
Extending R with C++

Motivation, Examples, and Context

Dirk Eddelbuettel

20 April 2018

Debian / R Project / U of Illinois

U Illinois Stat 385 Guest Lecture 1/71

Outline

U Illinois Stat 385 Guest Lecture 2/71

Agenda

• (Very) Quick R Basics Reminder
• C++ in (way less than) a nutshell
• Extending R with C++ via Rpp
• A Worked Example
• A Case Study

U Illinois Stat 385 Guest Lecture 3/71

Why R?

U Illinois Stat 385 Guest Lecture 4/71

Programming with Data from 1977 to 2016

Thanks to John Chambers for high-resolution cover images. The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.

U Illinois Stat 385 Guest Lecture 5/71

A Simple Example

xx <- faithful[,”eruptions”]
fit <- density(xx)
plot(fit)

U Illinois Stat 385 Guest Lecture 6/71

A Simple Example

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

U Illinois Stat 385 Guest Lecture 7/71

A Simple Example - Refined

xx <- faithful[,”eruptions”]
fit1 <- density(xx)
fit2 <- replicate(10000, {

x <- sample(xx,replace=TRUE);
density(x, from=min(fit1$x), to=max(fit1$x))$y

})
fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fit1, ylim=range(fit3))
polygon(c(fit1$x,rev(fit1$x)), c(fit3[1,],rev(fit3[2,])),

col='grey', border=F)
lines(fit1)

U Illinois Stat 385 Guest Lecture 8/71

A Simple Example - Refined

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272 Bandwidth = 0.3348

D
en

si
ty

U Illinois Stat 385 Guest Lecture 9/71

So Why R?

R enables us to

• work interactively
• explore and visualize data
• access, retrieve and/or generate data
• summarize and report into pdf, html, …

making it the key language for statistical computing, and a preferred
environment for many data analysts.

U Illinois Stat 385 Guest Lecture 10/71

R as central point

U Illinois Stat 385 Guest Lecture 11/71

R as central point

From any one of
• csv

• txt

• xlsx

• xml, json, ...

• web scraping, ...

• hdf5, netcdf, ...

• sas, stata, spss, ...

• various SQL + NOSQL DBs

• various binary protocols

via into any one of
• txt

• html

• latex and pdf

• html and js

• word

• shiny

• most graphics formats

• other dashboards

• web frontends

U Illinois Stat 385 Guest Lecture 12/71

R per John Chambers (2016)

U Illinois Stat 385 Guest Lecture 13/71

R per John Chambers (2016)

Three Principles (Section 1.1)

Object Everything that exists in R is an object.

Function Everything that happens in R is a function call.

Interface Interfaces to other software are part of R.

U Illinois Stat 385 Guest Lecture 14/71

R per John Chambers (2016)

Three Principles (Section 1.1)

Object Everything that exists in R is an object.

Function Everything that happens in R is a function call.

Interface Interfaces to other software are part of R.

U Illinois Stat 385 Guest Lecture 15/71

R per John Chambers (2016)

That is new. Or is it?

U Illinois Stat 385 Guest Lecture 16/71

R per John Chambers (2016)

Source: John Chamber, personal communication

U Illinois Stat 385 Guest Lecture 17/71

Interface 1976

This became the system known as “Interface”, a precursor to S and R.

U Illinois Stat 385 Guest Lecture 18/71

C++

U Illinois Stat 385 Guest Lecture 19/71

Why C++?

• Asking Google leads to tens of million of hits.
• Wikipedia: C++ is a statically typed, free-form, multi-paradigm,
compiled, general-purpose, powerful programming language

• C++ is industrial-strength, vendor-independent, widely-used,
and still evolving

• In science & research, one of the most frequently-used
languages: If there is something you want to use / connect to, it
probably has a C/C++ API

• As a widely used language it also has good tool support
(debuggers, profilers, code analysis)

U Illinois Stat 385 Guest Lecture 20/71

http://en.wikipedia.org/wiki/C%2B%2B%7D%7BWikipedia

Why C++?

Scott Meyers: View C++ as a federation of languages

• C provides a rich inheritance and interoperability as Unix,
Windows, … are all build on C.

• Object-Oriented C++ (maybe just to provide endless discussions
about exactly what OO is or should be)

• Templated C++ which is mighty powerful; template meta
programming unequalled in other languages.

• The Standard Template Library (STL) is a specific template
library which is powerful but has its own conventions.

• C++11 and C++14 (and beyond) add enough to be called a fifth
language.

NB: Meyers original list of four languages appeared years before C++11.

U Illinois Stat 385 Guest Lecture 21/71

Why C++?

• Mature yet current
• Strong performance focus:

• You don’t pay for what you don’t use
• Leave no room for another language between the machine level
and C++

• Yet also powerfully abstract and high-level
• C++11, C++14, C++17, … a big deal giving us new language features
• While there are complexities, Rcpp users are mostly shielded

U Illinois Stat 385 Guest Lecture 22/71

C++ In Too Little Time

U Illinois Stat 385 Guest Lecture 23/71

Compiled not Interpreted

Need to compile and link

#include <cstdio>

int main(void) {
printf(”Hello, world!\n”);
return 0;

}

U Illinois Stat 385 Guest Lecture 24/71

Compiled not Interpreted

Or streams output rather than printf

#include <iostream>

int main(void) {
std::cout << ”Hello, world!” << std::endl;
return 0;

}

U Illinois Stat 385 Guest Lecture 25/71

Compiled not Interpreted

g++ -o will compile and link

Next: an example with explicit linking of an external library.

U Illinois Stat 385 Guest Lecture 26/71

Compiled not Interpreted

#include <cstdio>

#define MATHLIB_STANDALONE
#include <Rmath.h>

int main(void) {
printf(”N(0,1) 95th percentile %9.8f\n”,

qnorm(0.95, 0.0, 1.0, 1, 0));
}

U Illinois Stat 385 Guest Lecture 27/71

Compiled not Interpreted

We may need to supply:

• header location via -I,
• library location via -L,
• library via -llibraryname

g++ -I/usr/include -c qnorm_rmath.cpp
g++ -o qnorm_rmath qnorm_rmath.o -L/usr/lib -lRmath

U Illinois Stat 385 Guest Lecture 28/71

Statically Typed

• R is dynamically typed: x <- 3.14; x <- ”foo” is valid.

• In C++, each variable must be declared before first use.

• Common types are int and long (possibly with unsigned),
float and double, bool, as well as char.

• No standard string type, though std::string is close.

• All these variables types are scalars which is fundamentally
different from R where everything is a vector.

• class (and struct) allow creation of composite types; classes
add behaviour to data to form objects.

• Variables need to be declared, cannot change

U Illinois Stat 385 Guest Lecture 29/71

C++ is a Better C

• control structures similar to what R offers: for, while, if,
switch

• functions are similar too but note the difference in
positional-only matching, also same function name but
different arguments allowed in C++

• pointers and memory management: very different, but lots of
issues people had with C can be avoided via STL (which is
something Rcpp promotes too)

• sometimes still useful to know what a pointer is …

U Illinois Stat 385 Guest Lecture 30/71

Object-Oriented

This is a second key feature of C++, and itis different from S3 and S4.

struct Date {
unsigned int year;
unsigned int month;
unsigned int day

};
struct Person {

char firstname[20];
char lastname[20];
struct Date birthday;
unsigned long id;

};

U Illinois Stat 385 Guest Lecture 31/71

Object-Oriented

Object-orientation matches data with code operating on it:

class Date {
private:

unsigned int year
unsigned int month;
unsigned int date;

public:
void setDate(int y, int m, int d);
int getDay();
int getMonth();
int getYear();

}

U Illinois Stat 385 Guest Lecture 32/71

Generic Programming and the STL

The STL promotes generic programming.

For example, the sequence container types vector, deque, and
list all support

• push_back() to insert at the end;
• pop_back() to remove from the front;
• begin() returning an iterator to the first element;
• end() returning an iterator to just after the last element;
• size() for the number of elements;

but only list has push_front() and pop_front().

Other useful containers: set, multiset, map and multimap.

U Illinois Stat 385 Guest Lecture 33/71

Generic Programming and the STL

Traversal of containers can be achieved via iterators which require
suitable member functions begin() and end():

std::vector<double>::const_iterator si;
for (si=s.begin(); si != s.end(); si++)

std::cout << *si << std::endl;

U Illinois Stat 385 Guest Lecture 34/71

Generic Programming and the STL

Another key STL part are algorithms:

double sum = accumulate(s.begin(), s.end(), 0);

Some other STL algorithms are

• find finds the first element equal to the supplied value
• count counts the number of matching elements
• transform applies a supplied function to each element
• for_each sweeps over all elements, does not alter
• inner_product inner product of two vectors

U Illinois Stat 385 Guest Lecture 35/71

Template Programming

Template programming provides a ‘language within C++’: code gets
evaluated during compilation.

One of the simplest template examples is

template <typename T>
const T& min(const T& x, const T& y) {

return y < x ? y : x;
}

This can now be used to compute the minimum between two int
variables, or double, or in fact any admissible type providing an
operator<() for less-than comparison.

U Illinois Stat 385 Guest Lecture 36/71

Template Programming

Another template example is a class squaring its argument:

template <typename T>
class square : public std::unary_function<T,T> {
public:

T operator()(T t) const {
return t*t;

}
};

which can be used along with STL algorithms:

transform(x.begin(), x.end(), square);

U Illinois Stat 385 Guest Lecture 37/71

Further Reading

Books by Meyers are excellent

I also like the (free) C++ Annotations

C++ FAQ

Resources on StackOverflow such as

• general info and its links, eg
• booklist

U Illinois Stat 385 Guest Lecture 38/71

http://www.icce.rug.nl/documents/cplusplus/
http://stackoverflow.com/tags/c%2b%2b/info
http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

Debugging

Some tips:

• Generally painful, old-school printf() still pervasive

• Debuggers go along with compilers: gdb for gcc and g++; lldb
for the clang / llvm family

• Extra tools such as valgrind helpful for memory debugging

• “Sanitizer” (ASAN/UBSAN) in newer versions of g++ and
clang++

U Illinois Stat 385 Guest Lecture 39/71

Extending R with C++

U Illinois Stat 385 Guest Lecture 40/71

Rcpp: First steps

Three key functions

• evalCpp()

• sourceCpp()

• cppFunction()

U Illinois Stat 385 Guest Lecture 41/71

Basic Usage: evalCpp()

evalCpp() evaluates a single C++ expression. Includes and
dependencies can be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2”) # simple test

[1] 4

evalCpp(”std::numeric_limits<double>::max()”)

[1] 1.797693e+308

U Illinois Stat 385 Guest Lecture 42/71

Basic Usage: cppFunction()

cppFunction() creates, compiles and links a C++ file, and creates
an R function to access it.

cppFunction(”
int simpleExample() {

int x = 10;
return x;

}”)
simpleExample() # same identifier as C++ function

U Illinois Stat 385 Guest Lecture 43/71

Basic Usage: cppFunction()

cppFunction() creates, compiles and links a C++ file, and creates
an R function to access it.

cppFunction(”
int exampleCpp11() {

auto x = 10;
return x;

}”, plugins=c(”cpp11”))
exampleCpp11() # same identifier as C++ function

U Illinois Stat 385 Guest Lecture 44/71

Basic Usage: sourceCpp()

sourceCpp() is the actual workhorse behind evalCpp() and
cppFunction(). It is described in more detail in the package
vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from package
inline, but provides even more ease-of-use, control and helpers –
freeing us from boilerplate scaffolding.

A key feature are the plugins and dependency options: other
packages can provide a plugin to supply require compile-time
parameters (cf RcppArmadillo, RcppEigen, RcppGSL).

U Illinois Stat 385 Guest Lecture 45/71

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf
http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf

Basic Uage: RStudio

U Illinois Stat 385 Guest Lecture 46/71

Basic Uage: RStudio (Cont’ed)

The following file gets created:
#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar). ...

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) { return x * 2; }

// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.

/*** R
timesTwo(42)
*/

U Illinois Stat 385 Guest Lecture 47/71

Basic Uage: RStudio (Cont’ed)

So what just happened?

• We defined a simple C++ function
• It operates on a numeric vector argument
• We asked Rcpp to ‘source it’ for us
• Behind the scenes Rcpp creates a wrapper
• Rcpp then compiles, links, and loads the wrapper
• The function is available in R under its C++ name

U Illinois Stat 385 Guest Lecture 48/71

Basic Usage: Packages

Package are the standard unit of R code organization.

Creating packages with Rcpp is easy; an empty one to work from can
be created by Rcpp.package.skeleton()

The vignette Rcpp-packages has fuller details.

As of April 2018, there are over 1300 packages on CRAN which use
Rcpp, and a almost 100 more on BioConductor — with working, tested,
and reviewed examples.

U Illinois Stat 385 Guest Lecture 49/71

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-packages.pdf

Packages and Rcpp

U Illinois Stat 385 Guest Lecture 50/71

Packages and Rcpp

Rcpp.package.skeleton() and its derivatives. e.g.
RcppArmadillo.package.skeleton() create working packages.
// another simple example: outer product of a vector,
// returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
//
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}

U Illinois Stat 385 Guest Lecture 51/71

Nice, but does it really work?

U Illinois Stat 385 Guest Lecture 52/71

Simple Example

Something self-contained

• Let’s talk random numbers!
• We’ll look at a quick generator
• And wrap it in plain C / C++

U Illinois Stat 385 Guest Lecture 53/71

U Illinois Stat 385 Guest Lecture 54/71

xkcdRng.h

// cf https://xkcd.com/221/
//
// ”RFC 1149.5 specifies 4 as the ”
// ”standard IEEE-vetted random number.”

int getRandomNumber()
{

return 4; // chosen by fair dice roll
// guaranteed to be random

}

U Illinois Stat 385 Guest Lecture 55/71

getXkcdRngDraw()

#include <Rcpp.h>
#include <xkcdRng.h>

// [[Rcpp::export]]
int getXkcdRngDraw() {

return getRandomNumber();
}

U Illinois Stat 385 Guest Lecture 56/71

Package

U Illinois Stat 385 Guest Lecture 57/71

What Did We Do?

• An unmodified piece of C / C++ code
• A simple interface function
• Rcpp does the rest

U Illinois Stat 385 Guest Lecture 58/71

A Case Study

U Illinois Stat 385 Guest Lecture 59/71

A Benchmark Comparison

A recent blogpost on “finding a needle in a haystack” has a nice story:

options(width=50)
set.seed(1)
haystack <- sample(0:12, size = 2000, replace = TRUE)
needle <- c(2L, 10L, 8L)
haystack[1:60]

[1] 3 4 7 11 2 11 12 8 8 0 2 2 8 4 10
[16] 6 9 12 4 10 12 2 8 1 3 5 0 4 11 4
[31] 6 7 6 2 10 8 10 1 9 5 10 8 10 7 6
[46] 10 0 6 9 9 6 11 5 3 0 1 4 6 8 5

U Illinois Stat 385 Guest Lecture 60/71

https://coolbutuseless.bitbucket.io/2018/04/03/finding-a-length-n-needle-in-a-haystack/

A Benchmark Comparison

A recent blogpost on “finding a needle in a haystack” has a nice story:

options(width=50)
set.seed(1)
haystack <- sample(0:12, size = 2000, replace = TRUE)
needle <- c(2L, 10L, 8L)
haystack[1:60]

[1] 3 4 7 11 2 11 12 8 8 0 2 2 8 4 10
[16] 6 9 12 4 10 12 2 8 1 3 5 0 4 11 4
[31] 6 7 6 2 10 8 10 1 9 5 10 8 10 7 6
[46] 10 0 6 9 9 6 11 5 3 0 1 4 6 8 5

U Illinois Stat 385 Guest Lecture 61/71

https://coolbutuseless.bitbucket.io/2018/04/03/finding-a-length-n-needle-in-a-haystack/

First Candidate

forloop_find <- function(needle, haystack) {
n <- length(needle) - 1L
for (i in seq(haystack)) {

if (identical(haystack[i:(i+n)], needle)) {
return(i)

}
}

}
forloop_find(needle, haystack)

[1] 34

U Illinois Stat 385 Guest Lecture 62/71

Second Candidate

lead_find <- function(needle, haystack) {
v <- haystack == needle[1]
for (i in seq(2, length(needle))) {

v <- v +
(dplyr::lead(haystack, i-1L) == needle[i])

}
which(v == length(needle))[1L]

}
lead_find(needle, haystack)

[1] 34

U Illinois Stat 385 Guest Lecture 63/71

Third Candidate

shift_find <- function(needle, haystack) {
shifted_haystack <-

data.table::shift(haystack, type='lead',
0:(length(needle)-1))

v <- Map('==', shifted_haystack, needle)
v <- Reduce('+', v)
which(v == length(needle))[1]

}
shift_find(needle, haystack)

[1] 34

U Illinois Stat 385 Guest Lecture 64/71

Fourth Candidate

Rcpp::cppFunction('int rcpp_find(NumericVector needle,
NumericVector haystack) {

int nlen = needle.size(), hlen = haystack.size(), j;
for (int i = 0; i < (hlen - nlen); i++) {

for (j = 0; j < nlen; j++) {
if (needle[j] != haystack[i + j]) break;

}
if (j == nlen) return(i+1);

}
return(0);

}')
rcpp_find(needle, haystack)

[1] 34
U Illinois Stat 385 Guest Lecture 65/71

Fifth Candidate

Rcpp::cppFunction('
int idiomaticrcpp_find(NumericVector needle,

NumericVector haystack) {
NumericVector::iterator it;
it = std::search(haystack.begin(), haystack.end(),

needle.begin(), needle.end());
int pos = it - haystack.begin() + 1;
if (pos > haystack.size()) pos = -1;
return(pos);

}')
idiomaticrcpp_find(needle, haystack)

[1] 34
U Illinois Stat 385 Guest Lecture 66/71

Shootout

R> res <- microbenchmark::microbenchmark(...) # not shown
R> res
Unit: microseconds

expr min lq mean median uq max neval
rollapply_find(needle, haystack) 5829.484 6355.7290 6918.75051 6719.5825 7114.4770 37348.915 1000

vapply_find(needle, haystack) 1230.373 1338.3275 1519.16471 1419.7170 1491.9485 31687.188 1000
grep_find(needle, haystack) 535.059 556.3545 592.86697 572.5000 597.6460 1396.680 1000

forloop_find(needle, haystack) 169.751 189.5370 213.39386 200.6070 210.2785 1151.483 1000
lead_find(needle, haystack) 47.571 55.4575 61.54025 59.2370 62.3445 331.499 1000

shift_find(needle, haystack) 37.939 47.5780 55.14043 52.3475 58.5400 268.533 1000
pile_find(needle, haystack) 13.883 15.7375 17.10174 16.5590 17.4175 45.757 1000

sieved_find(needle, haystack) 7.587 9.4575 10.82973 10.4355 11.3620 29.978 1000
boyer_moore(needle, haystack) 3.197 4.7035 6.06770 5.6540 6.5950 89.414 1000

rcpp_find(needle, haystack) 2.579 3.6805 4.86756 4.5465 5.3570 27.765 1000
idiomaticrcpp_find(needle, haystack) 2.183 3.5230 4.62004 4.3555 5.1945 24.235 1000

R>

U Illinois Stat 385 Guest Lecture 67/71

Shootout

ggplot2::autoplot(res)

U Illinois Stat 385 Guest Lecture 68/71

Conclusion

U Illinois Stat 385 Guest Lecture 69/71

Extending R with C++

Takeaways on Extending R with C++

• clearly possible as the tooling helps greatly
• natural as interfaces are a normal part of R
• not too hard, though balancing two languages
• rewarding in terms of performance
• always measure and profile

U Illinois Stat 385 Guest Lecture 70/71

Thank you!

slides http://dirk.eddelbuettel.com/presentations/

web http://dirk.eddelbuettel.com/

mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

U Illinois Stat 385 Guest Lecture 71/71

http://dirk.eddelbuettel.com/presentations/
http://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Outline
	Why R?
	C++
	C++ In Too Little Time
	Extending R with C++
	Nice, but does it really work?
	A Case Study
	Conclusion

