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WHO AM I ?
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MY DAY JOB

And we are hiring!
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https://apply.workable.com/tiledb/


MY OTHER JOBS

Academic

• (Adjunct) Clinical Professor, University of Illinois
• developed and teaching Data Science Programming Methods class

Open Source

• Debian developer since 1995, currently maintaining about 185 packages

• R package author since 2002, author or maintainer of over 60 CRAN packages

• R Foundation Board Member, JSS Associate Editor

• Rocker Project co-founder: Docker for R, including official ‘r-base’ image
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https://stat447.com


INTRODUCTION TO RCPP
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VERY BROAD OUTLINE

Overview

• Why ?

• How ?
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INTRODUCTION: WHY?
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SO WHY RCPP?

Three key reasons

• Speed and Performance are key reasons

• We also can do some things you could not do before

• And it is easy (or ‘easier’) to extend R this way
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SIMPLE EXAMPLE

R Version of ‘ is this number odd or even’

isOdd_r <- function(num = 10L) {
result = (num %% 2L == 1L)
return(result)

}
isOdd_r(42L)

## [1] FALSE
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SIMPLE EXAMPLE (CONT.)

C++ Version of ‘ is this number odd or even’

bool isOdd_cpp(int num = 10) {
bool result = (num % 2 == 1);
return result;

}

Free-standing code, not yet executable, may need Makefile, …
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SIMPLE EXAMPLE (CONT.)

Rcpp Version of ‘ is this number odd or even’

Rcpp::cppFunction(”
bool isOdd_cpp(int num = 10) {

bool result = (num % 2 == 1);
return result;

}”)
isOdd_cpp(42L)

## [1] FALSE
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SIMPLE EXAMPLE (CONT.)

In R

##
isOdd_r <- function(n=10L) {

res = (n %% 2L == 1L)
return(res)

}
isOdd_r(42L)

## [1] FALSE

In C++ via Rcpp

Rcpp::cppFunction(”
bool isOdd_cpp(int n=10) {

bool res = (n % 2 == 1);
return res;

}”)
isOdd_cpp(42L)

## [1] FALSE
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SECOND EXAMPLE: VAR(1)

Let’s consider a very simple VAR(1) system of k variables.

For k = 2:

Xt = Xt−1B+ Et

where Xt is a row vector of length 2,
B is a 2 by 2 matrix and
Et is a row of the error matrix of 2 columns.
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SECOND EXAMPLE: VAR(1)

In R code, given both the coefficient and error matrices (revealing k and n):

rSim <- function(B,E) {
X <- matrix(0,nrow(E), ncol(E))
for (r in 2:nrow(E)) {

X[r,] = X[r-1, ] %*% B + E[r, ]
}
return(X)

}
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SECOND EXAMPLE: VAR(1)

library(Rcpp)
cppFunction('arma::mat cppSim(arma::mat B, arma::mat E) {

int m = E.n_rows;
int n = E.n_cols;
arma::mat X(m,n);
X.row(0) = arma::zeros<arma::mat>(1,n);
for (int r=1; r<m; r++) {

X.row(r) = X.row(r-1) * B + E.row(r);
}
return X;

}', depends=”RcppArmadillo”)
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SECOND EXAMPLE: VAR(1)

library(rbenchmark)
a <- matrix(c(0.5,0.1,0.1,0.5),nrow=2)
e <- matrix(rnorm(10000),ncol=2)
benchmark(cppSim(a,e), rSim(a,e), order=”relative”)[,1:4]

## test replications elapsed relative
## 1 cppSim(a, e) 100 0.011 1.000
## 2 rSim(a, e) 100 0.691 62.818
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SO WHEN DO WE USE RCPP?

New things: Easy access to C/C++ libraries

• Sometimes speed is not the only reason
• C & C++ provide numerous libraries + APIs we may want to use
• Easy to provide access to as Rcpp eases data transfer
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AN ASIDE
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USERS ON CORE REPOSITORIES

Rcpp is currently used by

• 2616 CRAN packages

• 252 BioConductor packages

• an unknown (but “large”) number of GitHub projects
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PAGERANK

suppressMessages(library(utils))
library(pagerank) # cf github.com/andrie/pagerank

cran <- ”https://cran.r-project.org”
pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

## Rcpp ggplot2 dplyr MASS magrittr
## 2.764 1.584 1.353 1.073 0.844
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PAGERANK

readr
lattice
R6
glue
sp
lubridate
doParallel
scales
reshape2
igraph
plyr
foreach
shiny
survival
mvtnorm
httr
RcppArmadillo
purrr
jsonlite
tidyr
data.table
tibble
Matrix
stringr
rlang
magrittr
MASS
dplyr
ggplot2
Rcpp
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Top 30 of Page Rank as of November 2022
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PERCENTAGE OF COMPILED PACKAGES

db <- tools::CRAN_package_db() # added in R 3.4.0
db <- db[!duplicated(db[,1]),] # rows: nb of pkgs,
nTot <- nrow(db) # cols: different attributes
nRcpp <- length(tools::dependsOnPkgs(”Rcpp”,recursive=FALSE, installed=db))
nCompiled <- table(db[, ”NeedsCompilation”])[[”yes”]]
propRcpp <- nRcpp / nCompiled * 100
data.frame(tot=nTot, totRcpp = nRcpp, totCompiled = nCompiled,

RcppPctOfCompiled = propRcpp)

## tot totRcpp totCompiled RcppPctOfCompiled
## 1 18898 2616 4456 58.7074

Talk @ KAUST 23/60



INTRODUCTION: HOW?
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JUMPING RIGHT IN: VIA RSTUDIO
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A FIRST EXAMPLE: CONT’ED

#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can source this function into
// an R session using the Rcpp::sourceCpp function (or via the Source button on the editor toolbar).

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}

// You can include R code blocks in C++ files processed with sourceCpp (useful for testing and
// development). The R code will be automatically run after the compilation.

/*** R
timesTwo(42)
*/
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A FIRST EXAMPLE: CONT’ED

So what just happened?

• We defined a very simple C++ function
• It operates on a numeric vector argument
• We ask Rcpp to ‘source it’ for us:

• Behind the scenes Rcpp creates a wrapper
• Rcpp then compiles, links, and loads the wrapper

• The function becomes available in R under the same name as the C++ function
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ANOTHER EXAMPLE: FOCUS ON SPEED

Consider a function defined as

f(n) such that

 n when n < 2
f(n − 1) + f(n − 2) when n ≥ 2
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AN INTRODUCTORY EXAMPLE: SIMPLE R IMPLEMENTATION

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

## Using it on first 11 arguments
sapply(0:10, f)

## [1] 0 1 1 2 3 5 8 13 21 34 55
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AN INTRODUCTORY EXAMPLE: TIMING R IMPLEMENTATION

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

## test replications elapsed relative
## 1 f(10) 100 0.008 1.000
## 2 f(15) 100 0.098 12.250
## 3 f(20) 100 1.141 142.625
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AN INTRODUCTORY EXAMPLE: C++ IMPLEMENTATION

C(++) Code

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

Deployed as

Rcpp::cppFunction('int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}')
## Using it on first 11 arguments
sapply(0:10, g)

## [1] 0 1 1 2 3 5 8 13 21 34 55
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AN INTRODUCTORY EXAMPLE: COMPARING TIMING

Timing:

library(rbenchmark)
benchmark(f(20), g(20))[,1:4]

## test replications elapsed relative
## 1 f(20) 100 1.172 586
## 2 g(20) 100 0.002 1

A nice gain of a few orders of magnitude.
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SOME BACKGROUND
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TYPES

R Type mapping

Standard R types (integer, numeric, list, function, … and compound objects) are mapped
to corresponding C++ types using extensive template meta-programming – it just works:

library(Rcpp)
cppFunction(”NumericVector la(NumericVector x){

return log(abs(x));
}”)
la(seq(-5, 5, by=2))

Also note: vectorized C++! log(abs()) on vectors as R would.
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STL TYPE MAPPING

Use of std::vector<double> and STL algorithms:

#include <Rcpp.h>
using namespace Rcpp;

inline double f(double x) { return ::log(::fabs(x)); }

// [[Rcpp::export]]
std::vector<double> logabs2(std::vector<double> x) {

std::transform(x.begin(), x.end(), x.begin(), f);
return x;

}

Not vectorized but std::transform() ‘sweeps’ f() across.
Talk @ KAUST 35/60



STL TYPE MAPPING

Used via

library(Rcpp)
sourceCpp(”code/logabs2.cpp”)
logabs2(seq(-5, 5, by=2))
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TYPE MAPPING IS SEAMLESS

Simple outer product of a col. vector (using RcppArmadillo):

library(Rcpp)
cppFunction(”arma::mat v(arma::colvec a) { return a*a.t(); }”,

depends=”RcppArmadillo”)
v(1:3)

## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 2 4 6
## [3,] 3 6 9

Uses implicit conversion via as<> and wrap – cf vignette Rcpp-extending.
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C++11: LAMBDAS, AUTO, AND MUCH MORE

We can simplify the log(abs(...)) example further:

#include <Rcpp.h>
// [[Rcpp::plugins(cpp11)]]

using namespace Rcpp;

// [[Rcpp::export]]
std::vector<double> logabs3(std::vector<double> x) {

std::transform(x.begin(), x.end(), x.begin(), [](double x) {
return ::log(::fabs(x));

} );
return x;

}
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SUGAR
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SYNTACTIC ‘SUGAR’: SIMULATING π IN R

Draw (x, y), compute distance to origin. Do so repeatedly, and ratio of points below one
to number N of simulations will approach π/4 as we fill the area of 1/4 of the unit circle.

piR <- function(N) {
x <- runif(N)
y <- runif(N)
d <- sqrt(x^2 + y^2)
return(4 * sum(d <= 1.0) / N)

}
set.seed(5)
sapply(10^(3:6), piR)

## [1] 3.15600 3.15520 3.13900 3.14101
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SYNTACTIC ‘SUGAR’: SIMULATING π IN C++

Rcpp sugar enables us to write C++ code that is almost as compact.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {

NumericVector x = runif(N);
NumericVector y = runif(N);
NumericVector d = sqrt(x*x + y*y);
return 4.0 * sum(d <= 1.0) / N;

}

The code is essentially identical.
Talk @ KAUST 41/60



SYNTACTIC ‘SUGAR’: SIMULATING π

And by using the same RNG, so are the results.

library(Rcpp)
sourceCpp(”code/piSugar.cpp”)
set.seed(42); a <- piR(1.0e7)
set.seed(42); b <- piSugar(1.0e7)
identical(a,b)

## [1] TRUE

print(c(a,b), digits=7)

## [1] 3.140899 3.140899
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SYNTACTIC ‘SUGAR’: SIMULATING π

The performance is close with a small gain for C++ as R is already vectorised:

library(rbenchmark)
sourceCpp(”code/piSugar.cpp”)
benchmark(piR(1.0e6), piSugar(1.0e6))[,1:4]

## test replications elapsed relative
## 1 piR(1e+06) 100 4.630 2.844
## 2 piSugar(1e+06) 100 1.628 1.000
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HOW TO: MAIN USAGE PATTERNS
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BASIC USAGE: EVALCPP()

evalCpp() evaluates one C++ expression. Includes and dependencies can be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2”) # simple test

## [1] 4

evalCpp(”std::numeric_limits<double>::max()”)

## [1] 1.79769e+308
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BASIC USAGE: CPPFUNCTION()

cppFunction() creates, compiles and links a C++ file, and creates an R function to
access it.

cppFunction(”
int exampleCpp11() {

auto x = 10;
return x;

}”, plugins=c(”cpp11”))
exampleCpp11() # same identifier as C++ function
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BASIC USAGE: SOURCECPP()

sourceCpp() is the actual workhorse behind evalCpp() and cppFunction(). It is
described in more detail in the package vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package inline, but
provides even more ease-of-use, control and helpers – freeing us from boilerplate
scaffolding.

A key feature are the plugins and dependency options: other packages can provide a
plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen,
RcppGSL).
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BASIC USAGE: PACKAGES

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can be created by
Rcpp.package.skeleton()

The vignette Rcpp-packages has fuller details.

As of November 2022, there are 2616 CRAN and 252 BioConductor packages which use
Rcpp all offering working, tested, and reviewed examples.
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PACKAGES AND RCPP

Best way to organize R code with Rcpp is via a package:
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PACKAGES AND RCPP

Rcpp.package.skeleton() and its derivatives as e.g. Rcpp-
Armadillo.package.skeleton() create working packages.
// another simple example: outer product of a vector, returning a matrix
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}
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PACKAGES AND RCPP

Two (or three) ways to link to external libraries

• Full copies: Do what mlpack does and embed a full copy; larger build time, harder
to update, self-contained

• With linking of libraries: Do what e.g. RcppGSL does and use hooks in the package
startup to store compiler and linker flags which are passed to environment
variables

• With C++ template headers only: Do what RcppArmadillo and other do and just
point to the headers

More details in extra vignettes.
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PACKAGES AND RCPP

Rcpp vignette and arXiv paper

(But there are alternatives approaches as
e.g. ships packages with static libraries
other packages can link against. This is
however uncommon on CRAN.)
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BIG PICTURE
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SHOULD YOU USE RCPP? OR NOT?

Choice is yours

• Code generation helps remove build-cycle tedious and repetitive boilerplate
• The interfaces are shorter and simpler, and more R like

• recall the is_odd function earlier

• Using the pllain C API to R is of course perfectly fine
• But (in our view) this requires more work

• more manual steps for type conversion to/from R
• additional steps for the required memory protection
• all of which is error prone
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COMPARE

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b) {
int na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));
b = PROTECT(coerceVector(b, REALSXP));
na = length(a);
nb = length(b);
nab = na + nb - 1;
ab = PROTECT(allocVector(REALSXP, nab));
xa = REAL(a);
xb = REAL(b);
xab = REAL(ab);
for(int i = 0; i < nab; i++)

xab[i] = 0.0;
for(int i = 0; i < na; i++)

for(int j = 0; j < nb; j++)
xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);
return ab;

}

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector convolve2cpp(Rcpp::NumericVector a,

Rcpp::NumericVector b) {
int na = a.length(),

nb = b.length();
Rcpp::NumericVector ab(na + nb - 1);
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
ab[i + j] += a[i] * b[j];

return(ab);
}

You always have a choice between the code (from
Section 5.10.1 of Writing R Extensions) on the left, or
the equivalent Rcpp code on the right.
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MORE
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DOCUMENTATION

Rcpp Resources

• The package comes with nine pdf vignettes, and help pages.
• The introductory vignettes are now published (Rcpp and RcppEigen in J Stat
Software, RcppArmadillo in Comp Stat & Data Anlys, Rcpp again in TAS)

• The rcpp-devel list is the recommended resource: helpful, and low volume.
• StackOverflow has by now several thousand posts (and is searchable)
• And a number of blog posts introduce/discuss features.
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RCPP GALLERY
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THE RCPP BOOK

On sale since June 2013.
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THANK YOU!

slides https://dirk.eddelbuettel.com/presentations/

web https://dirk.eddelbuettel.com/

mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel
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