17 ILLINOIS

https://dirk.eddelbuettel.com/papers/ua_workshop_rcpp_feb2023.pdf

OVERVIEW

UA Workshop 2/102

VERY BROAD OUTLINE

Overview
- Motivation: Why R, Why Rcpp?
- Who Uses This?
- How Does One Use it?

- Usage Illustrations

UA Workshop 3/102

WHY R?

UA Workshop 4/102

WHY R? PAT BURN'S VIEW

UA Workshop

L‘;'.urns

Why use the R Language?

A bief outine of why you might want o make the effrt o learn R,

Translations

Russian: htp/clipartmag.comiru-why-use the-r-anguags transiated by Timur
Kadirov

What is R, and S?

formany of used or. If
do1na spreadshael, then amost aways It wouid more

talks about

P
probiems with spreadsheats and how R Is often a beftr too.

Why the R Language?

+ RIs ot Just a siatitcs package, I a language.

it proble

+ Ris both lexble and powerf.

Why the R Language?

Screen shot on the left part of short essay at
Burns-Stat

His site has more truly excellent (and free)
writings.

The (much longer) R Inferno (free pdf, also
paperback) is highly recommended.

5/102

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/
https://www.burns-stat.com/documents/books/the-r-inferno/

WHY R? PAT BURN'S VIEW

Why the R Language?

- Ris not just a statistics package, it's a language.
- Ris designed to operate the way that problems are

l-'-_F
- u rnS thought about.

- Ris both flexible and powerful.

And more on why R as a language for data analysis.

Source: https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

UA Workshop 6/102

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

R as a Powerful and Extensible Environment

- As R users we know that R can
- ingest data in many formats from many sources
- aggregate, slice, dice, summarize, ...
- visualize in many forms, ...
- model in just about any way
- report in many useful and scriptable forms

- It has become central for programming with data

- Sometimes we want to extend it further than R code goes

UA Workshop

7/102

HISTORICAL PERSPECTIVE: R AS ‘THE INTERFACE’

Ihe Algorithm Twte cfoce s/s/7¢
A% gemeval
(FORTRANYN

algeidhm
YARC: FoRTRAN

el Fiae to

= prav Yeefoce

AT between ARS &
Language andloe
wi ity Rrograms

xAsc (TNSTR , OUTSTRY

Tapet TINSTR —>

pu\,\hrs/‘lu‘--s
Tyees (Modesd
Resul+ Names

UA Workshop

A design sketch called ‘The Interface’

AT&T Research lab meeting notes

Describes an outer ‘user interface’ layer to core

Fortran algorithms

Key idea of abstracting away inner details giving
higher-level more accessible view for user / analyst

Lead to “The Interface”

Which became S which lead to R

Source: John Chambers, personal communication; now also doi://10.1145/3386334

8/102

https://dl.acm.org/doi/pdf/10.1145/3386334

HISTORICAL PERSPECTIVE: R AS ‘THE INTERFACE’

Proc ACM Progam Lang HOPL (History of Programming Languages) Paper
Chambers (2020) describes the fuller history of S and R, including the ‘interface’ sketch.

S, R, and Data Science From Section 3.3

JOHN M. CHAMBERS. Stanford Univcrsit. USA The Rcpp interface to C++ is used extensively in packages
Shepherd: Jean-Baptiste Tristan, Oracle Labs, USA.

Data science is Jy important and { It requires compu tools and based on specialized C++ code. The original Rcpp is

environments that handle big data and diffieult computations, while supparting creative, high-quality analysis.

The R language and related software play a major role in computing for data science. R is featured in most . . .

pmgumf(mbmmmg in the field. R];atjitage;,pmude vools for 5 wide range of purposes and users. The described in [Edde[buettel and Fran cols 201 7], but the

description of a new technique, particularly from research in statistics, is frequently accompanicd by an R

i iony f R ks e 8 commecon 10 doa scence. R was consciashy desgrnd t replicte i interface has been much extended in the version now on

open-source software the contents of the § software. S in tum was written by data analysis researchers at .

Ut s v o i e o s o reg i Wit Th fauee of S s i CRAN. Approximately 10% of the packages on CRAN use

design decisions made for it need to be understood in this broader context of supporting cffective data analysis

{which would now be called data science). These characteristics were all transferred to R and remain central ch p RCDD ,‘n Cl u des extens ,‘O nsto C++tos upp orta

ta its effectiveness. Thus, R can be viewed as based historically on a domain-specific language for the domain
of data science.

CCS Concepts:« Software and its cugincering — General progeamming langusges: - Social and pro- high-level programming style with R objects that in many

fessional topics — History of programming languages.
Additional Key Words and Phrases: data science, staistical computing, scientific computing ways resurrects the features of the o r[g inal interface

ACM Reference Format:

John M. Chambers. 2020. S, R, and Data Science. Proc. ACM Program. Lang. 4, HOPL, Article 84 (June 2020), [G nguage O]f SECUOI’I 23 bUt now for C++

17 pages. https://doi.org/10.1145/3386334

UA Workshop 9/102

WHY R? : PROGRAMMING WITH DATA FROM 1977 TO 2016

UA Workshop

Omputational The S Language

Methods ¥
F Ol Ddtd Richard A. Becker
Analysis e

JOHN M.CHAMBERS

The R Series.

Extending R

PROGRAMMING
W D.

Thanks to John Chambers for high-resolution cover images. The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.

10/102

CHAMBERS (2008)

Statistics and Computing

Software For Data Analysis

John M. Chambers Chapters 10 and 11 devoted to Interfaces I: C and

Fortran and Interfaces Il: Other Systems.

UA Workshop 11/102

CHAMBERS (2016)

The R Series Extending R

Y Bujpueixy

Object: Everything that exists in R is an object

Function: Everything that happensin R is a
function call

Interface: Interfaces to other software are part of R

o
8
3
g
@

John M. Chambers

O CRC Press

®

UA Workshop 12/102

CHAMBERS (2016)

Y Bujpueixy

o
8
3
g
@

®

UA Workshop

The R Series

Extending R

John M. Chambers

Extending R, Chapter 4

The fundamental lesson about programming in
the large is that requires a correspondingly broad
and flexible response. In particular, no single
language or software system os likely to be ideal
for all aspects. Interfacing multiple systems is the
essence. Part IV explores the design of of
interfaces from R.

13/102

C++ AND RCPP FOR EXTENDING R

UA Workshop 14/102

R AND C/C++

A good fit, it turns out

- A good part of R is written in C (besides R and Fortran code)
- The principle interface to external code is a function .Call()
- It can call functions we write which adhere to the interface

- that takes one or more of the high-level SEXP data structures R uses
- and returns one SEXP

- Formally a function named, say, myfunc, will use

SEXP myfunc(SEXP a, SEXP b, ...)

UA Workshop 15/102

R AND C/C++

A good fit, it turns out (cont.)
- An SEXP (or S-Expression Pointer) is used for everything
- (An older C trick approximating object-oriented programming)
- We can ignore the details but retain that
- everything in R is a SEXP which is self-describing
- can matrix, vector, list, function, ... — 27 types in total
- The key thing for Rcpp is that via C++ features we can map

- each of the (limited number of) SEXP types
- to a specific C++ class representing that type
- and the conversion is automated back and forth

UA Workshop 16/102

R AND C/C++

Other good reasons
- Itis fast — compiled C++ is hard to beat in other languages
- (That said, you can of course write bad and slow code....)
- Itis very general and widely used

- many libraries
- many tools

- Itis fairly universal:

- just about anything will have C interface so C++ can play
- just about any platform / OS will have it

UA Workshop 17/102

R AND C/C++

Key Features

- (Fairly) Easy to learn as it really does not have to be complicated - many examples
- Easy to use as it avoids build / OS system complexities thanks to R infrastrucure

- Expressive as it allows for vectorised C++ using Rcpp Sugar

- Seamless R object access: vector, matrix, list, S3/S4, Environment, Function, ...

- Speed gains for ariety of tasks where R struggles: loops, function calls, ...

- Extensible facilitates access to external libraries directly or via eg Rcpp modules

UA Workshop 18/102

WHO USES R?

UA Workshop 19/102

Growth of Rcpp usage on CRAN

- —— Number of CRAN packages using Rcpp (left axis) o S
2 Percentage of CRAN packages using Rcpp (right axis) r/
N

|

~
(=3
o
(=3
N L o
=

8
v -
-

- ©
[=3
S
=3
=

F <
o
8
r)

F oo
o - - - o

T T T
2010 2015 2020

Data current as of February 4, 2023.

UA Workshop 20/102

USERS ON CORE REPOSITORIES

Rcpp is currently used by
- 2631 CRAN packages
- 252 BioConductor packages

- an unknown (but “large”) number of GitHub projects

UA Workshop 21/102

PAGERANK

suppressMessages(library(utils))
library(pagerank) # cf github.com/andrie/pagerank

cran <- "https://cran.r-project.org”

pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Hit Rcpp ggplot2 dplyr MASS magrittr
HHt 2.724 1.587 1.367 1.070 0.844

UA Workshop 22/102

PAGERANK

UA Workshop

Repp
ggplot2
dplyr
MASS
magrittr
rlang
stringr
Matrix
tibble
data.table
tidyr
jsonlite
urrr
RcppArmadillo
httr

mvtnorm
survival
shiny
foreach
plyr
igraph
reshape2
scales
doParallel
lubridate

lattice

Top 30 of Page Rank as of February 2023

000,

0.005

0.010 0.015 0.020

0.025

23/102

PERCENTAGE OF COMPILED PACKAGES

db <- tools::CRAN_package_db() # added in R 3.4.0

db <- db['duplicated(db[,1]1),] # rows: nb of pkgs,

nTot <- nrow(db) # cols: different attributes

nRcpp <- length(tools::dependsOnPkgs(”Rcpp”,recursive=FALSE, installed=db))

nCompiled <- table(db[, "NeedsCompilation”])[["yes”]]

propRcpp <- nRcpp / nCompiled * 100

data.frame(tot=nTot, totRcpp = nRcpp, totCompiled = nCompiled,
RcppPctOfCompiled = propRcpp)

#Hit tot totRcpp totCompiled RcppPctOfCompiled
1 19144 2631 4470 58.8591

UA Workshop 24/102

How? REVIEW OF HOW THINGS WERE

UA Workshop 25/102

SIMPLE EXAMPLE

R Version of ‘is this number odd or even’

is0dd_r <- function(num = 10L) {
result = (num %% 2L == 1L)
return(result)

}
isodd_r(42L)

[1] FALSE

UA Workshop 26/102

SIMPLE EXAMPLE

R Version of ‘is this number odd or even’

is0odd_r <- function(num = 10L) {
result = (num %% 2L == 1L)
return(result)

}
isodd_r(c(42L, 43L, 44L)) # an aside: R automagically vectorised

[1] FALSE TRUE FALSE

UA Workshop 27/102

SIMPLE EXAMPLE (CONT.)

C++ Version of ‘is this number odd or even’

bool isOdd_cpp(int num = 10) {
bool result = (num % 2 == 1);
return result;

Free-standing code, not yet executable, may need Makefile, ..

UA Workshop 28/102

SIMPLE EXAMPLE (CONT.)

Code for ‘is_odd_prog.cpp’ Program Compile and Run
#include <iostream> $ g++ -0 is_odd is_odd_prog.cpp
bool is0Odd_cpp(int num = 10) { $./iS_Odd
bool result = (num % 2 == 1); 42: 0
} return result; 43: 1
$

int main() {
std::cout << "42: " << isOdd_cpp(42) << std::endl;
std::cout << "43: ” << isOdd_cpp(43) << std::endl;
exit(0);

UA Workshop 29/102

SIMPLE EXAMPLE (CONT.)

Code for is_odd_R.cpp

#include <R.h>
#tinclude <Rdefines.h>
#include <iostream>

bool is0Odd_cpp(int num = 10) {
bool result = (num % 2 == 1);
return result;

}

extern "C” SEXP isOdd_call(SEXP numsx) {
int num = Rf_asInteger(numsx);
bool res = is0dd_cpp(num);
SEXP resxp = Rf_ScalarInteger(res);
return resxp;

}

UA Workshop

Compiling and Linking

$ R CMD COMPILE is_odd_R.cpp
$ R CMD SHLIB is_odd_R.cpp

Loading and Running in R

dyn.load(”is_odd R.so”)
.Call(”1s0dd _call”, 42L)
.Call(”1is0dd_call”, 43L)

30/102

SIMPLE EXAMPLE (CONT.)

How was that?
- Extra legwork:
- to get one integer “in”
- and one bool / int out

- Rather manual steps of compiling, linking, loading
- Also operating system dependent: .so for me, .dll on Windows
- Call in R somewhat awkward via .Call()

Not great. But we have something better!

UA Workshop

31/102

SIMPLE EXAMPLE (CONT.)

Rcpp Version of ‘is this number odd or even’

Rcpp::cppFunction(”

bool isOdd_cpp(int num = 10) {
bool result = (num % 2 == 1);
return result;

")

is0dd_cpp(42L)

[1] FALSE

UA Workshop 32/102

SIMPLE EXAMPLE (CONT.)

InR In C++ via Rcpp

Hit Rcpp::cppFunction(”

is0dd_r <- function(n=10L) { bool is0dd_cpp(int n=10) {
res = (n %% 2L == 1L) bool res = (n % 2 == 1);
return(res) return res;

} ")

isodd_r(42L) isodd_cpp(42L)

[1] FALSE ## [1] FALSE

UA Workshop 33/102

How? THE RCPP WAY

UA Workshop 34/102

A QUICK PRELIMINARY TEST

evaluate simple expression
... as C++ code
Rcpp::evalCpp(”2 + 2")

##t [1] 4

more complex example
set.seed(42)
Rcpp::evalCpp("Rcpp::rnorm(2)”)
[1] 1.370958 -0.564698

UA Workshop

These steps should just work.

Windows users may need Rtools. macOS
users need specific steps. Everybody else
should have a compiler.

Consider e.g. https://rstudio.cloud
for a working setup (albeit with limited
free hours).

We will discuss the commands on the left
in more detail in a bit.

35/102

https://rstudio.cloud

BAsIC USAGE: EVALCPP()

As seen, evalCpp() evaluates a single C++ expression. Includes and dependencies can
be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2") # simple test

#t [1] 4
evalCpp(”std::numeric_limits<double>::max()")

[1] 1.79769e+308

UA Workshop 36/102

FIRST EXERCISE

Exercise 1

Evaluate an expression in C++ via Rcpp: :evalCpp()

UA Workshop 37/102

BAsIC USAGE: cPPFUNCTION()

cppFunction() creates, compiles and links a C++ file, and creates an R function to
access it.

cppFunction(”
int exampleCpp11() {

auto x = 10; // guesses type
return x;
}", plugins=c(”cpp11”)) ## turns on C++11

#tt R function with same name as C++ function
exampleCpp11()

UA Workshop 38/102

SECOND EXERCISE

library(Rcpp)
cppFunction(”int f(int a, int b) { return(a + b); }")
f(21, 21)

Exercise 2
Write a C++ function on the R command-Lline via cppFunction()

Should the above work? Yes? No?
What can you see examining it?
Can you “break it” ?

UA Workshop 39/102

BASIC USAGE: SOURCECPP()

sourceCpp() is the actual workhorse behind evalCpp() and cppFunction(). Itis
described in more detail in the package vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package inline, but
provides even more ease-of-use, control and helpers - freeing us from boilerplate

scaffolding.

A key feature are the plugins and dependency options: other packages can provide a
plugin to supply require compile-time parameters (cf RcppArmadillo, RcppEigen,
RcppGSL). Plugins can also turn on support for C++11/C++14/C++17/C++20, OpenMP, and

more.

UA Workshop 40/102

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf

JUMPING RIGHT IN: VIA RSTUDIO

File Edit Code View Plots Session Build Debug Tools Help

New File > RScript Ctrl+Shift+N
New Project... .
R Markdown... S o
Open File... Ctrl+0 & &
Text File
Recent Files > . i Glol
C++ File
Open Project...
R Sweave
Open Project in New Window...
. RHTML
Recent Projects >
R Presentation
Ctrl+S R Do i
Documentation Files
“ontripbutors.
-~ ~ on and &
CULAIESS gas in publications. The R La
Print... or on-line help, or Qial

UA Workshop 41/102

A FIRST EXAMPLE: CONT'ED

#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar).

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {
return x * 2;

// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.

/xx%x R
timesTwo(42)
UA Workéhop 42/102

A FIRST EXAMPLE: CONT'ED

So what just happened?

- We defined a simple C++ function

- |t operates on a numeric vector argument

- We ask Rcpp to ‘source it’ for us

- Behind the scenes Rcpp creates a wrapper

- Rcpp then compiles, links, and loads the wrapper
- The function is available in R under its C++ name

UA Workshop 43/102

THIRD EXERCISE

Exercise 3

Modify the timesTwo function used via Rcpp: : sourceCpp()

Use the RStudio File -> New File -> C++ File template.

UA Workshop 44/102

FIRST EXAMPLE: SPEED

UA Workshop 45/102

AN EXAMPLE WITH FOCUS ON SPEED

Consider a function defined as

f(n) such that i when n < 2
f(n—1)+f(n—2) when n > 2

UA Workshop 46/102

AN INTRODUCTORY EXAMPLE: SIMPLE R IMPLEMENTATION

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

Using it on first 11 arguments
sapply(0:10, f)

[1] 06 1 1 2 3 5 8 13 21 34 55

UA Workshop 47/102

AN INTRODUCTORY EXAMPLE: TIMING R IMPLEMENTATION

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

Hit test replications elapsed relative
1 f£(10) 100 0.008 1.0
2 f(15) 100 0.100 12.5
##t 3 £(20) 100 1.116 139.5

UA Workshop 48/102

AN INTRODUCTORY EXAMPLE: C++ IMPLEMENTATION

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

deployed as

Rcpp::cppFunction('int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }')
sapply(0:10, g) # Using it on first 11 arguments

[1] © 1 1 2 3 5 8 13 21 34 55
UA Workshop 49/102

AN INTRODUCTORY EXAMPLE: COMPARING TIMING

Timing:

library(rbenchmark)
benchmark(f(20), g(20))[,1:4]

Hit test replications elapsed relative
1 £(20) 100 1.186 593
2 g(20) 100 0.002 1

A nice gain of a few orders of magnitude.

UA Workshop 50/102

AN INTRODUCTORY EXAMPLE: COMPARING TIMING

res <- microbenchmark::microbenchmark(f(20), g(20))
res

Unit: microseconds

expr min 1q mean median uq max neval cld
f(20) 10824.131 11454.662 17386.459 12066.750 18308.858 270105.723 100 b
##t g(20) 14.682 15.622 21.622 18.925 24.421 68.644 100 a

suppressMessages(microbenchmark: : :autoplot.microbenchmark(res))

9(20)-

(20) -

1e+01 1e+02 1e+03 1e+04 1e+05
Time [microseconds]
UA Workshop 51/102

FOURTH EXERCISE

// [[Rcpp::export]]
int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));
}

Exercise 4
Run the C++ fibonacci function and maybe try some larger values.

Easiest:
- Add function to C++ file template

- Remember to add // [[Rcpp::export]]

UA Workshop 52/102

A (VERY) BRIEF C++ PRIMER

UA Workshop 53/102

C++ 1S COMPILED NOT INTERPRETED

We may need to supply:

- header location via -1
- library location via -L,
- library via -1libraryname

g++ -T/usr/include -c gnorm_rmath.cpp
g++ -0 gnorm_rmath gnorm_rmath.o -L/usr/lib -1Rmath

Locations may be OS and/or installation-dependent

UA Workshop 54/102

C++ IS STATICALLY TYPED

Examples

- Ris dynamically typed: x <- 3.14; x <- "foo"” isvalid.

- In C++, each variable must be declared before first use.

- Common types are int and long (possibly with unsigned), float and double,

bool, as well as char.

- No standard string type, though std::string is close.

- All these variables types are scalars which is fundamentally different from R

where everything is a vector.

- class (and struct) allow creation of composite types; classes add behaviour to

UA Workshop

data to form objects.

Variables need to be declared, cannot change /
55/102

C++ 1S ABETTER C

Examples
- control structures similar to what R offers: for, while, if, switch

- functions are similar too but note the difference in positional-only matching, also
same function name but different arguments allowed in C++

- pointers and memory management: very different, but lots of issues people had
with C can be avoided via STL (which is something Rcpp promotes too)

- sometimes still useful to know what a pointer is ...

UA Workshop 56/102

C++ 1S OBJECT-ORIENTED

A 2nd key feature of C++, and it does it differently from S3 and S4.

struct Date { struct Person {
unsigned int year; char firstname[20];
unsigned int month; char lastname[20];
unsigned int day struct Date birthday;
}; unsigned long id;
};

A struct is (very loosely) a bit like an R 1ist, contains no code, but can be nested.

UA Workshop 57/102

C++ 1S OBJECT-ORIENTED

class Date {
private:
unsigned int year
unsigned int month;
unsigned int date;
public:
void setDate(int y, int m, int d);
int getDay();
int getMonth();
int getYear();
}

UA Workshop

Classes extend structs with code

Object-orientation in the C++ sense
matches data with code operating on it.

Here the year, month, and date
integers are declared as ‘private’
variables and are accessed via ‘getter’
and ‘setter’ functions. (There is much
more too all of this, of course.)

58/102

C++ AND R TYPES

R Type mapping by Rcpp
Standard R types (integer, numeric, list, function, ... and compound objects) are mapped
to corresponding C++ types using extensive template meta-programming - it just works.

A key feature of Rcpp: works with scalar types, R vectors, STL vectors.

UA Workshop 59/102

C++ AND R TYPES

So-called atomistic base types in C and C++ contain one value.

By contrast, in R everything is a vector so we have vector classes (as well as
corresponding *Matrix classes like NumericalMatrix.

Basic C and C++: Scalar Rcpp Vectors
- int - IntegerVector
- double - NumericVector
- char[];std::string - CharacterVector
- bool - LogicalVector
- complex - ComplexVector

UA Workshop 60/102

SECOND EXAMPLE: VECTORS

UA Workshop 61/102

TYPES: VECTOR EXAMPLE

A “teaching-only” first example - there are better ways:

#include <Rcpp.h>
// [[Rcpp::export]]
double getMax(Rcpp::NumericVector v) {
int n = v.size(); // vectors are self-describing, we can ask about size
double m = v[0]; // initialize
for (int i=0; i<n; i++) {
if (v[i]l > m) {
Rcpp::Rcout << "Now " << m << std::endl;
m=v[il];

}
return(m);

UA Worishop 62/102

TYPES: VECTOR EXAMPLE

cppFunction(”double getMax(NumericVector v) {
int n = v.size(); // vectors are self-describing
double m = v[0]; // initialize
for (int i=0; i<n; i++) {
if (v[i] > m) {
m = v[il];
Rcpp::Rcout << \”"Now \” << m << std::endl;

}

return(m);
)
getMax(c(4,5,2))

Now 5

[1] 5

UA Workshop 63/102

ANOTHER VECTOR EXAMPLE: COLUMN SUMS

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp: :NumericVector colSums(Rcpp::NumericMatrix mat) {
size_t cols = mat.cols();
Rcpp: :NumericVector res(cols);
for (size_t i=0; i<cols; i++) {
res[i] = sum(mat.column(i));
}

return(res);

UA Workshop 64/102

ANOTHER VECTOR EXAMPLE: COLUMN SUMS

Key Elements
- NumericMatrix and NumericVector go-to types for matrix and vector
operations on floating point variables
- We prefix with Rcpp:: to make the namespace explicit
- Accessor functions .rows() and .cols() for dimensions
- Result vector allocated based on number of columns column
- Function column(i) extracts a column, gets a vector, and sum() operates on it
- That last sum() was internally vectorised, no need to loop over all elements

UA Workshop 65/102

FIFTH EXERCISE

Exercise 5
// [[Rcpp::export]]
Modify this vector example to double getMax(NumericVector v) {
compute on vectors int n = v.size(); // vectors are describing
double m = v[0]; // initialize

for (int i=0; i<n; i++) {
if v[i] > m {

loop backwards. Rcpp: :Rcout << "Now
<< m << std::endl;

Compute amin. Or the sum. Or
Try a few things. m = v[il;

}

return(m);

UA Workshop 66/102

STL VECTORS

Templated vectors

cppFunction(”double getMax2(std::vector<double> v) {
C++ has vectors as well: written as int n = v.size(); // vectors are describing

double m = v[0]; // initialize
std::vector<T> wherethe T for (int i=0; icn; ies) 1
denotes ‘template’ meaning different if (v[i] > m) {
. . = v[il;
types can be used to instantiate. } e
}
The key part is that Rcpp allows easy return(m);

) . . }")
interoperation with them so we can getMax2(c(4,5,2))
work with countless C++ libraries.

[1] 5

UA Workshop 67/102

STL VECTORS

Useful to know

- STL vectors are widely used so Rcpp supports them
- Very useful to access other C++ code and libraries
- One caveat: Rcpp vectors reuse R memory so no copies
- STL vectors have different underpinning so copies
- But not a concern unless you have
- either HUGE data structurs,

- or many many calls

UA Workshop 68/102

ONE IMPORTANT ISSUE

cppFunction(”void setSecond(Rcpp::NumericVector v) {
v[1] = 42;
")

v <- ¢(1,2,3); setSecond(v); v # as expected

##t [1] 1 42 3

v <- c(1L,2L,3L); setSecond(v); v # different

[1] 1 2 3

UA Workshop 69/102

SIXTH EXERCISE

Exercise 6
Please reason about the previous example.

What might cause this?

UA Workshop 70/102

TwO MORE THINGS ON RCPP VECTORS

Easiest solution on the getMax() problem:

double getMax(NumericVector v) {
return(max(v));

Just use the Sugar function max()!

For Rcpp data structures we have many functions which act on C++ vectors just like
their R counterparts.

But these may often often prefer Rcpp vectors over STL.

UA Workshop 71/102

TwO MORE THINGS ON RCPP VECTORS

Vectors as data containers
- Rcpp vectors (and matrices) do not really do linear algebra.
- In other words, do not use them for the usual “math” operations.

- Rather use RcppArmadillo - more on that later.

UA Workshop 72/102

How: PACKAGES

UA Workshop 73/102

BASIC USAGE: PACKAGES

Packages
- The standard unit of R code organization.

- Creating packages with Rcpp is easy:
- create an empty one via Rcpp.package.skeleton()
- also RcppArmadillo.package.skeleton() for Armadillo
- RStudio has the File -> New Project -> Package menu(s)
(as we show on the next slide)

- The vignette Rcpp-packages has fuller details.

- As of February 2023, there are 2631 CRAN and 252 BioConductor packages which
use Rcpp all offering working, tested, and reviewed examples.

UA Workshop 741102

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-packages.pdf

PACKAGES AND RCPP

UA Workshop

File Code View Plots Debug Tools Help
Q- - &) Project: (None) ~
7] Foo.cop () Environment History =0
_ Souceonsave | Q /- 2 _ Source % [_%Import Dataset~ 3 Clear List~
1 #include <Rcpp.h> 4| 7 Global Evironment -
2 ust anespce Reop: e
a Below is a simple ex: ~\p of exporting a C++ function to R. Yol timesTwo function (x)
g ! o e ot
s
7
2 ore on using Back Create R Package
10
:;. int l::}::wo(m% x) Type: Package name:
:i Package w/Repp v — —o
R Create package based on source files:
/ | s
= Analysis
Create project as subdirectory of:
B Browse...
Create a git repository for this project
51
1 new window Create Project | | Cancel
- saur(a(pp(ftes/tiestvon co’ Anntroductionto R The R Lanquage Defintion
file not found ‘f\leS/t\mesTwoA cpp’ R Installation and
T addition: Narning Witing R Extensions L e
In normalizePath(file, w\ns\as ")
path[1]="files/timesTwoA.cpp”: No such file or directory R Data Import/Export B Intemals
> getwd()
[1] "/home/edd"
S Reference

75/102

PACKAGES AND RCPP

Rcpp.package.skeleton() and its derivatives.
e.g. RcppArmadillo.package.skeleton() create working packages.

// another simple example: outer product of a vector,

// returning a matrix

// [[Rcpp::export]]

arma::mat rcpparma_outerproduct(const arma::colvec & x) {
arma::mat m = x * x.t();
return m;

// and the inner product returns a scalar

// [[Rcpp::export]]

double rcpparma_innerproduct(const arma::colvec & x) {
double v = arma::as_scalar(x.t() = x);
return v;

}

UA Workshop 76/102

PACKAGES AND RCPP

Two (or three) ways to link to external libraries

- Full copies: Do what RcppMLPACK (v1) does and embed a full copy; larger build
time, harder to update, self-contained

- With linking of libraries: Do what RcppGSL or RcppMLPACK (v2,v3) do and use
hooks in the package startup to store compiler and linker flags which are passed

to environment variables

- With C++ template headers only: Do what RcppArmadillo, mlpack (v4) and others
do and just point to the headers

More details in extra vignettes. Not enough time here today to work through this.

UA Workshop 77/102

RCPPARMADILLO

UA Workshop 78/102

ARMADILLO

&\ Armadillo

‘g . C++library for linear algebra & scientific computing
I

About Documentation Questions Speed Contact Download

Armadillo is a high quality linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use

Provides high-level syntax and functionality deliberately similar to Matlab

Useful for algorithm development directly in C++, or quick conversion of research code into production environments

Provides efficient classes for vectors, matrices and cubes; dense and sparse matrices are supported

Integer, floating point and complex numbers are supported
« Asophisticated expression evaluator (based on template meta-programming) automatically combines several operations to increase speed and efficiency
« Dynamic evaluation automatically chooses optimal code paths based on detected matrix structures

« Various matrix decompositions (eigen, VD, QR, etc) are provided through integration with LAPACK, or one of its high performance drop-in replacements (eg. MKL or OpenBLAS)

. Can use OpenMP multi-thread to speed up expensive operations

« Distributed under the permissive Apache 2.0 license, useful for both open-source and proprietary (closed-source) software

Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc

download latest version | git repo | browse documentation
Supported by:

7~ ogre
) Wy Griffith

Source: http://arma.sf.net
UA Workshop 79/102

http://arma.sf.net

ARMADILLO

What is Armadillo?

- Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good
balance between speed and ease of use.

- The syntax is deliberately similar to Matlab.

- Integer, floating point and complex numbers are supported.

- A delayed evaluation approach is employed (at compile-time) to combine several
operations into one and reduce (or eliminate) the need for temporaries.

- Useful for conversion of research code into production environments, or if C++ has
been decided as the language of choice, due to speed and/or integration
capabilities.

Source: http://arma.sf.net

UA Workshop 80/102

http://arma.sf.net

ARMADILLO HIGHLIGHTS

Key Points

- Provides integer, floating point and complex vectors, matrices, cubes and fields
with all the common operations.
- Very good documentation and examples
- website,
- technical report (Sanderson, 2010),
- CSDA paper (Sanderson and Eddelbuettel, 2014),
- JOSS paper (Sanderson and Curtin, 2016),
- ICMS paper (Sanderson and Curtin, 2018).
- Modern code, extending from earlier matrix libraries.
- Responsive and active maintainer, frequent updates.

- Used eg by MLPACK, see Curtin et al (JMLR 2013, JOSS 2023).
UA Workshop 81/102

http://arma.sf.net
http://elec.uq.edu.au/~conrad/code.html
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://joss.theoj.org/papers/10.21105/joss.00026
http://arma.sourceforge.net/arma_spmat_icms_2018.pdf
http://www.mlpack.org
http://jmlr.org/papers/volume14/curtin13a/curtin13a.pdf‎
https://joss.theoj.org/papers/10.21105/joss.05026

RCPPARMADILLO HIGHLIGHTS

Key Points
- Template-only builds—no linking, and available whereever R and a compiler work
(but Rcpp is needed)

- Easy to use, just add LinkingTo: RcppArmadillo, Rcpp to DESCRIPTION
(i.e., no added cost beyond Rcpp)

- Really easy from R via Rcpp and automatic converters

- Frequently updated, widely used - for example by now 1040 CRAN packages

UA Workshop 82/102

EXAMPLE: COLUMN SUMS

#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]

arma::rowvec colSums(arma::mat mat) {
size_t cols = mat.n_cols;
arma::rowvec res(cols);

for (size_t i=0; i<cols; i++) {
res[i] = sum(mat.col(i));
I

return(res);

UA Workshop 83/102

EXAMPLE: COLUMN SUMS

Key Features

- The [[Rcpp::depends(RcppArmadillo)]] tag lets R tell g++ (or clang++)
about the need for Armadillo headers

- Dimension accessor via member variables n_rows and n_cols; not function calls

- We return a rowvec; default vec is alias for colvec

- Column accessor is just col(i) here

- Thisis a simple example of how similar features may have slightly different names
across libraries

UA Workshop 84/102

EXAMPLE: EIGEN VALUES

#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]

arma::vec getEigenValues(arma::mat M) {
return arma::eig_sym(M);

UA Workshop 85/102

EXAMPLE: EIGEN VALUES

Rcpp: :sourceCpp(”code/armaeigen.cpp”)
M <- cbind(c(1,-1), c(-1,1))
getEigenValues(M)

#Hit [,1]
[1,] 0
#t [2,] 2

eigen(M)[["values”]1]

[1] 2 ©

UA Workshop 86/102

SEVENTH EXERCISE

Exercise 7
Write an inner and outer product of a vector

Hints:

- arma::mat and arma: :colvec (aka arma: :vec) are useful
- the .t () function transposes
- as_scalar() lets you assign to a double

UA Workshop 87/102

VECTOR PRODUCTS

#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

// simple example: outer product of a vector, returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {
arma::mat m = x * x.t();
return m;

// and the inner product returns a scalar
//
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {
double v = arma::as_scalar(x.t() = x);
return v;
}
UA Workshop 88/102

PACKAGE WITH RCPPARMADILLO

Straightforward

- The package itself contains the RcppArmadillo.package.skeleton() helper

- RStudio also offers File -> New Project -> (New | Existing) Directory -> Package
with RcppArmadillo

- Easy and reliable to deploy as header-only without linking

- One caveat on macQOS is the need for gfortran, see online help

UA Workshop 89/102

THIRD EXAMPLE: FASTLM

UA Workshop 90/102

FastLm CASE STUDY: FASTER LINEAR MODEL WITH FASTLM

Background

- Implementations of fastLm() have been a staple during the early development
of Rcpp

- First version was in response to a question on r-help.

- Request was for a fast function to estimate parameters — and their standard
errors — from a linear model,

- It used GSL functions to estimate B as well as its standard errors ¢ - as
Im.fit() in R only returns the former.

- It has since been reimplemented for RcppArmadillo and RcppEigen

UA Workshop 91/102

INITIAL FASTLM

#include <RcppArmadillo.h>

extern "C” SEXP fastLm(SEXP Xs, SEXP ys) {

try {
Rcpp: :NumericVector yr(ys); // creates Rcpp vector from SEXP
Rcpp::NumericMatrix Xr(Xs); // creates Rcpp matrix from SEXP
int n = Xr.nrow(), k = Xr.ncol();
arma::mat X(Xr.begin(), n, k, false); // reuses memory, avoids extra copy

arma::colvec y(yr.begin(), yr.size(), false);

arma::colvec coef = arma::solve(X, y); // fit model y ~ X

arma::colvec res =y - Xxcoef; // residuals, and std.errors of coefficients
double s2 = std::inner_product(res.begin(), res.end(), res.begin(), 0.0)/(n - k);
arma::colvec std_err = arma::sqrt(s2+arma::diagvec(arma::pinv(arma::trans(X)=X)));

return Rcpp::List::create(Rcpp::Named(”coefficients”) = coef,
Rcpp: :Named(”stderr”) = std_err,
Rcpp::Named(”df.residual”) =n - k);
} catch(std::exception &ex) {
forward_exception_to_r(ex);
} catch(...) {
::Rf_error("c++ exception (unknown reason)”);
}
return R_Nilvalue; // -Wall
}
UA Workshop 92/102

NEWER VERSION

// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

using namespace Rcpp;

using namespace arma;

// [[Rcpp::export]]

List fastLm(NumericVector yr, NumericMatrix Xr) {
int n = Xr.nrow(), k = Xr.ncol();
mat X(Xr.begin(), n, k, false);
colvec y(yr.begin(), yr.size(), false);

colvec coef = solve(X, y);
colvec resid = y - X#coef;

double sig2 = as_scalar(trans(resid)+resid/(n-k));
colvec stderrest = sqrt(sig2 * diagvec(inv(trans(X)#X)));

return List::create(Named(”coefficients”) = coef,

Named(”stderr”) = stderrest,
Named("df.residual”) =n -k);

UA Workshop 93/102

CURRENT VERSION

// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

// [[Rcpp::export]]
Rcpp::List fastLm(const arma::mat& X, const arma::colvecs y) {
int n = X.n_rows, k = X.n_cols;

arma::colvec coef = arma::solve(X, y);
arma::colvec resid = y - Xxcoef;

double sig2 = arma::as_scalar(arma::trans(resid)+resid/(n-k));
arma::colvec sterr = arma::sqrt(sig2 * arma::diagvec(arma::pinv(arma::trans(X)=X)));

return Rcpp::List::create(Rcpp::Named(”coefficients”) = coef,

Rcpp: :Named(”stderr”) = sterr,
Rcpp::Named(”df.residual”) =n - k);

UA Workshop 94/102

INTERFACE CHANGES

arma::colvec y = Rcpp::as<arma::colvec>(ys);
arma::mat X = Rcpp::as<arma::mat>(Xs);

Convenient, but additional copy. Next variant uses two steps, but only pointer is copied:

Rcpp: :NumericVector yr(ys);

Rcpp: :NumericMatrix Xr(Xs);

int n = Xr.nrow(), k = Xr.ncol();

arma::mat X(Xr.begin(), n, k, false);
arma::colvec y(yr.begin(), yr.size(), false);

Better if performance is concern. And RcppArmadillo now has efficient const
references implementing this for us ‘behind the scenes’.

UA Workshop 95/102

BENCHMARK

edd@brad:~$ Rscript ~/git/rcpparmadillo/inst/examples/fastLm.r
test replications relative elapsed

2 fLmTwoCasts(X, y) 5000 1.000 0.072
4 FLMSEXP(X, y) 5000 1.000 0.072
3 fLmConstRef(X, y) 5000 1.014 0.073
6 fastLmPureDotCall(X, y) 5000 1.028 0.074
1 fLmOneCast(X, y) 5000 1.250 0.090
5 fastLmPure(X, y) 5000 1.486 0.107
8 m.fit(X, y) 5000 2.542 0.183
7 fastLm(frm, data = trees) 5000 36.153 2.603
9 m(frm, data = trees) 5000 43.694 3.146

continued below with subset

UA Workshop 96/102

BENCHMARK

continued from above with larger N

test replications relative elapsed

fLmOneCast(X, y)
fLMSEXP(X, vy)
fLmConstRef(X, y)
fastLmPureDotCall(X, y)
fLmTwoCasts(X, y)
fastLmPure(X, y)
m.fit(X, y)

N N O W e

edd@brad:~$

UA Workshop

50000
50000
50000
50000
50000
50000
50000

dho
.027
.061
.061
.123
.583
.530

N R R R R e

000

0.
.694
717
.717
.759
.070
.710

R PO O o ©

676

97/102

MORE

UA Workshop 98/102

DOCUMENTATION

Where to go for next steps

- The package comes with nine pdf vignettes, and help pages.
- The introductory vignettes are now published (Rcpp and RcppEigen in J Stat
Software, RcppArmadillo in Comp Stat & Data Anlys, Rcpp again in TAS)

- The rcpp-devel list is the recommended resource, generally very helpful, and fairly
low volume.

- StackOverflow has nearly 3000 posts too — which can be searched.
- And a number of blog posts introduce/discuss features.

UA Workshop 99/102

RCPP GALLERY

Rcpp Gallery - Google Chrome

[Repp Gallery.

¢ o € [0 oleryrepporg Qs =
RCPp Projects- Gallery Book Events More~ =
Featured Articles
Quick conversion of lstof lsts into a data frame
This pest shows one method for creating a data frame quickly
Passing user-supplied C++ functio X
“This example shows how {0 select user-supplied G-+ funcions
Using Repp 10 access the C API of xis
This post shows how o use the exporied AP functions of xis
Timing normal RNGS
This post compares drawing N(0.1) veciors ffom R. BOost and C++11
Afirstlambda function ith C++11 and Repp
This post shows how o play With Iambda functions in C++11
Firststeps in using C+-+11 wih Repp
This post shows how o experimentwith C++11 features
Using Reoutfor autput synchronised vith R
“This pest shows how o use Reout (and Reer) for autput
Using the Repp sugar function clamp
This post ilustrates the sugar function clamp
Using the Repp Timer
“This post shows how o use the Timer class in Repp
Galling R Functions from C++
This post discusses calling R functions from C+
More »
Recently Published
» Using the ReppArmadillo-based Implementation of RS sample(
» Dynamic Wrapping and Recursion with Repp
» Using bigmemory with Repp
» Generating a multivariate gaussian distibution using ReppArmadilo
» Using Repp with Boost Regex for regular expre:

» Fast factor generation with Repp

UA Workshop 100/102

THE RCPP BOOK

Dirk Eddelbuettel

On sale since June 2013.

@ Springer

UA Workshop 101/102

THANK YOU!

slides https://dirk.eddelbuettel.com/presentations/
web https://dirk.eddelbuettel.com/
mail dirka@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

mastodon @eddelbuettelamastodon.social

UA Workshop 102/102

https://dirk.eddelbuettel.com/presentations/
https://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel
@eddelbuettel@mastodon.social

	Overview
	Why R?
	C++ and Rcpp for Extending R
	Who Uses R?
	How? Review of How Things were
	How? The Rcpp Way
	First Example: Speed
	A (Very) Brief C++ Primer
	Second Example: Vectors
	How: Packages
	RcppArmadillo
	Third Example: FastLm
	More

