustration
$ r -e’N=1e3;print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
66.590 0.000 66.649

$ r -lpnmath -e’N=1e3; \
print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
67.580 0.080 9.938

$ r -lpnmath0 -e’N=1e3; \
print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
68.230 0.010 9.983

The 6.7-fold reduction in ’elapsed’ time shows that the multithreaded
version takes advantage of the 8 available cores at a sub-linear
fashion as some communications overhead is involved.

These improvements will likely be folded into future R versions.
Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

slurm resource management and queue system

Once the number of compute nodes increases, it becomes
important to be able to allocate and manage resources, and to
queue and batch jobs. A suitable tool is slurm, an
open-source resource manager for Linux clusters.
Paraphrasing from the slurm website:

it allocates exclusive and/or non-exclusive access to
resources (computer nodes) to users;
it provides a framework for starting, executing, and
monitoring (typically parallel) work on a set of allocated
nodes.
it arbitrates contention for resources by managing a queue
of pending work.

Slurm is being developed by a consortium including LLNL, HP,
Bull, and Linux Networks.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

https://computing.llnl.gov/linux/slurm/

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

slurm example

Slurm is rather rich in features; we will only scratch the surface
here.

Slurm can use many underlying message passing /
communications protocols, and MPI is well supported.

In particular, Open MPI works well with slurm. That is an
advantage inasmuch as it permits use of Rmpi.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

slurm example

A simple example:
$ srun -N 2 r -lRmpi -e’cat("Hello", \

mpi.comm.rank(0), "of", \
mpi.comm.size(0), "on", \
mpi.get.processor.name(), "\n")’

Hello 0 of 1 on ron
Hello 0 of 1 on joe
$ srun -n 4 -N 2 -O r -lRmpi -e’cat("Hello", \
mpi.comm.rank(0), "of", \

mpi.comm.size(0), "on", \
mpi.get.processor.name(), "\n")’

Hello 0 of 1 on ron
Hello 0 of 1 on ron
Hello 0 of 1 on joe
Hello 0 of 1 on joe
This shows how to overcommit jobs per node, and provides an
example where we set the number of worker instances on the
command-line.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

slurm example

Additional coomand-line tools of interest are salloc, sbatch,
scontrol, squeue, scancel and sinfo. For example, to
see the status of a compute cluster:
$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug* up infinite 2 idle mccoy,ron

This shows two idle nodes in a partition with the default name
’debug’.

The sview graphical user interface combines the functionality
of a few of the command-line tools.

A more complete example will be provided below.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Use scripting with r and slurm

As discussed at the beginning, the r command of the littler
package (as well as R’s Rscript) provide more robust
alternatives to ’batch’ of R.

We saw that r can also be used four different ways:
r file.R

echo “commands” | r

r -lRmpi -e ’cat("Hello",
mpi.get.processor.name())’

and shebang-style in script files: #!/usr/bin/r

It is the last point that is of particular interest in this HPC
context with slurm.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

slurm and snow

Having introduced snow, slurm and r, we would like to
combine them.

However, there are problems:
snow has a master/worker paradigm yet slurm launches
its nodes symmetrically,
slurm’s srun has limits in spawning jobs
with srun, we cannot communicate the number of nodes
’dynamically’ into the script: snow’s cluster creation needs
a hardwired number of nodes

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

slurm and snow solution

snow solves the master / worker problem by auto-discovery
upon startup. The package contains two internal files
RMPISNOW and RMPISNOWprofile that use a combination of
shell and R code to determine the node idendity allowing it to
switch to master or worker functionality.

We can reduce the same problem to this for our R script:
mpirank <- mpi.comm.rank(0)
if (mpirank == 0) { # are we the master ?

makeMPIcluster()
} else { # or are we a slave ?

sink(file="/dev/null")
slaveLoop(makeMPImaster())
q()

}

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

slurm and snow solution

For example

1 # ! / usr / bin / env r
2

3 suppressMessages (l i b r a r y (Rmpi))
4 suppressMessages (l i b r a r y (snow))
5

6 mpirank <− mpi .comm. rank (0)
7 i f (mpirank == 0) {
8 cat (" Launching master , mpi rank=" , mpirank , " \ n ")
9 makeMPIcluster ()

10 } else { # or are we a slave ?
11 cat (" Launching s lave with , mpi rank=" , mpirank , " \ n ")
12 sink (f i l e =" / dev / n u l l ")
13 slaveLoop (makeMPImaster ())
14 mpi . f i n a l i z e ()
15 q ()
16 }
17

18 s topC lus te r (c l)

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

slurm and snow solution

The example creates
$ orterun -H ron,joe,tony,mccoy -n 4 mpiSnowSimple.r

Launching slave 2
Launching master 0
Launching slave 1
Launching slave 3

and we see that N − 1 workers are running with one instance
running as the coordinating manager node.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

salloc for snow

The other important aspect is to switch to salloc (which will
call orterun) instead of srun.
We can either supply the hosts used using the -w switch, or
rely on the slurm.conf file.
But importantly, we can govern from the call how many
instances we want running (and have neither the srun
limitation requiring overcommitting nor the hard-coded snow
cluster-creation size):
$ salloc -w ron,mccoy orterun -n 7 mpiSnowSimple.r

We ask for a slurm allocation on the given hosts, and instruct
Open MPI to run seven instances.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

salloc for snow

1 # ! / usr / bin / env r
2 suppressMessages (l i b r a r y (Rmpi))
3 suppressMessages (l i b r a r y (snow))
4 mpirank <− mpi .comm. rank (0)
5 i f (mpirank == 0) {
6 cat (" Launching master , mpi rank=" , mpirank , " \ n ")
7 makeMPIcluster ()
8 } else { # or are we a slave ?
9 cat (" Launching s lave with , mpi rank=" , mpirank , " \ n ")

10 sink (f i l e =" / dev / n u l l ")
11 slaveLoop (makeMPImaster ()) ; mpi . f i n a l i z e () ; q ()
12 }
13

14 ## t r i v i a l main body , note how getMPIc lus te r () lea rns from the
15 ## launched c l u s t e r how many nodes are a v a i l a b l e
16 c l <− getMPIc lus te r ()
17 c lus terEva lQ (c l , options (" d i g i t s . secs " =3)) ## show msecs
18 res <− c l u s t e r C a l l (c l , function () paste (format (Sys . time ()) ,
19 Sys . i n f o () ["nodename"]))
20 pr in t (do . c a l l (rbind , res))
21 s topC lus te r (c l) ; mpi . quit ()

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

salloc for snow

$ salloc -w ron,joe,tony orterun -n 7 /tmp/mpiSnowSimple.r

salloc: Granted job allocation 39
Launching slave with, mpi rank= 5
Launching slave with, mpi rank= 2
Launching slave with, mpi rank= 6
Launching master, mpi rank= 0
Launching slave with, mpi rank= 3
Launching slave with, mpi rank= 1
Launching slave with, mpi rank= 4

[,1]
[1,] "2009-06-25 20:51:20.536 joe"
[2,] "2009-06-25 20:51:33.747 tony"
[3,] "2009-06-25 20:51:20.522 ron"
[4,] "2009-06-25 20:51:20.544 joe"
[5,] "2009-06-25 20:51:33.766 tony"
[6,] "2009-06-25 20:51:20.537 ron"
salloc: Relinquishing job allocation 39

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

A complete example
cl <- NULL
mpirank <- mpi.comm.rank(0)
if (mpirank == 0) {

cl <- makeMPIcluster()
} else { # or are we a slave?

sink(file="/dev/null")
slaveLoop(makeMPImaster())
mpi.finalize(); q()

}
clusterEvalQ(cl, library(RDieHarder))
res <- parLapply(cl, c("mt19937","mt19937_1999",

"mt19937_1998", "R_mersenne_twister"),
function(x) {

dieharder(rng=x, test="operm5",
psamples=100, seed=12345) })

stopCluster(cl)
print(do.call(rbind,lapply(res,function(x) {x[[1]]})))
mpi.quit()

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

A complete example cont.

This uses RDieHarder to test four Mersenne-Twister
implementations at once.

A simple analysis shows the four charts and prints the four
p-values:
pdf("/tmp/snowRDH.pdf")
lapply(res, function(x) plot(x))
dev.off()

print(do.call(rbind,
lapply(res, function(x) { x[[1]] })))

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

A complete example cont.

$ salloc -w ron,joe orterun -n 5 snowRDieharder.r

salloc: Granted job allocation 10
[,1]

[1,] 0.1443805247
[2,] 0.0022301018
[3,] 0.0001014794
[4,] 0.0061524281
sall: Relinquishing job allocation 10

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Amdahl’s Law: An upper bound to speed gains

An upper bound to expected gains by parallelization is provided
by Amdahl’s law which relates the proportion P of total running
time which can realize a speedup S due to parallelization
(using S nodes) to the expected net speedup:

1
(1− P) + P

S

e.g. for P = 0.75
and S = 128 we
expect a net
speedup of up to
3.9. Source: http:

//en.wikipedia.org/wiki/Amdahl’s_law

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://en.wikipedia.org/wiki/Amdahl's_law
http://en.wikipedia.org/wiki/Amdahl's_law
http://en.wikipedia.org/wiki/Amdahl's_law

Tools Measure Faster Compile Parallel OoMem Expl NWS Rmpi snow mc it Impl Mgmt Ex Tips

Best practices for Parallel Computing with R

Quoting from the Schmidberger et al pager:

Communication is much slower than computation;
minimize data transfer to and from workers, maximize
remote computation.
Random number generators require extra care.
Special-purpose packages rsprng and rlecuyer are
available; snow provides an integrated interface.
R’s lexical scoping, serializing functions and the
environments they are defined in require care to avoid
transmitting unnecessary data. Functions used in
apply-like calls should be defined in the global
environment, or in a package name space. forever can
be helpful too,

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

Outline

1 Motivation

2 Tools for automation and scripting

3 Measuring and profiling

4 Speeding up

5 Compiled Code

6 Explicitly and Implicitly Parallel

7 Out-of-memory processing

8 Summary

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

Extending physical RAM limits

Two CRAN packages ease the analysis of large datasets.

ff which maps R objects to files and is therefore only
bound by the available filesystem space
bigmemory which maps R objects to dynamic memory
objects not managed by R

Both packages can use the biglm package for out-of-memory
(generalized) linear models.
Also worth mentioning are the older packages g.data for
delayed data assignment from disk, filehash which takes a
slightly more database-alike view by ’attaching’ objects that are
still saved on disk, and R.huge which also uses the disk to
store the data.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

biglm

The biglm package operates on ’larger-than-memory’
datasets by operating on ’chunks’ of data at a time.
make.data <- function ... # see ’help(bigglm)’
dataurl <-

"http://faculty.washington.edu/tlumley/NO2.dat"
airpoll <- make.data(dataurl, chunksize=150, \

col.names=c("logno2","logcars","temp",\
"windsp","tempgrad","winddir","hour","day"))

b <- bigglm(exp(logno2)~logcars+temp+windsp, \
data=airpoll, family=Gamma(log), \
start=c(2,0,0,0),maxit=10)

summary(b)

Both lm() and glm() models can be estimated (and updated)
this way.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

ff: Large Objects

ff won the UseR! 2007 ’large datasets’ competition. It has
since undergone a complete rewrite for versions 2.0 and 2.1.

ff provide memory-efficient storage of R objects on disk, and
fast access functions that transparently map these in pagesize
chunks to main memory. Many native data types are supported.

ff is complex package with numerous options that offer data
access that can be tailored to be extremely memory-efficient.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

ff: Large Objects cont.

As a small example, consider
b <- 1000
n <- 100000
k <- 3
x <- ff(vmode="double", dim=c(b*n,k), \

dimnames=list(NULL, LETTERS[1:k]))
lsos()

Type Size Rows Columns
x ff_matrix 2088 1e+08 3
b numeric 32 1e+00 NA
k numeric 32 1e+00 NA
n numeric 32 1e+00 NA

We see the matrix x has 100 million elements and three
columns, yet occupies only 2088 bytes (essentially an external
pointer and some meta-data).

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

ff: Large Objects cont.

We can use ff along with biglm:
ffrowapply({

l <- i2 - i1 + 1
z <- rnorm(l)
for (i in 1:k) x[i1:i2,i] <- z + rnorm(l)

}, X=x, VERBOSE=TRUE, BATCHSIZE=n)

form <- A ~ B + C
first <- TRUE
ffrowapply({
if (first){
first <- FALSE
fit <- biglm(form,as.data.frame(x[i1:i2,,drop=FALSE]))

} else
fit <- update(fit,as.data.frame(x[i1:i2,,drop=FALSE]))

}, X=x, VERBOSE=TRUE, BATCHSIZE=n)

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

bigmemory

The bigmemory package is similar to ff as it allows allocation
and access to memory managed by the operating system but
’outside’ of the view of R (and optionally mapped to disk).
bigmemory implements locking and sharing which allows
multiple R sessions on the same host to access a common
(large) object managed by bigmemory.
> object.size(big.matrix(1000,1000, "double"))

[1] 372

> object.size(matrix(double(1000*1000), ncol=1000))

[1] 8000112

To R, a big.matrix of 1000× 1000 elements occupies only
372 bytes of memory. The actual size of 800 mb is allocated by
the operating system, and R interfaces it via an ’external
pointer’ object.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

bigmemory cont.

We can illustrate bigmemory use of biglm:
x <- matrix(unlist(iris), ncol=5)
colnames(x) <- names(iris)
x <- as.big.matrix(x)

silly.biglm <- biglm.big.matrix(Sepal.Length ~ \
Sepal.Width + Species, data=x, fc="Species")

summary(silly.biglm)

As before, the memory use of the new ’out-of-memory’ object is
smaller than the actual dataset as the ’real’ storage is outside of
what the R memory manager sees.

This can of course be generalized to really large datasets and
’chunked’ access.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

Example

The recent ASA dataviz competition asked for a graphical
summary of a huge dataset.

We are going to look at the entry by Jay Emerson and his
student Michael Kane as it covers several of the packages we
looked at here.

The data contains flight arrival and departure data for almost all
commercial flights within the USA from October 1987 to April
2008.

There are almost 120 million records and 29 variables, with
some recoding done by Emerson and Kane.

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://stat-computing.org/dataexpo/2009/
http://www.stat.yale.edu/~jay

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

Example: Sequential data access

Task: For every plane, find the month of its earliest flight in the
data set.

1 # Take one : Sequent ia l
2 #
3 date ()
4 numplanes <− length (unique (x [, " TailNum "])) − 1
5 p laneSta r t <− rep (0 , numplanes)
6 for (i i n t h e s e f l i g h t s) { ## t h e s e f l i g h t s i s a sample
7 y <− x [mwhich (x , " TailNum " , i , ’ eq ’) ,
8 c (" Year " , " Month ") , drop=FALSE] # Note t h i s .
9 minYear <− min (y [, " Year "] , na . rm=TRUE)

10 these <− which (y [, " Year "]== minYear)
11 minMonth <− min (y [these , " Month "] , na . rm=TRUE)
12 p laneS ta r t [i] <− 12∗minYear + minMonth
13 cat (" TailNum " , i , minYear , minMonth , nrow (y) , p laneSta r t [i] , " \ n ")
14 }
15 p laneSta r t [p laneSta r t ! =0]
16 date () ## approx imate ly 9 hours on the Yale c l u s t e r

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

Example: Sequential data access

1 # Take two : foreach () , sequen t ia l :
2 #
3 require (foreach)
4 date ()
5 p laneSta r t <− foreach (i = t h e s e f l i g h t s , . combine=c) %dopar% {
6 y <− x [mwhich (x , " TailNum " , i , ’ eq ’) ,
7 c (" Year " , " Month ") , drop=FALSE] # Note t h i s .
8 minYear <− min (y [, " Year "] , na . rm=TRUE)
9 these <− which (y [, " Year "]== minYear)

10 minMonth <− min (y [these , " Month "] , na . rm=TRUE)
11 cat (" TailNum " , i , minYear , minMonth , nrow (y) , p laneSta r t [i] , " \

n ")
12 12∗minYear + minMonth
13 }
14 p laneSta r t
15 date () ## t ime ?

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

Example: Sequential data access

1 # Take three : foreach () and mu l t i co re
2 #
3 # Master and fou r workers
4 #
5 l i b r a r y (doMC)
6 registerDoMC ()
7 date ()
8 p laneSta r t <− foreach (i = t h e s e f l i g h t s , . combine=c) %dopar% {
9 x <− attach . b ig . matrix (xdesc)

10 y <− x [mwhich (x , " TailNum " , i , ’ eq ’) ,
11 c (" Year " , " Month ") , drop=FALSE] # Note t h i s .
12 minYear <− min (y [, " Year "] , na . rm=TRUE)
13 these <− which (y [, " Year "]== minYear)
14 minMonth <− min (y [these , " Month "] , na . rm=TRUE)
15 rm (x) ; gc ()
16 12∗minYear + minMonth
17 }
18 p laneSta r t
19 date () ## now about 2.5 hours

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem overview biglm ff bigmemory Example

Example: Sequential data access

1 # Take fou r : foreach () and snow / SOCK
2 #
3 # Master and three workers
4 #
5 l i b r a r y (doSNOW)
6 c l <− makeSOCKcluster (3)
7 registerDoSNOW (c l)
8 date ()
9 p laneSta r t <− foreach (i = t h e s e f l i g h t s , . combine=c) %dopar% {

10 require (bigmemory)
11 x <− attach . b ig . matrix (xdesc)
12 y <− x [mwhich (x , " TailNum " , i , ’ eq ’) ,
13 c (" Year " , " Month ") , drop=FALSE] # Note t h i s .
14 minYear <− min (y [, " Year "] , na . rm=TRUE)
15 these <− which (y [, " Year "]== minYear)
16 minMonth <− min (y [these , " Month "] , na . rm=TRUE)
17 12∗minYear + minMonth
18 }
19 p laneSta r t
20 s topC lus te r (c l)
21 date () ## about 3.5 hours

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem

Outline

1 Motivation

2 Tools for automation and scripting

3 Measuring and profiling

4 Speeding up

5 Compiled Code

6 Explicitly and Implicitly Parallel

7 Out-of-memory processing

8 Summary

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

Tools Measure Faster Compile Parallel OoMem

Wrapping up

In this tutorial session, we covered
scripting and automation using littler, Rscript and RPy
profiling and tools for visualising profiling output
gaining speed using vectorisation, Ra and just-in-time
compilation
even more speed via compiled code using tools like inline
and Rcpp, and how to embed R in C++ programs
running R code in parallel, explicitly and implicitly
working with large datasets that exceed the available
memory size

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile Parallel OoMem

Wrapping up

Further questions ?

Two good resources are
the mailing list r-sig-hpc on HPC with R,
the HighPerformanceComputing task view on CRAN.

Further resources:

(Some) scripts are at
http://dirk.eddelbuettel.com/code/hpcR/

Updated versions of the tutorial may appear at http:
//dirk.eddelbuettel.com/presentations.html

Do not hesitate to email me at edd@debian.org

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

r-sig-hpc
HighPerformanceComputing
http://dirk.eddelbuettel.com/code/hpcR/
http://dirk.eddelbuettel.com/presentations.html
http://dirk.eddelbuettel.com/presentations.html
edd@debian.org

Tools Measure Faster Compile Parallel OoMem

Thank You!

Dirk Eddelbuettel High-Perf. Computing with R @ ISM, Japan, Nov 2009

	Motivation
	Tools for automation and scripting
	Overview
	littler
	Rscript
	RPy

	Measuring and profiling
	Overview
	RProf
	RProfmem
	Profiling Compiled Code

	Speeding up
	Vectorisation
	Just-in-time compilation
	BLAS
	GPUs

	Compiled Code
	Overview
	Inline
	Rcpp
	RInside
	Debugging

	Explicitly and Implicitly Parallel
	Explicitly parallel: Overview
	NWS
	Rmpi
	snow
	multicore
	iterators, foreach and dopar
	Implicitly parallel using several cores
	Resource management and queue system
	Example
	Some general tips

	Out-of-memory processing
	overview
	biglm
	ff
	bigmemory
	Example

	Summary

