
Measure Vector Ra BLAS/GPUs Compile

Introduction to
High-Performance Computing

with R

Dirk Eddelbuettel, Ph.D.
Dirk.Eddelbuettel@R-Project.org

edd@debian.org

Tutorial preceding
R/Finance 2009 Conference

Chicago, IL, USA
April 24, 2009

Dirk Eddelbuettel Intro to High-Performance R @ R/Finance 2009

http://www.r-project.org
Dirk.Eddelbuettel@R-Project.org
edd@debian.org


Measure Vector Ra BLAS/GPUs Compile

Outline

Motivation

Measuring and profiling
Overview
RProf
RProfmem
Profiling Compiled Code

Vectorisation

Just-in-time compilation

BLAS and GPUs

Compiled Code
Overview
Inline
Rcpp
RInside
Debugging

Summary

Dirk Eddelbuettel Intro to High-Performance R @ R/Finance 2009



Measure Vector Ra BLAS/GPUs Compile

Motivation: What describes our current situation?

Source: http://en.wikipedia.org/wiki/Moore’s_law

Moore’s Law: Computers
keep getting faster and
faster

But at the same time our
datasets get bigger and
bigger.

So we’re still waiting and
waiting . . .

Hence: A need for higher
performance computing with
R.

Dirk Eddelbuettel Intro to High-Performance R @ R/Finance 2009

http://en.wikipedia.org/wiki/Moore's_law
http://www.r-project.org


Measure Vector Ra BLAS/GPUs Compile

Motivation: Presentation Roadmap

We will start by measuring how we are doing before looking at ways
to improve our computing performance.

We will look at vectorisation, as well as various ways to compile code.

We will look briefly at debugging tools and tricks as well.

In the longer format, this tutorial also covers
I a detailed discussion of several ways to get more things done at

the same time by using simple parallel computing approaches.
I ways to compute with R beyond the memory limits imposed by

the R engine.
I ways to automate and script running R code.

but we will skip those topics today.
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Profiling

We need to know where our code spends the time it takes to compute
our tasks.
Measuring—using profiling tools—is critical.
R already provides the basic tools for performance analysis.

I the system.time function for simple measurements.
I the Rprof function for profiling R code.
I the Rprofmem function for profiling R memory usage.

In addition, the profr and proftools package on CRAN can be
used to visualize Rprof data.
We will also look at a script from the R Wiki for additional
visualization.
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Profiling cont.

The chapter Tidying and profiling R code in the R Extensions manual
is a good first source for documentation on profiling and debugging.

Simon Urbanek has a page on benchmarks (for Macs) at
http://r.research.att.com/benchmarks/

One can also profile compiled code, either directly (using the -pg
option to gcc) or by using e.g. the Google perftools library.
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RProf example

Consider the problem of repeatedly estimating a linear model, e.g. in
the context of Monte Carlo simulation.

The lm() workhorse function is a natural first choice.

However, its generic nature as well the rich set of return arguments
come at a cost. For experienced users, lm.fit() provides a more
efficient alternative.

But how much more efficient?

We will use both functions on the longley data set to measure this.

Dirk Eddelbuettel Intro to High-Performance R @ R/Finance 2009



Measure Vector Ra BLAS/GPUs Compile Overview RProf RProfmem Profiling

RProf example cont.

This code runs both approaches 2000 times:
data(longley)
Rprof("longley.lm.out")
invisible(replicate(2000,

lm(Employed ~ ., data=longley)))
Rprof(NULL)

longleydm <- data.matrix(data.frame(intcp=1, longley))
Rprof("longley.lm.fit.out")
invisible(replicate(2000,

lm.fit(longleydm[,-8],
longleydm[,8])))

Rprof(NULL)
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RProf example cont.

We can analyse the output two different ways. First, directly from R
into an R object:
data <- summaryRprof("longley.lm.out")
print(str(data))

Second, from the command-line (on systems having Perl)
R CMD Prof longley.lm.out | less

The CRAN package / function profr by H. Wickham can profile,
evaluate, and optionally plot, an expression directly. Or we can use
parse_profr() to read the previously recorded output:
plot(parse_rprof("longley.lm.out"),

main="Profile of lm()")
plot(parse_rprof("longley.lm.fit.out"),

main="Profile of lm.fit()")
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RProf example cont.
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Source: Our calculations.

We notice the different x
and y axis scales

For the same number of
runs, lm.fit() is
about fourteen times
faster as it makes fewer
calls to other functions.
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RProf example cont.

In addition, the proftools package by L. Tierney can read profiling
data and summarize directly in R.

The flatProfile function aggregates the data, optionally with
totals.
lmfitprod <- readProfileData("longley.lm.fit.out"))
plotProfileCallGraph(lmfitprof)

And plotProfileCallGraph() can be used to visualize profiling
information using the Rgraphviz package (which is no longer on
CRAN).
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RProf example cont.
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Color is used to indicate
which nodes use the
most of amount of time.

Use of color and other
aspects can be
configured.
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Another profiling example

Both packages can be very useful for their quick visualisation of the
RProf output. Consider this contrived example:
sillysum <- function(N) {s <- 0;

for (i in 1:N) s <- s + i; s}
ival <- 1/5000
plot(profr(a <- sillysum(1e6), ival))

and for a more efficient solution where we use a larger N:
efficientsum <- function(N) {
sum(as.numeric(seq(1,N))) }
ival <- 1/5000
plot(profr(a <- efficientsum(1e7), ival))
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Another profiling example (cont.)
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profr and proftools
complement each other.

Numerical values in
profr provide
information too.

Choice of colour is
useful in proftools.
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Additional profiling visualizations

Romain Francois has contributed a Perl script1 which can be used
to visualize profiling output via the dot program (part of graphviz):
./prof2dot.pl longley.lm.out | dot -Tpdf \

> longley_lm.pdf
./prof2dot.pl longley.lm.fit.out | dot -Tpdf \

> longley_lmfit.pdf

Its key advantages are the ability to include, exclude or restrict
functions.

1http://wiki.r-project.org/rwiki/doku.php?id=tips:misc:
profiling:current
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Additional profiling visualizations (cont.)

For lm(), this yields:
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and for lm.fit(), this yields:
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RProfmem

When R has been built with the enable-memory-profiling
option, we can also look at use of memory and allocation.

To continue with the R Extensions manual example, we issue calls to
Rprofmem to start and stop logging to a file as we did for Rprof.
This can be a helpful check for code that is suspected to have an
error in its memory allocations.

We also mention in passing that the tracemem function can log when
copies of a (presumably large) object are being made. Details are in
section 3.3.3 of the R Extensions manual.

Dirk Eddelbuettel Intro to High-Performance R @ R/Finance 2009

http://www.r-project.org


Measure Vector Ra BLAS/GPUs Compile Overview RProf RProfmem Profiling

Profiling compiled code

Profiling compiled code typically entails rebuilding the binary and
libraries with the -gp compiler option. In the case of R, a complete
rebuild is required as R itself needs to be compiled with profiling
options.

Add-on tools like valgrind and kcachegrind can be very helpful
and may not require rebuilds.

Two other options for Linux are mentioned in the R Extensions
manual. First, sprof, part of the C library, can profile shared
libraries. Second, the add-on package oprofile provides a daemon
that has to be started (stopped) when profiling data collection is to
start (end).

A third possibility is the use of the Google Perftools which we will
illustrate.
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Profiling with Google Perftools

The Google Perftools provide four modes of performance analysis /
improvement:

I a thread-caching malloc (memory allocator),
I a heap-checking facility,
I a heap-profiling facility and
I cpu profiling.

Here, we will focus on the last feature.

There are two possible modes of running code with the cpu profiler.

The preferred approach is to link with -lprofiler. Alternatively,
one can dynamically pre-load the profiler library.
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Profiling with Google Perftools (cont.)

# turn on profiling and provide a profile log file
LD_PRELOAD="/usr/lib/libprofiler.so.0" \
CPUPROFILE=/tmp/rprof.log \
r profilingSmall.R

We can then analyse the profiling output in the file. The profiler
(renamed from pprof to google-pprof on Debian) has a large
number of options. Here just use two different formats:
# show text output
google-pprof --cum --text \

/usr/bin/r /tmp/rprof.log | less

# or analyse call graph using gv
google-pprof --gv /usr/bin/r /tmp/rprof.log

The shell script googlePerftools.sh runs the complete example.
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Profiling with Google Perftools

This can generate complete (yet complex) graphs.
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Profiling with Google Perftools

Another output for format is for the callgrind analyser that is part of
valgrind—a frontend to a variety of analysis tools such as cachegrind
(cache simulator), callgrind (call graph tracer), helpgrind (race
condition analyser), massif (heap profiler), and memcheck
(fine-grained memory checker).

For example, the KDE frontend kcachegrind can be used to visualize
the profiler output as follows:
google-pprof --callgrind \

/usr/bin/r /tmp/gpProfile.log \
> googlePerftools.callgrind

kcachegrind googlePerftools.callgrind
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Profiling with Google Perftools

Kcachegrind running on the the profiling output looks as follows:
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Profiling with Google Perftools

One problem with the ’global’ approach to profiling is that a large
number of internal functions are being reported as well—this may
obscure our functions of interest.
An alternative is to re-compile the portion of code that we want to
profile, and to bracket the code with
ProfilerStart()

// ... code to be profiled here ...

ProfilerEnd()

which are defined in google/profiler.h which needs to be
included. One uses the environment variable CPUPROFILE to
designate an output file for the profiling information, or designates a
file as argument to ProfilerStart().
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Vectorisation

Revisiting our trivial trivial example from the preceding section:
> sillysum <- function(N) { s <- 0;

for (i in 1:N) s <- s + i; return(s) }
> system.time(print(sillysum(1e7)))

[1] 5e+13
user system elapsed

13.617 0.020 13.701
>

> system.time(print(sum(as.numeric(seq(1,1e7)))))

[1] 5e+13
user system elapsed
0.224 0.092 0.315

>

Replacing the loop yielded a gain of a factor of more than 40. It really
pays to know the corpus of available functions.
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Vectorisation cont.

A more interesting example is provided in a case study on the Ra
(c.f. next section) site and taken from the S Programming book:

Consider the problem of finding the distribution of the
determinant of a 2 x 2 matrix where the entries are
independent and uniformly distributed digits 0, 1, . . ., 9. This
amounts to finding all possible values of ac − bd where a, b,
c and d are digits.
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Vectorisation cont.

The brute-force solution is using explicit loops over all combinations:
dd.for.c <- function() {

val <- NULL
for (a in 0:9) for (b in 0:9)

for (d in 0:9) for (e in 0:9)
val <- c(val, a*b - d*e)

table(val)
}

The naive time is
> mean(replicate(10, system.time(dd.for.c())["elapsed"]))

[1] 0.2678
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Vectorisation cont.

The case study discusses two important points that bear repeating:
I pre-allocating space helps with performance:
val <- double(10000)
and using val[i <- i + 1] as the left-hand side reduces the
time to 0.1204

I switching to faster functions can help too as tabulate
outperforms table and reduced the time further to 0.1180.
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Vectorisation cont.

However, by far the largest improvement comes from eliminating the
four loops with two calls each to outer:
dd.fast.tabulate <- function() {

val <- outer(0:9, 0:9, "*")
val <- outer(val, val, "-")
tabulate(val)

}

The time for the most efficient solution is:
> mean(replicate(10,

system.time(dd.fast.tabulate())["elapsed"]))

[1] 0.0014
which is orders of magnitude faster.

All examples can be run via the script dd.naive.r.
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Accelerated R with just-in-time compilation

Stephen Milborrow maintains “Ra”, a set of patches to R that allow
’just-in-time compilation’ of loops and arithmetic expressions.
Together with his jit package on CRAN, this can be used to obtain
speedups of standard R operations.

Our trivial example run in Ra:
library(jit)
sillysum <- function(N) { jit(1); s <- 0; \

for (i in 1:N) s <- s + i; return(s) }

> system.time(print(sillysum(1e7)))
[1] 5e+13

user system elapsed
1.548 0.028 1.577

which gets a speed increase of a factor of five—not bad at all.
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Accelerated R with just-in-time compilation

The last looping example can be improved with jit:
dd.for.pre.tabulate.jit <- function() {

jit(1)
val <- double(10000)
i <- 0
for (a in 0:9) for (b in 0:9)

for (d in 0:9) for (e in 0:9) {
val[i <- i + 1] <- a*b - d*e

}
tabulate(val)

}

> mean(replicate(10, system.time(dd.for.pre.tabulate.jit())["elapsed"]))
[1] 0.0053
or only about three to four times slower than the non-looped solution
using ’outer’—a rather decent improvement.
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Accelerated R with just-in-time compilation

naive naive+prealloc n+p+tabulate outer

Comparison of R and Ra on 'dd' example
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Ra achieves very good
decreases in total
computing time in these
examples but cannot
improve the efficient solution
any further.

Ra and jit are still fairly
new and not widely
deployed yet, but readily
available in Debian and
Ubuntu.

Dirk Eddelbuettel Intro to High-Performance R @ R/Finance 2009



Measure Vector Ra BLAS/GPUs Compile

Outline

Motivation

Measuring and profiling
Overview
RProf
RProfmem
Profiling Compiled Code

Vectorisation

Just-in-time compilation

BLAS and GPUs

Compiled Code
Overview
Inline
Rcpp
RInside
Debugging

Summary

Dirk Eddelbuettel Intro to High-Performance R @ R/Finance 2009



Measure Vector Ra BLAS/GPUs Compile

Optimised Blas

Blas (’basic linear algebra subprogram’, see Wikipedia) are standard
building blocks for linear algebra. Highly-optimised libraries exist that
can provide considerable performance gains.

R can be built using so-called optimised Blas such as Atlas (’free’),
Goto (not ’free’), or those from Intel or AMD; see the ’R Admin’
manual, section A.3 ’Linear Algebra’.

The speed gains can be noticeable. For Debian/Ubuntu, one can
simply install on of the atlas-base-* packages.

An example from the old README.Atlas, running with a R 2.8.1 on a
four-core machine:
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Optimised Blas cont.

# with Atlas
> mm <- matrix(rnorm(4*10^6), ncol = 2*10^3)
> mean(replicate(10,

system.time(crossprod(mm))["elapsed"]),trim=0.1)

[1] 2.6465

# with basic. non-optmised Blas,
> mm <- matrix(rnorm(4*10^6), ncol = 2*10^3)
> mean(replicate(10,

system.time(crossprod(mm))["elapsed"]),trim=0.1)

[1] 16.42813

For linear algebra problems, we may get an improvement by an
integer factor that may be as large (or even larger) than the number of
cores as we benefit from both better code and multithreaded
execution. Even higher increases are possibly by ’tuning’ the library,
see the Atlas documentation.
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From Blas to GPUs.

The next frontier for hardware acceleration is computing on GPUs
(’graphics programming units’, see Wikipedia).
GPUs are essentially hardware that is optimised for both I/O and
floating point operations, leading to much faster code execution than
standard CPUs on floating-point operations.
Development kits are available (e.g. Nvidia CUDA) and the recently
announced OpenCL programming specification should make
GPU-computing vendor-independent.
Some initial work on integration with R has been undertaken but there
appear to no easy-to-install and easy-to-use kits for R – yet.
So this provides a perfect intro for the next subsection on compilation.
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Compiled Code

Beyond smarter code (using e.g. vectorised expression and/or
just-in-time compilation) or optimised libraries, the most direct speed
gain comes from switching to compiled code.

This section covers two possible approaches:
I inline for automated wrapping of simple expression
I Rcpp for easing the interface between R and C++

A different approach is to keep the core logic ’outside’ but to embed R
into the application. There is some documentation in the ’R
Extensions’ manual—and the RInside package on R-Forge offers
C++ classes to automate this. This may still require some familiarity
with R internals.
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Compiled Code: The Basics

R offers several functions to access compiled code: .C and
.Fortran as well as .Call and .External. (R Extensions,
sections 5.2 and 5.9; Software for Data Analysis). .C and .Fortran
are older and simpler, but more restrictive in the long run.

The canonical example in the documentation is the convolution
function:

1 vo id convolve ( double ∗a , i n t ∗na , double ∗b ,
2 i n t ∗nb , double ∗ab )
3 {
4 i n t i , j , nab = ∗na + ∗nb − 1;
5

6 for ( i = 0 ; i < nab ; i ++)
7 ab [ i ] = 0 . 0 ;
8 for ( i = 0 ; i < ∗na ; i ++)
9 for ( j = 0 ; j < ∗nb ; j ++)

10 ab [ i + j ] += a [ i ] ∗ b [ j ] ;
11 }
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Compiled Code: The Basics cont.

The convolution function is called from R by

1 conv <− function ( a , b )
2 .C( " convolve " ,
3 as . double ( a ) ,
4 as . integer ( length ( a ) ) ,
5 as . double ( b ) ,
6 as . integer ( length ( b ) ) ,
7 ab = double ( length ( a ) + length ( b ) − 1) ) $ab

As stated in the manual, one must take care to coerce all the
arguments to the correct R storage mode before calling .C as
mistakes in matching the types can lead to wrong results or
hard-to-catch errors.

The script convolve.C.sh compiles and links the source code, and
then calls R to run the example.
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Compiled Code: The Basics cont.

Using .Call, the example becomes

1 #include <R. h>
2 #include <Rdefines . h>
3

4 SEXP convolve2 (SEXP a , SEXP b )
5 {
6 i n t i , j , na , nb , nab ;
7 double ∗xa , ∗xb , ∗xab ;
8 SEXP ab ;
9

10 PROTECT( a = AS_NUMERIC( a ) ) ;
11 PROTECT( b = AS_NUMERIC( b ) ) ;
12 na = LENGTH( a ) ; nb = LENGTH( b ) ; nab = na + nb − 1;
13 PROTECT( ab = NEW_NUMERIC( nab ) ) ;
14 xa = NUMERIC_POINTER( a ) ; xb = NUMERIC_POINTER( b ) ;
15 xab = NUMERIC_POINTER( ab ) ;
16 for ( i = 0 ; i < nab ; i ++) xab [ i ] = 0 . 0 ;
17 for ( i = 0 ; i < na ; i ++)
18 for ( j = 0 ; j < nb ; j ++) xab [ i + j ] += xa [ i ] ∗ xb [ j ] ;
19 UNPROTECT( 3 ) ;
20 return ( ab ) ;
21 }
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Compiled Code: The Basics cont.

Now the call becomes easier by just using the function name and the
vector arguments—all other handling is done at the C/C++ level:
conv <- function(a, b) .Call("convolve2", a, b)

The script convolve.Call.sh compiles and links the source code,
and then calls R to run the example.

In summary, we see that
I there are different entry points
I using different calling conventions
I leading to code that may need to do more work at the lower level.
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Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the function
cfunction that can wrap Fortran, C or C++ code.

1 ## A simple For t ran example
2 code <− "
3 i n t e g e r i
4 do 1 i =1 , n ( 1 )
5 1 x ( i ) = x ( i )∗∗3
6 "
7 cubefn <− c f un c t i on ( s igna tu re ( n=" i n t e g e r " , x= " numeric " ) ,
8 code , convent ion=" . For t ran " )
9 x <− as . numeric ( 1 : 1 0 )

10 n <− as . integer (10)
11 cubefn ( n , x ) $x

cfunction takes care of compiling, linking, loading, . . . by placing
the resulting dynamically-loadable object code in the per-session
temporary directory used by R.
Run this via cat inline.Fortan.R | R -no-save.
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Compiled Code: inline cont.

inline defaults to using the .Call() interface:
1 ## Use of . Ca l l convent ion wi th C code
2 ## Mu l t yp l y i ng each image i n a stack wi th a 2D Gaussian a t a given p o s i t i o n
3 code <− "
4 SEXP res ;
5 i n t np ro tec t = 0 , nx , ny , nz , x , y ;
6 PROTECT( res = Rf_ d u p l i c a te ( a ) ) ; np ro tec t ++;
7 nx = INTEGER(GET_DIM( a ) ) [ 0 ] ;
8 ny = INTEGER(GET_DIM( a ) ) [ 1 ] ;
9 nz = INTEGER(GET_DIM( a ) ) [ 2 ] ;

10 double sigma2 = REAL( s ) [ 0 ] ∗ REAL( s ) [ 0 ] , d2 ;
11 double cx = REAL( cent re ) [ 0 ] , cy = REAL( cent re ) [ 1 ] , ∗data , ∗rda ta ;
12 f o r ( i n t im = 0; im < nz ; im++) {
13 data = &(REAL( a ) [ im∗nx∗ny ] ) ; rda ta = &(REAL( res ) [ im∗nx∗ny ] ) ;
14 f o r ( x = 0 ; x < nx ; x++)
15 f o r ( y = 0 ; y < ny ; y++) {
16 d2 = ( x−cx )∗( x−cx ) + ( y−cy )∗( y−cy ) ;
17 rda ta [ x + y∗nx ] = data [ x + y∗nx ] ∗ exp(−d2 / sigma2 ) ;
18 }
19 }
20 UNPROTECT( np ro tec t ) ;
21 r e t u r n res ;
22 "
23 funx <− c f u nc t i o n ( s igna tu re ( a=" ar ray " , s= " numeric " , cent re=" numeric " ) , code )
24
25 x <− ar ray ( r u n i f (50∗50) , c (50 ,50 ,1) )
26 res <− funx ( a=x , s=10 , cent re=c (25 ,15) ) ## ac tua l c a l l o f compiled f u n c t i o n
27 i f ( i n t e r a c t i v e ( ) ) image ( res [ , , 1 ] )
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Compiled Code: inline cont.

We can revisit the earlier distribution of determinants example.
If we keep it very simple and pre-allocate the temporary vector in R ,
the example becomes

1 code <− "
2 i f ( isNumeric ( vec ) ) {
3 i n t ∗pv = INTEGER( vec ) ;
4 i n t n = leng th ( vec ) ;
5 i f ( n = 10000) {
6 i n t i = 0 ;
7 f o r ( i n t a = 0; a < 9; a++)
8 f o r ( i n t b = 0; b < 9; b++)
9 f o r ( i n t c = 0 ; c < 9; c++)

10 f o r ( i n t d = 0; d < 9; d++)
11 pv [ i ++] = a∗b − c∗d ;
12 }
13 }
14 r e t u r n ( vec ) ;
15 "
16

17 funx <− c f un c t i o n ( s igna tu re ( vec=" numeric " ) , code )
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Compiled Code: inline cont.

We can use the inlined function in a new function to be timed:
dd.inline <- function() {

x <- integer(10000)
res <- funx(vec=x)
tabulate(res)

}
> mean(replicate(100, system.time(dd.inline())["elapsed"]))

[1] 0.00051

Even though it uses the simplest algorithm, pre-allocates memory in
R and analyses the result in R , it is still more than twice as fast as
the previous best solution.

The script dd.inline.r runs this example.
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Compiled Code: Rcpp

Rcpp makes it easier to interface C++ and R code.

Using the .Call interface, we can use features of the C++ language
to automate the tedious bits of the macro-based C-level interface to R.

One major advantage of using .Call is that vectors (or matrices)
can be passed directly between R and C++ without the need for
explicit passing of dimension arguments. And by using the C++ class
layers, we do not need to directly manipulate the SEXP objects.

So let us rewrite the ’distribution of determinant’ example one more
time.
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Rcpp example

The simplest version can be set up as follows:

1 #include <Rcpp . hpp>
2
3 RcppExport SEXP dd_ rcpp (SEXP v ) {
4 SEXP r l = R_ Ni lVa lue ; / / Use th is when noth ing i s re tu rned
5
6 RcppVector< int > vec ( v ) ; / / vec parameter viewed as vec to r o f doubles
7 i n t n = vec . s ize ( ) , i = 0 ;
8
9 for ( i n t a = 0; a < 9; a++)

10 for ( i n t b = 0; b < 9; b++)
11 for ( i n t c = 0; c < 9; c++)
12 for ( i n t d = 0; d < 9; d++)
13 vec ( i ++) = a∗b − c∗d ;
14
15 RcppResultSet rs ; / / Bu i ld r e s u l t se t re tu rned as l i s t to R
16 rs . add ( " vec " , vec ) ; / / vec as named element w i th name ’ vec ’
17 r l = rs . ge tRe tu rnL i s t ( ) ; / / Get the l i s t to be re turned to R.
18
19 return r l ;
20 }

but it is actually preferable to use the exception-handling feature of
C++ as in the slightly longer next version.
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Rcpp example cont.

1 #include <Rcpp . hpp>
2
3 RcppExport SEXP dd_ rcpp (SEXP v ) {
4 SEXP r l = R_ Ni lVa lue ; / / Use th is when there i s noth ing to be re turned .
5 char∗ exceptionMesg = NULL ; / / msg var i n case of e r r o r
6
7 t ry {
8 RcppVector< int > vec ( v ) ; / / vec parameter viewed as vec to r o f doubles .
9 i n t n = vec . s ize ( ) , i = 0 ;

10 for ( i n t a = 0; a < 9; a++)
11 for ( i n t b = 0; b < 9; b++)
12 for ( i n t c = 0; c < 9; c++)
13 for ( i n t d = 0; d < 9; d++)
14 vec ( i ++) = a∗b − c∗d ;
15
16 RcppResultSet rs ; / / Bu i ld r e s u l t se t to be re turned as a l i s t to R.
17 rs . add ( " vec " , vec ) ; / / vec as named element w i th name ’ vec ’
18 r l = rs . ge tRe tu rnL i s t ( ) ; / / Get the l i s t to be re turned to R.
19 } catch ( s td : : except ion& ex ) {
20 exceptionMesg = copyMessageToR ( ex . what ( ) ) ;
21 } catch ( . . . ) {
22 exceptionMesg = copyMessageToR ( " unknown reason " ) ;
23 }
24
25 i f ( exceptionMesg ! = NULL)
26 e r r o r ( exceptionMesg ) ;
27
28 return r l ;
29 }
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Rcpp example cont.

We can create a shared library from the source file as follows:
PKG_CPPFLAGS=‘r -e’Rcpp:::CxxFlags()’‘ \

R CMD SHLIB dd.rcpp.cpp \
‘r -e’Rcpp:::LdFlags()’‘

g++ -I/usr/share/R/include \
-I/usr/lib/R/site-library/Rcpp/lib \
-fpic -g -O2 \
-c dd.rcpp.cpp -o dd.rcpp.o

g++ -shared -o dd.rcpp.so dd.rcpp.o \
-L/usr/lib/R/site-library/Rcpp/lib \
-lRcpp -Wl,-rpath,/usr/lib/R/site-library/Rcpp/lib \
-L/usr/lib/R/lib -lR

Note how we let the Rcpp package tell us where header and library
files are stored.
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Rcpp example cont.

We can then load the file using dyn.load and proceed as in the
inline example.
dyn.load("dd.rcpp.so")

dd.rcpp <- function() {
x <- integer(10000)
res <- .Call("dd_rcpp", x)
tabulate(res$vec)

}

mean(replicate(100,system.time(dd.rcpp())["elapsed"])))

[1] 0.00047

This beats the inline example by a neglible amount which is
probably due to some overhead the in the easy-to-use inlining.

The file dd.rcpp.sh runs the full Rcpp example.
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Basic Rcpp usage

Rcpp eases data transfer from R to C++, and back. We always
convert to and from SEXP, and return a SEXP to R.

The key is that we can consider this to be a ’variant’ type permitting
us to extract using appropriate C++ classes. We pass data from R via
named lists that may contain different types:

list(intnb=42, fltnb=6.78, date=Sys.Date(),
txt="some thing", bool=FALSE)

by initialising a RcppParams object and extracting as in
RcppParams param(inputsexp);
int nmb = param.getIntValue("intnb");
double dbl = param.getIntValue("fltnb");
string txt = param.getStringValue("txt");
bool flg = param.getBoolValue("bool";
RcppDate dt = param.getDateValue("date");
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Basic Rcpp usage (cont.)

Similarly, we can constructs vectors and matrics of double, int, as
well as vectors of types string and date and datetime. The key is
that we never have to deal with dimensions and / or memory
allocations — all this is shielded by C++ classes.

Similarly, for the return, we declare an object of type
RcppResultSet and use the add methods to insert named
elements before coverting this into a list that is assigned to the
returned SEXP.

Back in R, we access them as elements of a standard R list by
position or name.
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Another Rcpp example

Let us revisit the lm() versus lm.fit() example. How fast could
compiled code be? Let’s wrap a GNU GSL function.

1 #include <cs td io >
2 extern "C" {
3 #include <gs l / gs l _ m u l t i f i t . h>
4 }
5 #include <Rcpp . h>
6
7 RcppExport SEXP gs l _ m u l t i f i t (SEXP Xsexp , SEXP Ysexp ) {
8 SEXP r l =R_ Ni lVa lue ;
9 char ∗exceptionMesg=NULL;

10
11 t ry {
12 RcppMatrixView <double> Xr ( Xsexp ) ;
13 RcppVectorView<double> Yr ( Ysexp ) ;
14
15 i n t i , j , n = Xr . dim1 ( ) , k = Xr . dim2 ( ) ;
16 double chisq ;
17
18 gs l _ mat r i x ∗X = gs l _ mat r i x _ a l l o c ( n , k ) ;
19 gs l _ vec to r ∗y = gs l _ vec to r _ a l l o c ( n ) ;
20 gs l _ vec to r ∗c = gs l _ vec to r _ a l l o c ( k ) ;
21 gs l _ mat r i x ∗cov = gs l _ mat r i x _ a l l o c ( k , k ) ;
22 for ( i = 0 ; i < n ; i ++) {
23 for ( j = 0 ; j < k ; j ++)
24 gs l _ mat r i x _set (X, i , j , Xr ( i , j ) ) ;
25 gs l _ vec to r _set ( y , i , Yr ( i ) ) ;
26 }
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Another Rcpp example (cont.)

27 gs l _ m u l t i f i t _ l i n e a r _workspace ∗work = gs l _ m u l t i f i t _ l i n e a r _ a l l o c ( n , k ) ;
28 gs l _ m u l t i f i t _ l i n e a r (X, y , c , cov , &chisq , work ) ;
29 gs l _ m u l t i f i t _ l i n e a r _ f r ee ( work ) ;
30
31 RcppMatrix <double> CovMat ( k , k ) ;
32 RcppVector<double> Coef ( k ) ;
33 for ( i = 0 ; i < k ; i ++) {
34 for ( j = 0 ; j < k ; j ++)
35 CovMat ( i , j ) = gs l _ mat r i x _get ( cov , i , j ) ;
36 Coef ( i ) = gs l _ vec to r _get ( c , i ) ;
37 }
38 gs l _ mat r i x _ f r ee (X) ;
39 gs l _ vec to r _ f r ee ( y ) ;
40 gs l _ vec to r _ f r ee ( c ) ;
41 gs l _ mat r i x _ f r ee ( cov ) ;
42
43 RcppResultSet rs ;
44 rs . add ( " coef " , Coef ) ;
45 rs . add ( " covmat " , CovMat ) ;
46
47 r l = rs . ge tRe tu rnL i s t ( ) ;
48
49 } catch ( s td : : except ion& ex ) {
50 exceptionMesg = copyMessageToR ( ex . what ( ) ) ;
51 } catch ( . . . ) {
52 exceptionMesg = copyMessageToR ( " unknown reason " ) ;
53 }
54 i f ( exceptionMesg ! = NULL)
55 Rf_ e r r o r ( exceptionMesg ) ;
56 return r l ;
57 }
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Another Rcpp example (cont.)

lm lm.fit lm via C

Comparison of R and linear model fit routines

tim
e 

in
 s

ec
on

ds

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

longley (16 x 7 obs)
simulated (1000 x 50)

Source: Our calculations

The small longley
example exhibits less
variability between methods,
but the larger data set
shows the gains more
clearly.

The lm.fit() approach
appears unchanged
between longley and the
larger simulated data set.
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Another Rcpp example (cont.)

lm lm.fit lm via C

Comparison of R and linear model fit routines

re
gr
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nd
s

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

longley (16 x 7 obs)
simulated (1000 x 50)

Source: Our calculations

By inverting the times to see
how many ’regressions per
second’ we can fit, the
merits of the compiled code
become clearer.

One caveat, measurements
depends critically on the
size of the data as well as
the cpu and libraries that are
used.
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Revisiting profiling

We can also use the preceding example to illustrate how to profile
subroutines.
We can add the following to the top of the function:
ProfilerStart("/tmp/ols.profile");
for (unsigned int i=1; i<10000; i++) {

and similarly
ProfilerStop();

at end before returning. If we then call this function just once from R
as in
print(system.time(invisible(val <- .Call("gsl_multifit", X, y))))

we can then call the profiling tools on the output:
google-pprof --gv /usr/bin/r /tmp/ols.profile
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Revisiting profiling

/usr/bin/r
Total samples: 47
Focusing on: 47
Dropped nodes with <= 0 abs(samples)
Dropped edges with <= 0 samples

gsl_multifit
1 (2.1%)

of 44 (93.6%)

_init
1 (2.1%)

of 44 (93.6%)

1

gsl_multifit_linear
0 (0.0%)

of 30 (63.8%)

30

gsl_multifit_linear_free
1 (2.1%)

of 2 (4.3%)

2

RcppResultSet
add
0 (0.0%)

of 2 (4.3%)

2

gs l_vector_free
0 (0.0%)

of 2 (4.3%)

1
gs l_vector_alloc

0 (0.0%)
of 1 (2.1%)

1

gsl_matrix_set
1 (2.1%)

1

strlen
1 (2.1%)

1

RcppMatrix
RcppMatrix

0 (0.0%)
of 1 (2.1%)

1

RcppResultSet
~RcppResultSet

1 (2.1%)

1

gsl_vector_get
1 (2.1%)

1

RcppResultSet
getReturnLis t

0 (0.0%)
of 1 (2.1%)

1

__libc_start_main
0 (0.0%)

of 44 (93.6%)

44

Rf_applyClosure
0 (0.0%)

of 44 (93.6%)

Rf_eval
0 (0.0%)

of 44 (93.6%)

176

Rf_allocS4Object
0 (0.0%)

of 44 (93.6%)

44

Rf_set_iconv
0 (0.0%)

of 44 (93.6%)

44

176 44

880

call_S
0 (0.0%)

of 44 (93.6%)

44

Rf_usemethod
0 (0.0%)

of 44 (93.6%)

44

R_isMethodsDispatchOn
0 (0.0%)

of 44 (93.6%)

44

44

44

44

R_tryEval
0 (0.0%)

of 44 (93.6%)

44

R_ToplevelExec
0 (0.0%)

of 44 (93.6%)

44

44

44

gsl_multifit_linear_svd
2 (4.3%)

of 30 (63.8%)

30

gsl_linalg_SV_decomp_mod
1 (2.1%)

of 23 (48.9%)

23

gsl_linalg_balance_columns
1 (2.1%)

of 2 (4.3%)

2

gsl_matrix_memcpy
1 (2.1%)

1

gsl_blas_ddot
1 (2.1%)

1

cblas_ddot
1 (2.1%)

1

gsl_linalg_SV_decomp
7 (14.9%)

of 14 (29.8%)

14

gsl_linalg_householder_transform
3 (6.4%)

of 5 (10.6%)

3

gsl_linalg_householder_hm
3 (6.4%)

1

cblas_daxpy
1 (2.1%)

1

gsl_linalg_householder_hm1
1 (2.1%)

1

ATL_daxpy
1 (2.1%)

1

gsl_matrix_column
1 (2.1%)

1

gsl_linalg_bidiag_decomp
0 (0.0%)

of 5 (10.6%)

5

gsl_vector_subvector
2 (4.3%)

1

gsl_linalg_bidiag_unpack2
0 (0.0%)

of 1 (2.1%)

1

2 1

gsl_linalg_householder_mh
2 (4.3%)

2

1

__ieee754_hypot
1 (2.1%)

1

ATL_dscal
1 (2.1%)

1

1

Rf_setAttrib
1 (2.1%)

of 2 (4.3%)

Rf_dimgets
0 (0.0%)

of 1 (2.1%)

1

ATL_daxpy_xp1yp1aXbX
2 (4.3%)

free
2 (4.3%)

Rf_allocMatrix
0 (0.0%)

of 1 (2.1%)

1

RcppMatrix
cMatrix
0 (0.0%)

of 1 (2.1%)

1

R_alloc
1 (2.1%)

of 2 (4.3%)

Rf_allocVector
0 (0.0%)

of 1 (2.1%)

1

1
gsl_block_free

0 (0.0%)
of 1 (2.1%)

1

gsl_block_alloc
1 (2.1%)

1

1

malloc
0 (0.0%)

of 1 (2.1%)

1

1

1

_int_malloc
1 (2.1%)

1

Rf_coerceVector
1 (2.1%)

ATL_dnrm2_xp1yp0aXbX
1 (2.1%)

1

1

1

1
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Rcpp and package building

Two tips for easing builds with Rcpp:

For command-line use, a shortcut is to copy Rcpp.h to
/usr/local/include, and libRcpp.so to /usr/local/lib.
The earlier example reduces to

R CMD SHLIB dd.rcpp.cpp

as header and library will be found in the default locations.

For package building, we can have a file src/Makevars with
# compile flag providing header directory
PKG_CXXFLAGS=‘Rscript -e ’Rcpp:::CxxFlags()’‘
# link flag providing libary and path
PKG_LIBS=‘Rscript -e ’Rcpp:::LdFlags()’‘

See help(Rcpp-package) for more details.
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RInside and bringing R to C++

Sometimes we may want to go the other way and add R to and
existing C++ project.

This can be simplified using RInside:

1 #include " RInside . h " / / for the embedded R v ia RInside
2 #include "Rcpp . h " / / for the R / Cpp i n t e r f a c e
3
4 i n t main ( i n t argc , char ∗argv [ ] ) {
5
6 RInside R( argc , argv ) ; / / create an embedded R ins tance
7
8 std : : s t r i n g t x t = " Hel lo , wor ld ! \ n " ; / / assign a standard C++ s t r i n g to ’ t x t ’
9 R. assign ( t x t , " t x t " ) ; / / assign s t r i n g var to R v a r i a b l e ’ t x t ’

10
11 std : : s t r i n g e v a l s t r = " cat ( t x t ) " ;
12 R. parseEvalQ ( e v a l s t r ) ; / / eval the i n i t s t r i n g , i gno r i ng any re tu rns
13
14 e x i t ( 0 ) ;
15 }
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RInside and bringing R to C++ (cont)

1 #include " RInside . h " / / for the embedded R v ia RInside
2 #include "Rcpp . h " / / for the R / Cpp i n t e r f a c e used for t r a n s f e r
3
4 std : : vector < std : : vector < double > > crea teMat r i x ( const i n t n ) {
5 s td : : vector < std : : vector < double > > mat ;
6 for ( i n t i =0; i <n ; i ++) {
7 s td : : vector <double> row ;
8 for ( i n t j =0; j <n ; j ++) row . push_back ( ( i∗10+ j ) ) ;
9 mat . push_back ( row ) ;

10 }
11 return ( mat ) ;
12 }
13
14 i n t main ( i n t argc , char ∗argv [ ] ) {
15 const i n t mdim = 4;
16 std : : s t r i n g e v a l s t r = " cat ( ’ Running l s ( ) \ n ’ ) ; p r i n t ( l s ( ) ) ; \
17 cat ( ’ Showing M\ n ’ ) ; p r i n t (M) ; ca t ( ’ Showing colSums ( ) \ n ’ ) ; \
18 Z <− colSums (M) ; p r i n t (Z ) ; Z" ; ## re tu rns Z
19 RInside R( argc , argv ) ;
20 SEXP ans ;
21 std : : vector < std : : vector < double > > myMatrix = c rea teMat r i x (mdim) ;
22
23 R. assign ( myMatrix , "M" ) ; / / assign STL mat r i x to R ’ s ’M ’ var
24 R. parseEval ( eva l s t r , ans ) ; / / eval the i n i t s t r i n g −− Z i s now i n ans
25 RcppVector<double > vec ( ans ) ; / / now vec conta ins Z v ia ans
26 vector <double > v = vec . s t l V e c t o r ( ) ; / / conver t RcppVector to STL vec to r
27
28 f o r ( unsigned i n t i =0; i < v . s ize ( ) ; i ++)
29 std : : cout << " In C++ element " << i << " i s " << v [ i ] << std : : endl ;
30 e x i t ( 0 ) ;
31 }
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Debugging example: valgrind

Analysis of compiled code is mainly undertaken with a debugger like
gdb, or a graphical frontend like ddd.

Another useful tool is valgrind which can find memory leaks. We
can illustrate its use with a recent real-life example.

RMySQL had recently been found to be leaking memory when
database connections are being established and closed. Given how
RPostgreSQL shares a common heritage, it seemed like a good
idea to check.
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Debugging example: valgrind

We create a small test script which opens and closes a connection to
the database in a loop and sends a small ’select’ query. We can run
this in a way that is close to the suggested use from the ’R
Extensions’ manual:
R -d "valgrind -tool=memcheck -leak-check=full"
-vanilla < valgrindTest.R
which creates copious output, including what is on the next slide.

Given the source file and line number, it is fairly straightforward to
locate the source of error: a vector of pointers was freed without
freeing the individual entries first.
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Debugging example: valgrind

The state before the fix:
[...]
#==21642== 2,991 bytes in 299 blocks are definitely lost in loss record 34 of 47
#==21642== at 0x4023D6E: malloc (vg_replace_malloc.c:207)
#==21642== by 0x6781CAF: RS_DBI_copyString (RS-DBI.c:592)
#==21642== by 0x6784B91: RS_PostgreSQL_createDataMappings (RS-PostgreSQL.c:400)
#==21642== by 0x6785191: RS_PostgreSQL_exec (RS-PostgreSQL.c:366)
#==21642== by 0x40C50BB: (within /usr/lib/R/lib/libR.so)
#==21642== by 0x40EDD49: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40F00DC: (within /usr/lib/R/lib/libR.so)
#==21642== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40F0186: (within /usr/lib/R/lib/libR.so)
#==21642== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40F16E6: Rf_applyClosure (in /usr/lib/R/lib/libR.so)
#==21642== by 0x40ED99A: Rf_eval (in /usr/lib/R/lib/libR.so)
#==21642==
#==21642== LEAK SUMMARY:
#==21642== definitely lost: 3,063 bytes in 301 blocks.
#==21642== indirectly lost: 240 bytes in 20 blocks.
#==21642== possibly lost: 9 bytes in 1 blocks.
#==21642== still reachable: 13,800,378 bytes in 8,420 blocks.
#==21642== suppressed: 0 bytes in 0 blocks.
#==21642== Reachable blocks (those to which a pointer was found) are not shown.
#==21642== To see them, rerun with: --leak-check=full --show-reachable=yes
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Debugging example: valgrind

The state after the fix:
[...]
#==3820==
#==3820== 312 (72 direct, 240 indirect) bytes in 2 blocks are definitely lost in loss record 14 of 45
#==3820== at 0x4023D6E: malloc (vg_replace_malloc.c:207)
#==3820== by 0x43F1563: nss_parse_service_list (nsswitch.c:530)
#==3820== by 0x43F1CC3: __nss_database_lookup (nsswitch.c:134)
#==3820== by 0x445EF4B: ???
#==3820== by 0x445FCEC: ???
#==3820== by 0x43AB0F1: getpwuid_r@@GLIBC_2.1.2 (getXXbyYY_r.c:226)
#==3820== by 0x43AAA76: getpwuid (getXXbyYY.c:116)
#==3820== by 0x4149412: (within /usr/lib/R/lib/libR.so)
#==3820== by 0x412779D: (within /usr/lib/R/lib/libR.so)
#==3820== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==3820== by 0x40F00DC: (within /usr/lib/R/lib/libR.so)
#==3820== by 0x40EDA74: Rf_eval (in /usr/lib/R/lib/libR.so)
#==3820==
#==3820== LEAK SUMMARY:
#==3820== definitely lost: 72 bytes in 2 blocks.
#==3820== indirectly lost: 240 bytes in 20 blocks.
#==3820== possibly lost: 0 bytes in 0 blocks.
#==3820== still reachable: 13,800,378 bytes in 8,420 blocks.
#==3820== suppressed: 0 bytes in 0 blocks.
#==3820== Reachable blocks (those to which a pointer was found) are not shown.
#==3820== To see them, rerun with: --leak-check=full --show-reachable=yes

showing that we recovered 3000 bytes.
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Wrapping up

In this tutorial session, we covered
I profiling and tools for visualising profiling output
I gaining speed using vectorisation
I gaining speed using Ra and just-in-time compilation
I how to link R to compiled code using tools like inline and Rcpp
I how to embed R in C++ programs
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Wrapping up

Things we have not covered:
I running R code in parallel using MPI, nws, snow, ...
I computing with data beyond the R memory limit by using biglm, ff

or bigmatrix9
I scripting and automation using littler
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Wrapping up

Further questions ?

Two good resources are
I the mailing list r-sig-hpc on HPC with R,
I and the HighPerformanceComputing task view on CRAN.

Scripts are at http://dirk.eddelbuettel.com/code/hpcR/.

Lastly, don’t hesitate to email me at edd@debian.org

Dirk Eddelbuettel Intro to High-Performance R @ R/Finance 2009

r-sig-hpc
HighPerformanceComputing
http://dirk.eddelbuettel.com/code/hpcR/
edd@debian.org

	Motivation
	Measuring and profiling
	Overview
	RProf
	RProfmem
	Profiling Compiled Code

	Vectorisation
	Just-in-time compilation
	BLAS and GPUs
	Compiled Code
	Overview
	Inline
	Rcpp
	RInside
	Debugging

	Summary

