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Welcome to Lollapalooza!
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Single- Or Multi-Language ?
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Claim: 1 + 1 > 2

Better with more than one?

• No one language fits all

• Real-world projects are frequently multi-language

• See e.g. job ads which rarely ever list just one language
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Counter-claim: 1 + 1 < 2

Or better with just one?

• Mental switching cost between languages? Possibly

• Interop difficult and less portable? Maybe, but that is an
argument against weak systems / OSs

• Easier / less to learn?

• “More hoops” to code?
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Mental switching costs?
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So which one is it?

Open Question

• Hard to measure or test: Any empirics on real world projects?

• Code competition / comparisons (e.g. Project Euler): Are they
realistic?
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Interlude
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John Chambers

Chambers (2008) Software For
Data Analysis
Chapters 10 and 11 devoted to
Interfaces I: C and Fortran and
Interfaces II: Other Systems.
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John Chambers

Chambers (2016) Extending R
An entire book about this with
concrete Python, Julia and C++
code and examples
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John Chambers

Chambers 2016, Chapter 4

The fundamental lesson about programming in the large is
that requires a correspondingly broad and flexible
response. In particular, no single language or software
system os likely to be ideal for all aspects. Interfacing
multiple systems is the essence. Part IV explores the
design of of interfaces from R.
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Chamber 1976

Thanks to John Chambers for a
scanned copy of this historic sketch.
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Empirics
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Growth
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Pagerank

library(pagerank) # github.com/andrie/pagerank

cran <- ”http://cloud.r-project.org”

pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

## Rcpp MASS ggplot2 Matrix mvtnorm
## 2.452 1.771 1.088 0.920 0.749
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Pagerank

boot
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ggplot2
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Rcpp
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Top 25 of Page Rank as of July 2016
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Pagerank

Rcpp
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Illustration
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Using R to C++ to Boost to Python, and back

Setup

py_cflags <- system(”python2.7-config --cflags”, intern=TRUE)
se <- Sys.setenv; ge <- Sys.getenv # shorthands to typeset
se(”PKG_CFLAGS”=sprintf(”%s %s”, ge(”PKG_CFLAGS”), py_cflags))
se(”PKG_CXXFLAGS”=sprintf(”%s %s”, ge(”PKG_CXXFLAGS”), py_cflags))
py_ldflags <- system(”python2.7-config --ldflags”, intern=TRUE)
se(”PKG_LIBS”=sprintf(”%s %s %s”, ge(”PKG_CFLAGS”),

”-lboost_python-py27”, py_ldflags))
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Using R to C++ to Boost to Python, and back

#include <Rcpp.h>
#include <Python.h>

// [[Rcpp::export]]
void initialize_python() {

Py_SetProgramName(””); /* optional but recommended */
Py_Initialize();

}

// [[Rcpp::export]]
void hello_python() {

PyRun_SimpleString(”from time import time,ctime\n”
”print ’Today is’,ctime(time())\n”);

}
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Using R to C++ to Boost to Python, and back

Hello, World: Called from R

initialize_python()
hello_python()

## Today is Sat Jul 30 13:38:01 2016

More at http://gallery.rcpp.org/articles/rcpp-python/
Disclaimer: For illustration purposes. Works as designed on Ubuntu. Not meant to be universally portable to all three OSs.
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Conclusion
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Being Polyglot

Mixing Languages

• Common

• Natural

• Unavoidable
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Being Polyglot

Consequences

• Must make it easier to interoperate

• Stop bickering among ourselves

• Build systems that are larger that the sum of their parts
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Being Polyglot

Just Do It
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Appendix

Lars Wirzenius “Which license is the most free?”
Free software licences can be roughly grouped into permissive and copyleft ones.
[…] A permissive licence lets you do things that a copyleft one forbids, so clearly the
permissive licence is more free. A copyleft licence means software using it won’t
ever become non-free against the wills of the copyright holders, so clearly a
copyleft licence is more free than a permissive one.

Both sides are both right and wrong, of course, which is why this argument will
continue forever. […]

If a discussion about the relative freedom of licence types becomes heated, step
away. It’s not worth participating anymore.

http://yakking.branchable.com/posts/comparative-freeness/
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