
Higher-Performance R Programming
with C++ Extensions

Part 1: Introduction

Dirk Eddelbuettel

June 28 and 29, 2017

University of Zürich & ETH Zürich

Zürich R Courses 2017 1/73

Overview

Zürich R Courses 2017 2/73

What Are We Doing Today and Tomorrow?

High-level motivation: Three main questions

• Why ? Several reasons discussed next

• How ? Rcpp details, usage, tips, …

• What ? We will cover examples.

Zürich R Courses 2017 3/73

Focus on R and C++

• R: Our starting point
• C++: Our extension approach
• why, how, tricks, …

Zürich R Courses 2017 4/73

Before the Why/How/What

Maybe some mutual introductions?

• Your background (academic, industry, …)
• R experience (beginner, intermediate, advanced, …)
• Created / modified any R packages ?
• C and/or C++ experience ?
• Main interest in Rcpp: speed, extensions, …, ?
• Following rcpp-devel or r-devel ?

Zürich R Courses 2017 5/73

Why R?

Zürich R Courses 2017 6/73

A Simple Example

xx <- faithful[,”eruptions”]
fit <- density(xx)
plot(fit)

Zürich R Courses 2017 7/73

A Simple Example

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

Zürich R Courses 2017 8/73

A Simple Example - Refined

xx <- faithful[,”eruptions”]
fit1 <- density(xx)
fit2 <- replicate(10000, {

x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))$y

})
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x,rev(fit1$x)), c(fit3[1,],rev(fit3[2,])),

col=’grey’, border=F)
lines(fit1)

Zürich R Courses 2017 9/73

A Simple Example - Refined

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

Zürich R Courses 2017 10/73

So Why R?

R enables us to

• work interactively
• explore and visualize data
• access, retrieve and/or generate data
• summarize and report into pdf, html, …

making it the key language for statistical computing, and a preferred
environment for many data analysts.

Zürich R Courses 2017 11/73

So Why R?

R has always been extensible via

• C via a bare-bones interface described in Writing R Extensions
• Fortran which is also used internally by R
• Java via rJava by Simon Urbanek
• C++ but essentially at the bare-bones level of C

So while in theory this always worked – it was tedious in practice

Zürich R Courses 2017 12/73

Why R? : Programming with Data from 1977 to 2016

Thanks to John Chambers for high-resolution cover images. The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.

Zürich R Courses 2017 13/73

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and Fortran:

Since the core of R is in fact a program written in the C
language, it’s not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code is
a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.

Zürich R Courses 2017 14/73

Why Extend R?

Chambers (2008), opens Chapter 11 Interfaces I: Using C and Fortran:

Since the core of R is in fact a program written in the C
language, it’s not surprising that the most direct interface
to non-R software is for code written in C, or directly
callable from C. All the same, including additional C code is
a serious step, with some added dangers and often a
substantial amount of programming and debugging
required. You should have a good reason.

Zürich R Courses 2017 15/73

Why Extend R?

Chambers proceeds with this rough map of the road ahead:

• Against:

• It’s more work
• Bugs will bite
• Potential platform dependency
• Less readable software

• In Favor:

• New and trusted computations
• Speed
• Object references

Zürich R Courses 2017 16/73

Why Extend R?

The Why? boils down to:

• speed: Often a good enough reason for us … and a focus for us
in this workshop.

• new things: We can bind to libraries and tools that would
otherwise be unavailable in R

• references: Chambers quote from 2008 foreshadowed the work
on Reference Classes now in R and built upon via Rcpp Modules,
Rcpp Classes (and also RcppR6)

Zürich R Courses 2017 17/73

Bell Labs, May 1976

Zürich R Courses 2017 18/73

Interface Vision

R offers us the best of both worlds:

• Compiled code with

• Access to proven libraries and algorithms in C/C++/Fortran
• Extremely high performance (in both serial and parallel modes)

• Interpreted code with

• A high-level language made for Programming with Data
• An interactive workflow for data analysis
• Support for rapid prototyping, research, and experimentation

Zürich R Courses 2017 19/73

And Why C++?

• Asking Google leads to tens of million of hits.
• Wikipedia: C++ is a statically typed, free-form, multi-paradigm,
compiled, general-purpose, powerful programming language

• C++ is industrial-strength, vendor-independent, widely-used,
and still evolving

• In science & research, one of the most frequently-used
languages: If there is something you want to use / connect to, it
probably has a C/C++ API

• As a widely used language it also has good tool support
(debuggers, profilers, code analysis)

Zürich R Courses 2017 20/73

http://en.wikipedia.org/wiki/C%2B%2B%7D%7BWikipedia

Why C++?

Scott Meyers: View C++ as a federation of languages

• C provides a rich inheritance and interoperability as Unix,
Windows, … are all build on C.

• Object-Oriented C++ (maybe just to provide endless discussions
about exactly what OO is or should be)

• Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

• The Standard Template Library (STL) is a specific template
library which is powerful but has its own conventions.

• C++11 and C++14 (and beyond) add enough to be called a fifth
language.

NB: Meyers original list of four languages appeared years before C++11.

Zürich R Courses 2017 21/73

Why C++?

• Mature yet current
• Strong performance focus:

• You don’t pay for what you don’t use
• Leave no room for another language between the machine level
and C++

• Yet also powerfully abstract and high-level
• C++11 + C++14 are a big deal giving us new language features
• While there are complexities, Rcpp users are mostly shielded

Zürich R Courses 2017 22/73

Interlude

Zürich R Courses 2017 23/73

John Chambers

Chambers (2008) Software For
Data Analysis
Chapters 10 and 11 devoted to
Interfaces I: C and Fortran and
Interfaces II: Other Systems.

Zürich R Courses 2017 24/73

John Chambers

Chambers (2016) Extending R
An entire book about this with
concrete Python, Julia and C++
code and examples

Zürich R Courses 2017 25/73

John Chambers

Chambers 2016, Chapter 1

• Everything that exists in R is an object

• Everything happens in R is a function call

• Interfaces to other software are part of R

Zürich R Courses 2017 26/73

John Chambers

Chambers 2016, Chapter 4

The fundamental lesson about programming in the large is
that requires a correspondingly broad and flexible
response. In particular, no single language or software
system os likely to be ideal for all aspects. Interfacing
multiple systems is the essence. Part IV explores the
design of of interfaces from R.

Zürich R Courses 2017 27/73

Why Rcpp? Some Tweets

Zürich R Courses 2017 28/73

Zürich R Courses 2017 29/73

Zürich R Courses 2017 30/73

Zürich R Courses 2017 31/73

Zürich R Courses 2017 32/73

Zürich R Courses 2017 33/73

Zürich R Courses 2017 34/73

Zürich R Courses 2017 35/73

Zürich R Courses 2017 36/73

Zürich R Courses 2017 37/73

Why Rcpp?

Key points

• Easy to learn as it really does not have to be that complicated –
we will see numerous few examples

• Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

• Expressive as it allows for vectorised C++ using Rcpp Sugar
• Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, …

• Speed gains for a variety of tasks Rcpp excels precisely where R
struggles: loops, function calls, …

• Extensions greatly facilitates access to external libraries using
eg Rcpp modules

Zürich R Courses 2017 38/73

Who Uses Rcpp?

2010 2012 2014 2016

0
20

0
40

0
60

0
80

0
10

00
Growth of Rcpp usage on CRAN

n

Number of CRAN packages using Rcpp (left axis)
Percentage of CRAN packages using Rcpp (right axis)

0
20

0
40

0
60

0
80

0
10

00

2010 2012 2014 2016

0
2

4
6

8
10

Data current as of June 17, 2017.

Zürich R Courses 2017 39/73

Pagerank

library(pagerank) # github.com/andrie/pagerank

cran <- ”http://cloud.r-project.org”

pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Rcpp MASS ggplot2 Matrix mvtnorm
2.692 1.579 1.190 0.876 0.690

Zürich R Courses 2017 40/73

Pagerank

boot
doParallel
rgl
raster
zoo
nlme
RCurl
RColorBrewer
coda
shiny
XML
magrittr
reshape2
foreach
data.table
igraph
jsonlite
RcppArmadillo
sp
httr
stringr
lattice
dplyr
survival
plyr
mvtnorm
Matrix
ggplot2
MASS
Rcpp

0.005 0.010 0.015 0.020 0.025

Top 30 of Page Rank as of June 2017

Zürich R Courses 2017 41/73

Pagerank

Zürich R Courses 2017 42/73

CRAN Proportion

db <- tools::CRAN_package_db() # R 3.4.0 or later
dim(db)

[1] 10849 65

all Rcpp reverse depends
(c(n_rcpp <- length(tools::dependsOnPkgs(”Rcpp”, recursive=FALSE,

installed=db)),
n_compiled <- table(db[, ”NeedsCompilation”])[[”yes”]]))

[1] 1057 2900

Rcpp percentage of packages with compiled code
n_rcpp / n_compiled

[1] 0.364483
Zürich R Courses 2017 43/73

Speed

Zürich R Courses 2017 44/73

Speed Example 1 (due to Christian Robert)

Five different ways to compute 1/(1+ x):

f <- function(n, x=1) for(i in 1:n) x <- 1/(1+x)
g <- function(n, x=1) for(i in 1:n) x <- (1/(1+x))
h <- function(n, x=1) for(i in 1:n) x <- (1+x)^(-1)
j <- function(n, x=1) for(i in 1:n) x <- {1/{1+x}}
k <- function(n, x=1) for(i in 1:n) x <- 1/{1+x}
library(rbenchmark)
N <- 1e5
benchmark(f(N,1),g(N,1),h(N,1),j(N,1),k(N,1),order=”relative”)[,1:4]

Zürich R Courses 2017 45/73

Speed Example 1 (due to Christian Robert)

test replications elapsed relative
1 f(N, 1) 100 0.612 1.000
5 k(N, 1) 100 0.612 1.000
2 g(N, 1) 100 0.613 1.002
4 j(N, 1) 100 0.615 1.005
3 h(N, 1) 100 0.798 1.304

Zürich R Courses 2017 46/73

Speed Example 1 (due to Christian Robert)

Adding a C++ variant is easy:

cppFunction(”
double m(int n, double x) {

for (int i=0; i<n; i++)
x = 1 / (1+x);

return x;
}”

)

(We will learn more about cppFunction() later).

Zürich R Courses 2017 47/73

Speed Example 1 (due to Christian Robert)

test replications elapsed relative
6 m(N, 1) 100 0.100 1.00
4 j(N, 1) 100 0.606 6.06
1 f(N, 1) 100 0.608 6.08
2 g(N, 1) 100 0.608 6.08
5 k(N, 1) 100 0.608 6.08
3 h(N, 1) 100 0.791 7.91

Zürich R Courses 2017 48/73

Speed Example 2 (due to StackOverflow)

Consider a function defined as

f(n) such that

 n when n < 2
f(n − 1) + f(n − 2) when n ≥ 2

Zürich R Courses 2017 49/73

Speed Example 2 (due to StackOverflow)

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

Using it on first 11 arguments
sapply(0:10, f)

[1] 0 1 1 2 3 5 8 13 21 34 55

Zürich R Courses 2017 50/73

Speed Example 2 (due to StackOverflow)

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

test replications elapsed relative
1 f(10) 100 0.009 1.000
2 f(15) 100 0.104 11.556
3 f(20) 100 1.125 125.000

Zürich R Courses 2017 51/73

Speed Example 2 (due to StackOverflow)

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

deployed as

Rcpp::cppFunction(”int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }”)

sapply(0:10, g)

[1] 0 1 1 2 3 5 8 13 21 34 55

Zürich R Courses 2017 52/73

Speed Example 2 (due to StackOverflow)

Timing:

Rcpp::cppFunction(”int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }”)

library(rbenchmark)
benchmark(f(20), g(20), order=”relative”)[,1:4]

test replications elapsed relative
2 g(20) 100 0.006 1.000
1 f(20) 100 1.178 196.333

A nice gain of a few orders of magnitude.

Zürich R Courses 2017 53/73

Another Angle on Speed

Run-time performance is just one example.

Time to code is another metric.

We feel quite strongly that helps you code more succinctly, leading to
fewer bugs and faster development.

A good environment helps. RStudio integrates R and C++
development quite nicely (eg the compiler error message parsing is
very helpful) and also helps with package building.

Zürich R Courses 2017 54/73

What Next ?

Zürich R Courses 2017 55/73

Programming with C++

• C++ Basics
• Debugging
• Best Practices

and then on to Rcpp itself

Zürich R Courses 2017 56/73

Compiled not Interpreted

Need to compile and link

#include <cstdio>

int main(void) {
printf(”Hello, world!\n”);
return 0;

}

Zürich R Courses 2017 57/73

Compiled not Interpreted

Or streams output rather than printf

#include <iostream>

int main(void) {
std::cout << ”Hello, world!” << std::endl;
return 0;

}

Zürich R Courses 2017 58/73

Compiled not Interpreted

g++ -o will compile and link

We will now look at an examples with explicit linking.

Zürich R Courses 2017 59/73

Compiled not Interpreted

#include <cstdio>

#define MATHLIB_STANDALONE
#include <Rmath.h>

int main(void) {
printf(”N(0,1) 95th percentile %9.8f\n”,

qnorm(0.95, 0.0, 1.0, 1, 0));
}

Zürich R Courses 2017 60/73

Compiled not Interpreted

We may need to supply:

• header location via -I,
• library location via -L,
• library via -llibraryname

g++ -I/usr/include -c qnorm_rmath.cpp
g++ -o qnorm_rmath qnorm_rmath.o -L/usr/lib -lRmath

Zürich R Courses 2017 61/73

Statically Typed

• R is dynamically typed: x <- 3.14; x <- ”foo” is valid.

• In C++, each variable must be declared before first use.

• Common types are int and long (possibly with unsigned),
float and double, bool, as well as char.

• No standard string type, though std::string is close.

• All these variables types are scalars which is fundamentally
different from R where everything is a vector.

• class (and struct) allow creation of composite types; classes
add behaviour to data to form objects.

• Variables need to be declared, cannot change

Zürich R Courses 2017 62/73

C++ is a Better C

• control structures similar to what R offers: for, while, if,
switch

• functions are similar too but note the difference in
positional-only matching, also same function name but
different arguments allowed in C++

• pointers and memory management: very different, but lots of
issues people had with C can be avoided via STL (which is
something Rcpp promotes too)

• sometimes still useful to know what a pointer is …

Zürich R Courses 2017 63/73

Object-Oriented

This is a second key feature of C++, and it does it differently from S3
and S4.

struct Date {
unsigned int year;
unsigned int month;
unsigned int day

};

struct Person {
char firstname[20];
char lastname[20];
struct Date birthday;
unsigned long id;

};Zürich R Courses 2017 64/73

Object-Oriented

Object-orientation in the C++ sense matches data with code
operating on it:

class Date {
private:

unsigned int year
unsigned int month;
unsigned int date;

public:
void setDate(int y, int m, int d);
int getDay();
int getMonth();
int getYear();

}
Zürich R Courses 2017 65/73

Generic Programming and the STL

The STL promotes generic programming.

For example, the sequence container types vector, deque, and
list all support

• push_back() to insert at the end;
• pop_back() to remove from the front;
• begin() returning an iterator to the first element;
• end() returning an iterator to just after the last element;
• size() for the number of elements;

but only list has push_front() and pop_front().

Other useful containers: set, multiset, map and multimap.

Zürich R Courses 2017 66/73

Generic Programming and the STL

Traversal of containers can be achieved via iterators which require
suitable member functions begin() and end():

std::vector<double>::const_iterator si;
for (si=s.begin(); si != s.end(); si++)

std::cout << *si << std::endl;

Zürich R Courses 2017 67/73

Generic Programming and the STL

Another key STL part are algorithms:

double sum = accumulate(s.begin(), s.end(), 0);

Some other STL algorithms are

• find finds the first element equal to the supplied value
• count counts the number of matching elements
• transform applies a supplied function to each element
• for_each sweeps over all elements, does not alter
• inner_product inner product of two vectors

Zürich R Courses 2017 68/73

Template Programming

Template programming provides a ‘language within C++’: code gets
evaluated during compilation.

One of the simplest template examples is

template <typename T>
const T& min(const T& x, const T& y) {

return y < x ? y : x;
}

This can now be used to compute the minimum between two int
variables, or double, or in fact any admissible type providing an
operator<() for less-than comparison.

Zürich R Courses 2017 69/73

Template Programming

Another template example is a class squaring its argument:

template <typename T>
class square : public std::unary_function<T,T> {
public:

T operator()(T t) const {
return t*t;

}
};

which can be used along with STL algorithms:

transform(x.begin(), x.end(), square);

Zürich R Courses 2017 70/73

Further Reading

Books by Meyers are excellent

I also like the (free) C++ Annotations

C++ FAQ

Resources on StackOverflow such as

• general info and its links, eg
• booklist

Zürich R Courses 2017 71/73

http://www.icce.rug.nl/documents/cplusplus/
http://stackoverflow.com/tags/c%2b%2b/info
http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

Debugging

Some tips:

• Generally painful, old-school printf() still pervasive

• Debuggers go along with compilers: gdb for gcc and g++; lldb
for the clang / llvm family

• Extra tools such as valgrind helpful for memory debugging

• “Sanitizer” (ASAN/UBSAN) in newer versions of g++ and
clang++

Zürich R Courses 2017 72/73

Best Practices

Version control: git or svn highly recommended

Editor: in the long-run, recommended to learn productivity tricks for
one editor: emacs, vi, eclipse, RStudio, …

Zürich R Courses 2017 73/73

	Overview
	Why R?
	Interlude
	Why Rcpp? Some Tweets
	Speed
	What Next ?

