
INTRODUCTION TO RCPP

Dirk Eddelbuettel

Invited Seminar, King Abdullah University of

Science and Technology (KAUST), Saudi Arabia

30 Nov 2022

https://dirk.eddelbuettel.com/papers/kaust_rcppIntro_nov2022.pdf

https://dirk.eddelbuettel.com/papers/kaust_rcppIntro_nov2022.pdf

WHO AM I ?

Talk @ KAUST 2/60

MY DAY JOB

And we are hiring!
Talk @ KAUST 3/60

https://apply.workable.com/tiledb/

MY OTHER JOBS

Academic

• (Adjunct) Clinical Professor, University of Illinois
• developed and teaching Data Science Programming Methods class

Open Source

• Debian developer since 1995, currently maintaining about 185 packages

• R package author since 2002, author or maintainer of over 60 CRAN packages

• R Foundation Board Member, JSS Associate Editor

• Rocker Project co-founder: Docker for R, including official ‘r-base’ image

Talk @ KAUST 4/60

https://stat447.com

INTRODUCTION TO RCPP

Talk @ KAUST 5/60

VERY BROAD OUTLINE

Overview

• Why ?

• How ?

Talk @ KAUST 6/60

INTRODUCTION: WHY?

Talk @ KAUST 7/60

SO WHY RCPP?

Three key reasons

• Speed and Performance are key reasons

• We also can do some things you could not do before

• And it is easy (or ‘easier’) to extend R this way

Talk @ KAUST 8/60

SIMPLE EXAMPLE

R Version of ‘ is this number odd or even’

isOdd_r <- function(num = 10L) {
result = (num %% 2L == 1L)
return(result)

}
isOdd_r(42L)

[1] FALSE

Talk @ KAUST 9/60

SIMPLE EXAMPLE (CONT.)

C++ Version of ‘ is this number odd or even’

bool isOdd_cpp(int num = 10) {
bool result = (num % 2 == 1);
return result;

}

Free-standing code, not yet executable, may need Makefile, …

Talk @ KAUST 10/60

SIMPLE EXAMPLE (CONT.)

Rcpp Version of ‘ is this number odd or even’

Rcpp::cppFunction(”
bool isOdd_cpp(int num = 10) {

bool result = (num % 2 == 1);
return result;

}”)
isOdd_cpp(42L)

[1] FALSE

Talk @ KAUST 11/60

SIMPLE EXAMPLE (CONT.)

In R

##
isOdd_r <- function(n=10L) {

res = (n %% 2L == 1L)
return(res)

}
isOdd_r(42L)

[1] FALSE

In C++ via Rcpp

Rcpp::cppFunction(”
bool isOdd_cpp(int n=10) {

bool res = (n % 2 == 1);
return res;

}”)
isOdd_cpp(42L)

[1] FALSE

Talk @ KAUST 12/60

SECOND EXAMPLE: VAR(1)

Let’s consider a very simple VAR(1) system of k variables.

For k = 2:

Xt = Xt−1B+ Et

where Xt is a row vector of length 2,
B is a 2 by 2 matrix and
Et is a row of the error matrix of 2 columns.

Talk @ KAUST 13/60

SECOND EXAMPLE: VAR(1)

In R code, given both the coefficient and error matrices (revealing k and n):

rSim <- function(B,E) {
X <- matrix(0,nrow(E), ncol(E))
for (r in 2:nrow(E)) {

X[r,] = X[r-1,] %*% B + E[r,]
}
return(X)

}

Talk @ KAUST 14/60

SECOND EXAMPLE: VAR(1)

library(Rcpp)
cppFunction('arma::mat cppSim(arma::mat B, arma::mat E) {

int m = E.n_rows;
int n = E.n_cols;
arma::mat X(m,n);
X.row(0) = arma::zeros<arma::mat>(1,n);
for (int r=1; r<m; r++) {

X.row(r) = X.row(r-1) * B + E.row(r);
}
return X;

}', depends=”RcppArmadillo”)

Talk @ KAUST 15/60

SECOND EXAMPLE: VAR(1)

library(rbenchmark)
a <- matrix(c(0.5,0.1,0.1,0.5),nrow=2)
e <- matrix(rnorm(10000),ncol=2)
benchmark(cppSim(a,e), rSim(a,e), order=”relative”)[,1:4]

test replications elapsed relative
1 cppSim(a, e) 100 0.011 1.000
2 rSim(a, e) 100 0.691 62.818

Talk @ KAUST 16/60

SO WHEN DO WE USE RCPP?

New things: Easy access to C/C++ libraries

• Sometimes speed is not the only reason
• C & C++ provide numerous libraries + APIs we may want to use
• Easy to provide access to as Rcpp eases data transfer

Talk @ KAUST 17/60

AN ASIDE

Talk @ KAUST 18/60

GROWTH

2010 2015 2020

0
50

0
10

00
15

00
20

00
25

00

Growth of Rcpp usage on CRAN

n

Number of CRAN packages using Rcpp (left axis)
Percentage of CRAN packages using Rcpp (right axis)

0
50

0
10

00
15

00
20

00
25

00

2010 2015 2020

0
2

4
6

8
10

12
14

Data current as of November 27, 2022.

Talk @ KAUST 19/60

USERS ON CORE REPOSITORIES

Rcpp is currently used by

• 2616 CRAN packages

• 252 BioConductor packages

• an unknown (but “large”) number of GitHub projects

Talk @ KAUST 20/60

PAGERANK

suppressMessages(library(utils))
library(pagerank) # cf github.com/andrie/pagerank

cran <- ”https://cran.r-project.org”
pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Rcpp ggplot2 dplyr MASS magrittr
2.764 1.584 1.353 1.073 0.844

Talk @ KAUST 21/60

PAGERANK

readr
lattice
R6
glue
sp
lubridate
doParallel
scales
reshape2
igraph
plyr
foreach
shiny
survival
mvtnorm
httr
RcppArmadillo
purrr
jsonlite
tidyr
data.table
tibble
Matrix
stringr
rlang
magrittr
MASS
dplyr
ggplot2
Rcpp

0.005 0.010 0.015 0.020 0.025

Top 30 of Page Rank as of November 2022

Talk @ KAUST 22/60

PERCENTAGE OF COMPILED PACKAGES

db <- tools::CRAN_package_db() # added in R 3.4.0
db <- db[!duplicated(db[,1]),] # rows: nb of pkgs,
nTot <- nrow(db) # cols: different attributes
nRcpp <- length(tools::dependsOnPkgs(”Rcpp”,recursive=FALSE, installed=db))
nCompiled <- table(db[, ”NeedsCompilation”])[[”yes”]]
propRcpp <- nRcpp / nCompiled * 100
data.frame(tot=nTot, totRcpp = nRcpp, totCompiled = nCompiled,

RcppPctOfCompiled = propRcpp)

tot totRcpp totCompiled RcppPctOfCompiled
1 18898 2616 4456 58.7074

Talk @ KAUST 23/60

INTRODUCTION: HOW?

Talk @ KAUST 24/60

JUMPING RIGHT IN: VIA RSTUDIO

Talk @ KAUST 25/60

A FIRST EXAMPLE: CONT’ED

#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can source this function into
// an R session using the Rcpp::sourceCpp function (or via the Source button on the editor toolbar).

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}

// You can include R code blocks in C++ files processed with sourceCpp (useful for testing and
// development). The R code will be automatically run after the compilation.

/*** R
timesTwo(42)
*/

Talk @ KAUST 26/60

A FIRST EXAMPLE: CONT’ED

So what just happened?

• We defined a very simple C++ function
• It operates on a numeric vector argument
• We ask Rcpp to ‘source it’ for us:

• Behind the scenes Rcpp creates a wrapper
• Rcpp then compiles, links, and loads the wrapper

• The function becomes available in R under the same name as the C++ function

Talk @ KAUST 27/60

ANOTHER EXAMPLE: FOCUS ON SPEED

Consider a function defined as

f(n) such that

 n when n < 2
f(n − 1) + f(n − 2) when n ≥ 2

Talk @ KAUST 28/60

AN INTRODUCTORY EXAMPLE: SIMPLE R IMPLEMENTATION

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

Using it on first 11 arguments
sapply(0:10, f)

[1] 0 1 1 2 3 5 8 13 21 34 55

Talk @ KAUST 29/60

AN INTRODUCTORY EXAMPLE: TIMING R IMPLEMENTATION

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

test replications elapsed relative
1 f(10) 100 0.008 1.000
2 f(15) 100 0.098 12.250
3 f(20) 100 1.141 142.625

Talk @ KAUST 30/60

AN INTRODUCTORY EXAMPLE: C++ IMPLEMENTATION

C(++) Code

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

Deployed as

Rcpp::cppFunction('int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}')
Using it on first 11 arguments
sapply(0:10, g)

[1] 0 1 1 2 3 5 8 13 21 34 55

Talk @ KAUST 31/60

AN INTRODUCTORY EXAMPLE: COMPARING TIMING

Timing:

library(rbenchmark)
benchmark(f(20), g(20))[,1:4]

test replications elapsed relative
1 f(20) 100 1.172 586
2 g(20) 100 0.002 1

A nice gain of a few orders of magnitude.

Talk @ KAUST 32/60

SOME BACKGROUND

Talk @ KAUST 33/60

TYPES

R Type mapping

Standard R types (integer, numeric, list, function, … and compound objects) are mapped
to corresponding C++ types using extensive template meta-programming – it just works:

library(Rcpp)
cppFunction(”NumericVector la(NumericVector x){

return log(abs(x));
}”)
la(seq(-5, 5, by=2))

Also note: vectorized C++! log(abs()) on vectors as R would.

Talk @ KAUST 34/60

STL TYPE MAPPING

Use of std::vector<double> and STL algorithms:

#include <Rcpp.h>
using namespace Rcpp;

inline double f(double x) { return ::log(::fabs(x)); }

// [[Rcpp::export]]
std::vector<double> logabs2(std::vector<double> x) {

std::transform(x.begin(), x.end(), x.begin(), f);
return x;

}

Not vectorized but std::transform() ‘sweeps’ f() across.
Talk @ KAUST 35/60

STL TYPE MAPPING

Used via

library(Rcpp)
sourceCpp(”code/logabs2.cpp”)
logabs2(seq(-5, 5, by=2))

Talk @ KAUST 36/60

TYPE MAPPING IS SEAMLESS

Simple outer product of a col. vector (using RcppArmadillo):

library(Rcpp)
cppFunction(”arma::mat v(arma::colvec a) { return a*a.t(); }”,

depends=”RcppArmadillo”)
v(1:3)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

Uses implicit conversion via as<> and wrap – cf vignette Rcpp-extending.

Talk @ KAUST 37/60

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-extending.pdf

C++11: LAMBDAS, AUTO, AND MUCH MORE

We can simplify the log(abs(...)) example further:

#include <Rcpp.h>
// [[Rcpp::plugins(cpp11)]]

using namespace Rcpp;

// [[Rcpp::export]]
std::vector<double> logabs3(std::vector<double> x) {

std::transform(x.begin(), x.end(), x.begin(), [](double x) {
return ::log(::fabs(x));

});
return x;

}

Talk @ KAUST 38/60

SUGAR

Talk @ KAUST 39/60

SYNTACTIC ‘SUGAR’: SIMULATING π IN R

Draw (x, y), compute distance to origin. Do so repeatedly, and ratio of points below one
to number N of simulations will approach π/4 as we fill the area of 1/4 of the unit circle.

piR <- function(N) {
x <- runif(N)
y <- runif(N)
d <- sqrt(x^2 + y^2)
return(4 * sum(d <= 1.0) / N)

}
set.seed(5)
sapply(10^(3:6), piR)

[1] 3.15600 3.15520 3.13900 3.14101
Talk @ KAUST 40/60

SYNTACTIC ‘SUGAR’: SIMULATING π IN C++

Rcpp sugar enables us to write C++ code that is almost as compact.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {

NumericVector x = runif(N);
NumericVector y = runif(N);
NumericVector d = sqrt(x*x + y*y);
return 4.0 * sum(d <= 1.0) / N;

}

The code is essentially identical.
Talk @ KAUST 41/60

SYNTACTIC ‘SUGAR’: SIMULATING π

And by using the same RNG, so are the results.

library(Rcpp)
sourceCpp(”code/piSugar.cpp”)
set.seed(42); a <- piR(1.0e7)
set.seed(42); b <- piSugar(1.0e7)
identical(a,b)

[1] TRUE

print(c(a,b), digits=7)

[1] 3.140899 3.140899

Talk @ KAUST 42/60

SYNTACTIC ‘SUGAR’: SIMULATING π

The performance is close with a small gain for C++ as R is already vectorised:

library(rbenchmark)
sourceCpp(”code/piSugar.cpp”)
benchmark(piR(1.0e6), piSugar(1.0e6))[,1:4]

test replications elapsed relative
1 piR(1e+06) 100 4.630 2.844
2 piSugar(1e+06) 100 1.628 1.000

Talk @ KAUST 43/60

HOW TO: MAIN USAGE PATTERNS

Talk @ KAUST 44/60

BASIC USAGE: EVALCPP()

evalCpp() evaluates one C++ expression. Includes and dependencies can be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2”) # simple test

[1] 4

evalCpp(”std::numeric_limits<double>::max()”)

[1] 1.79769e+308

Talk @ KAUST 45/60

BASIC USAGE: CPPFUNCTION()

cppFunction() creates, compiles and links a C++ file, and creates an R function to
access it.

cppFunction(”
int exampleCpp11() {

auto x = 10;
return x;

}”, plugins=c(”cpp11”))
exampleCpp11() # same identifier as C++ function

Talk @ KAUST 46/60

BASIC USAGE: SOURCECPP()

sourceCpp() is the actual workhorse behind evalCpp() and cppFunction(). It is
described in more detail in the package vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package inline, but
provides even more ease-of-use, control and helpers – freeing us from boilerplate
scaffolding.

A key feature are the plugins and dependency options: other packages can provide a
plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen,
RcppGSL).

Talk @ KAUST 47/60

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf

BASIC USAGE: PACKAGES

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can be created by
Rcpp.package.skeleton()

The vignette Rcpp-packages has fuller details.

As of November 2022, there are 2616 CRAN and 252 BioConductor packages which use
Rcpp all offering working, tested, and reviewed examples.

Talk @ KAUST 48/60

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-packages.pdf

PACKAGES AND RCPP

Best way to organize R code with Rcpp is via a package:

Talk @ KAUST 49/60

PACKAGES AND RCPP

Rcpp.package.skeleton() and its derivatives as e.g. Rcpp-
Armadillo.package.skeleton() create working packages.
// another simple example: outer product of a vector, returning a matrix
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}

Talk @ KAUST 50/60

PACKAGES AND RCPP

Two (or three) ways to link to external libraries

• Full copies: Do what mlpack does and embed a full copy; larger build time, harder
to update, self-contained

• With linking of libraries: Do what e.g. RcppGSL does and use hooks in the package
startup to store compiler and linker flags which are passed to environment
variables

• With C++ template headers only: Do what RcppArmadillo and other do and just
point to the headers

More details in extra vignettes.

Talk @ KAUST 51/60

PACKAGES AND RCPP

Rcpp vignette and arXiv paper

(But there are alternatives approaches as
e.g. ships packages with static libraries
other packages can link against. This is
however uncommon on CRAN.)

Talk @ KAUST 52/60

https://arxiv.org/abs/1911.06416

BIG PICTURE

Talk @ KAUST 53/60

SHOULD YOU USE RCPP? OR NOT?

Choice is yours

• Code generation helps remove build-cycle tedious and repetitive boilerplate
• The interfaces are shorter and simpler, and more R like

• recall the is_odd function earlier

• Using the pllain C API to R is of course perfectly fine
• But (in our view) this requires more work

• more manual steps for type conversion to/from R
• additional steps for the required memory protection
• all of which is error prone

Talk @ KAUST 54/60

COMPARE

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b) {
int na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));
b = PROTECT(coerceVector(b, REALSXP));
na = length(a);
nb = length(b);
nab = na + nb - 1;
ab = PROTECT(allocVector(REALSXP, nab));
xa = REAL(a);
xb = REAL(b);
xab = REAL(ab);
for(int i = 0; i < nab; i++)

xab[i] = 0.0;
for(int i = 0; i < na; i++)

for(int j = 0; j < nb; j++)
xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);
return ab;

}

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector convolve2cpp(Rcpp::NumericVector a,

Rcpp::NumericVector b) {
int na = a.length(),

nb = b.length();
Rcpp::NumericVector ab(na + nb - 1);
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
ab[i + j] += a[i] * b[j];

return(ab);
}

You always have a choice between the code (from
Section 5.10.1 of Writing R Extensions) on the left, or
the equivalent Rcpp code on the right.

Talk @ KAUST 55/60

MORE

Talk @ KAUST 56/60

DOCUMENTATION

Rcpp Resources

• The package comes with nine pdf vignettes, and help pages.
• The introductory vignettes are now published (Rcpp and RcppEigen in J Stat
Software, RcppArmadillo in Comp Stat & Data Anlys, Rcpp again in TAS)

• The rcpp-devel list is the recommended resource: helpful, and low volume.
• StackOverflow has by now several thousand posts (and is searchable)
• And a number of blog posts introduce/discuss features.

Talk @ KAUST 57/60

RCPP GALLERY

Talk @ KAUST 58/60

THE RCPP BOOK

On sale since June 2013.

Talk @ KAUST 59/60

THANK YOU!

slides https://dirk.eddelbuettel.com/presentations/

web https://dirk.eddelbuettel.com/

mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

Talk @ KAUST 60/60

https://dirk.eddelbuettel.com/presentations/
https://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Who am I ?
	Introduction to Rcpp
	Introduction: Why?
	An Aside
	Introduction: How?
	Some Background
	Sugar
	How to: Main Usage Patterns
	Big Picture
	More

