
If You Can’t Beat ’Em …

Some Comments on Using R Along With Other Languages

Dirk Eddelbuettel

31 July 2016

Open Source Statistical Software for Data Science — Invited Papers
Joint Statistical Meetings (JSM), Chicago, IL

JSM 2016 1/27

Welcome to Lollapalooza!

JSM 2016 2/27

Overview

Content

• Single- or Multi-Language ?

• Interlude

• Empirics

• Illustration

• Conclusion

JSM 2016 3/27

Single- Or Multi-Language ?

JSM 2016 4/27

Claim: 1 + 1 > 2

Better with more than one?

• No one language fits all

• Real-world projects are frequently multi-language

• See e.g. job ads which rarely ever list just one language

JSM 2016 5/27

Counter-claim: 1 + 1 < 2

Or better with just one?

• Mental switching cost between languages? Possibly

• Interop difficult and less portable? Maybe, but that is an
argument against weak systems / OSs

• Easier / less to learn?

• “More hoops” to code?

JSM 2016 6/27

Mental switching costs?

JSM 2016 7/27

So which one is it?

Open Question

• Hard to measure or test: Any empirics on real world projects?

• Code competition / comparisons (e.g. Project Euler): Are they
realistic?

JSM 2016 8/27

Interlude

JSM 2016 9/27

John Chambers

Chambers (2008) Software For
Data Analysis
Chapters 10 and 11 devoted to
Interfaces I: C and Fortran and
Interfaces II: Other Systems.

JSM 2016 10/27

John Chambers

Chambers (2016) Extending R
An entire book about this with
concrete Python, Julia and C++
code and examples

JSM 2016 11/27

John Chambers

Chambers 2016, Chapter 4

The fundamental lesson about programming in the large is
that requires a correspondingly broad and flexible
response. In particular, no single language or software
system os likely to be ideal for all aspects. Interfacing
multiple systems is the essence. Part IV explores the
design of of interfaces from R.

JSM 2016 12/27

Chamber 1976

Thanks to John Chambers for a
scanned copy of this historic sketch.

JSM 2016 13/27

Empirics

JSM 2016 14/27

Growth

2010 2012 2014 2016

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Growth of Rcpp usage on CRAN

n

Number of CRAN packages using Rcpp (left axis)
Percentage of CRAN packages using Rcpp (right axis)

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

2010 2012 2014 2016

0
2

4
6

8

JSM 2016 15/27

Pagerank

library(pagerank) # github.com/andrie/pagerank

cran <- ”http://cloud.r-project.org”

pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Rcpp MASS ggplot2 Matrix mvtnorm
2.452 1.771 1.088 0.920 0.749

JSM 2016 16/27

Pagerank

boot
rgl
zoo
data.table
nlme
RCurl
coda
XML
foreach
reshape2
jsonlite
RcppArmadillo
dplyr
igraph
sp
stringr
httr
lattice
plyr
survival
mvtnorm
Matrix
ggplot2
MASS
Rcpp

0.005 0.010 0.015 0.020 0.025

Top 25 of Page Rank as of July 2016

JSM 2016 17/27

Pagerank

Rcpp

MASS

ggplot2

Matrix

mvtnorm

lattice

plyr

stringr

RColorBrewer

dichromat

munsell

labeling

stringi

magrittr

colorspace

digest

gtable

reshape2

scales

sp

MatrixModels

graph

SparseM

sfsmisc

→
→
→

Imports
LinkingTo
Enhances

Top 5 packages by page rank

JSM 2016 18/27

Illustration

JSM 2016 19/27

Using R to C++ to Boost to Python, and back

Setup

py_cflags <- system(”python2.7-config --cflags”, intern=TRUE)
se <- Sys.setenv; ge <- Sys.getenv # shorthands to typeset
se(”PKG_CFLAGS”=sprintf(”%s %s”, ge(”PKG_CFLAGS”), py_cflags))
se(”PKG_CXXFLAGS”=sprintf(”%s %s”, ge(”PKG_CXXFLAGS”), py_cflags))
py_ldflags <- system(”python2.7-config --ldflags”, intern=TRUE)
se(”PKG_LIBS”=sprintf(”%s %s %s”, ge(”PKG_CFLAGS”),

”-lboost_python-py27”, py_ldflags))

JSM 2016 20/27

Using R to C++ to Boost to Python, and back

#include <Rcpp.h>
#include <Python.h>

// [[Rcpp::export]]
void initialize_python() {

Py_SetProgramName(””); /* optional but recommended */
Py_Initialize();

}

// [[Rcpp::export]]
void hello_python() {

PyRun_SimpleString(”from time import time,ctime\n”
”print ’Today is’,ctime(time())\n”);

}

JSM 2016 21/27

Using R to C++ to Boost to Python, and back

Hello, World: Called from R

initialize_python()
hello_python()

Today is Sat Jul 30 13:38:01 2016

More at http://gallery.rcpp.org/articles/rcpp-python/
Disclaimer: For illustration purposes. Works as designed on Ubuntu. Not meant to be universally portable to all three OSs.

JSM 2016 22/27

http://gallery.rcpp.org/articles/rcpp-python/

Conclusion

JSM 2016 23/27

Being Polyglot

Mixing Languages

• Common

• Natural

• Unavoidable

JSM 2016 24/27

Being Polyglot

Consequences

• Must make it easier to interoperate

• Stop bickering among ourselves

• Build systems that are larger that the sum of their parts

JSM 2016 25/27

Being Polyglot

Just Do It

JSM 2016 26/27

Appendix

Lars Wirzenius “Which license is the most free?”
Free software licences can be roughly grouped into permissive and copyleft ones.
[…] A permissive licence lets you do things that a copyleft one forbids, so clearly the
permissive licence is more free. A copyleft licence means software using it won’t
ever become non-free against the wills of the copyright holders, so clearly a
copyleft licence is more free than a permissive one.

Both sides are both right and wrong, of course, which is why this argument will
continue forever. […]

If a discussion about the relative freedom of licence types becomes heated, step
away. It’s not worth participating anymore.

http://yakking.branchable.com/posts/comparative-freeness/

JSM 2016 27/27

http://yakking.branchable.com/posts/comparative-freeness/

	Single- Or Multi-Language ?
	Interlude
	Empirics
	Illustration
	Conclusion

