EXTENDING R

MOTIVATION, EXAMPLES, CONTEXT

Dirk Eddelbuettel
19 April 2018

Debian / R Project / U of Illinois

U Illinois Stat 480 Guest Lecture 1/68

OVERVIEW

U Illinois Stat 480 Guest Lecture 2/68

OUTLINE

Focus today is on

- Rand its role

- Extensions

- The XR package

- Case study

- Other approaches

U Illinois Stat 480 Guest Lecture 3/68

R AND ITS ROLE

U Illinois Stat 480 Guest Lecture 468

R AS CENTRAL POINT

U Illinois Stat 480 Guest Lecture 5/68

R AS CENTRAL POINT

From any one of via into any one of
csv - otxt
txt - html
xlsx - latex and pdf
xml, json, ... htmland js
web scraping, ... word
hdf5, netcdf, ... shiny

sas, stata, spss, ... most graphics formats

various SQL + NOSQL DBs other dashboards

various binary protocols - web frontends

U Illinois Stat 480 Guest Lecture 6/68

R PER JOHN CHAMBERS (2016)

U Illinois Stat 480 Guest Lecture 7/68

R PER JOHN CHAMBERS (2016)

The R Series

Extending R

Y Bupueixy

U/numa«:

John M. Chambers

U Illinois Stat 480 Guest Lecture 8/68

R PER JOHN CHAMBERS (2016)

Three Principles (Section 1.1)

Object Everything that exists in R is an object.
Function Everything that happens in R is a function call.

Interface Interfaces to other software are part of R.

U Illinois Stat 480 Guest Lecture 9/68

R PER JOHN CHAMBERS (2016)

Three Principles (Section 1.1)

Object Everything that exists in R is an object.
Function Everything that happens in R is a function call.

Interface Interfaces to other software are part of R.

U Illinois Stat 480 Guest Lecture 10/68

R PER JOHN CHAMBERS (2016)

That is new. Or is it?

U Illinois Stat 480 Guest Lecture 11/68

R PER JOHN CHAMBERS (2016)

Algecithm Twte cfoce s/s/7¢
AR geneval
(PORTRANY
algeidhm

YARS: FoRTRAN

subrontine o
XA BDC

provide intecfoce
between ARS &

banguage avdler
xAasc (TNSTR OUTSTRY

wH ity Rrogqrams

Pointees/Valves
Argumend Names o

ouTsTR —> El
Note: Names ace

meaningbul + Agenithn

ash neccesarily o

Brank

Lanquaqe

ointers [Values
Tyees (Modesd

Resul+ Names

Source: John Chamber, personal communication

U Illinois Stat 480 Guest Lecture

12/68

INTERFACE 1976

This became the system known as “Interface”, a precursor to S and R.

U Illinois Stat 480 Guest Lecture 13/68

INTERLUDE

U Illinois Stat 480 Guest Lecture 14/68

PROGRAMMING WITH DATA FROM 1977 TO 2016

©mputational The S Language
cthods -
For Data e

John M. Chambers

Analysis M

PROGRAMMING

Thanks to John Chambers for high-resolution cover images. The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.

U Illinois Stat 480 Guest Lecture 15/68

XR

U Illinois Stat 480 Guest Lecture 16/68

XR BY JOHN CHAMBERS

The R Series

Extending R

Y Bupueixy

U Illinois Stat 480 Guest Lecture 17/68

XR BY JOHN CHAMBERS

XR: A Structure for Interfaces from R

Support for interfaces from R to other languages, built around a class for evaluators and a combination of functions, classes and methods for
communication. Will be used through a specific language interface package. Described in the book "Extending R".

Version: 0.7.2

Imports: methods, utils, jsonlite

Published: 2018-03-18

Author: John M. Chambers

Maintainer: John Chambers <jmc at r-project.org>
License: GPL-2 | GPL-3 [expanded from: GPL (= 2)]
NeedsCompilation: no

In views: NumericalMathematics

CRAN checks: XR results
Downloads:

Reference manual: XR.pdf

Package source: XR 0.7.2.tar.gz

‘Windows binaries: r-prerel: XR_0.7.2.zip, r-release: XR 0.7.2.zip, r-oldrel: XR 0.7.2.zip
0S X binaries: r-prerel: XR_0.7.2.tgz, r-release: XR 0.7.2.tgz

0ld sources: XR archive

Reverse dependencies:

Reverse imports: XRJulia, XRPython

Source: https://cloud.r-project.org/package=XR

U Illinois Stat 480 Guest Lecture 18/68

https://cloud.r-project.org/package=XR

XR BY JOHN CHAMBERS

XR: A framework for extending R

- Lower-level package
- Allows other (user-facing) packages to extend

- Examples of such application packages

- XRPython
- XRJulia

- No other languages bound by this framework AFAIK

U Illinois Stat 480 Guest Lecture 19/68

XR BY JOHN CHAMBERS

XR: A framework for extending R

- We will do a brief overview here

- Section 4 with five chapters has all the details

- XRPython and XRJulia contain their chapter as vignette
- Rcpp also has a full chapter (but no XRcpp package)

- rJava and others are mentioned

U Illinois Stat 480 Guest Lecture 20/68

XR BY JOHN CHAMBERS

XR: A framework for extending R
High-level view from 30,000 feet:

- XRPython uses embedding of an internal process
- XRJulia uses socket connection to external process

- (and Rcpp does what it does directly extending)

More discussion in Extending R.

U Illinois Stat 480 Guest Lecture 21/68

XRPYTHON

e python

About

Downloads Documentation

Python is powerful... and fast;
plays well with others;

runs everywhere;

is friendly & easy to learn;

is Open.

These are some of the reasons people who use Python

would rather not use anything else.

Source: http ython.org/about/

U Illinois Stat 480 Guest Lecture

https://www.python.org/about/

IIHHHiiHHHIII

R> library(XRPython)

R> ev <- RPython()

R> ev

Python evaluator; \

Id: "Python Evaluator 2018-03-16 11:28:29.947906"; \
Evaluator number: 1

R>

U Illinois Stat 480 Guest Lecture 23/68

IIHHHiiHHHIII

ev$Eval(expr, ...) # expression returning value
ev$Command(expr, ...) # statements

equivalently

pythonEval(expr, ...)
pythonCommand(expr, ...)

U Illinois Stat 480 Guest Lecture 24/68

Simplest Example

R> library(XRPython)

R> ev <- RPython()

R> xx <- ev$Eval(”[1, %s, 51", pi)
R> ev$Command(”print %s”, xx)

[1, 3.14159265358979, 5]

U Illinois Stat 480 Guest Lecture 25/68

|II%iiiiHIHHH|II

Shakespeare: Text Analysis Example

R> remotes::install_github(”johnmchambers/shakespeare”)

R> library(shakespeare) # also needs 'nltk' + stopwords

R> hamlet <- parseXML(system.file(”plays”, "hamlet.xml”,
package="shakespeare”))

R> hamlet

R Object of class "ElementTree_Python”, \

for Python proxy object

Server Class: ElementTree; size: NA

R>

U Illinois Stat 480 Guest Lecture 26/68

IIHHHHHHIHHHII

Shakespeare: Text Analysis Example

R> hamlet$findtext(”"TITLE")

[1] "The Tragedy of Hamlet, Prince of Denmark”
R> speeches <- getSpeeches(hamlet)

R> speeches

R Object of class "SpeechList”, for Python proxy object
Server Class: list; size: 1138

Field "tokens”:

[1] TRUE

Field "tokenCase”:

[1] FALSE

R>

U Illinois Stat 480 Guest Lecture 27/68

|II%iiiiHIHHH|II

Shakespeare: Text Analysis Example

R> last <- speeches$pop()

R> pythonGet(last$getText())

[1] "Let four captains”

[2] "Bear Hamlet, like a soldier, to the stage;”
[3] "For he was likely, had he been put on,”

[4] "To have proved most royally: and, for his passage,”
[5] "The soldiers' music and the rites of war”

[6] "Speak loudly for him.”

[7] "Take up the bodies: such a sight as this”

[8] "Becomes the field, but here shows much amiss.”
[9] "Go, bid the soldiers shoot.”

R>

U Illinois Stat 480 Guest Lecture 28/68

XRJULIA

Julia is a high-level, high-performance dynamic programming language for numerical computing. It provides a
sophisticated compiler, distributed parallel execution, numerical accuracy, and an extensive mathematical function
library. Julia’s Base library, largely written in Julia itself, also integrates mature, best-of-breed open source C and
Fortran libraries for linear algebra, random number generation, signal processing, and string processing. In addition,
the Julia developer community is contributing a number of external packages through Julia’s built-in package
manager at a rapid pace. IJulia, a collaboration between the Jupyter and Julia communities, provides a powerful

browser-based graphical notebook interface to Julia.

Julia programs are organized around multiple dispatch, which allows built-in and user-defined functions to be
overloaded for different combinations of argument types. For a more in-depth discussion of the rationale and
advantages of Julia over other systems, see the following highlights or read the introduction in the online manual.

Source: https://julialang.org/

U Illinois Stat 480 Guest Lecture 29/68

https://julialang.org/

‘IIHHHI!HIII

Installing Julia — using tarball into /opt/julia

edd@rob:~$ du -csh /opt/julia/
230M /opt/julia/

236M total

edd@rob:~$

U Illinois Stat 480 Guest Lecture 30/68

XRJULIA

Once XRJu'lia is installed, on first use it downloads more into ~:

> library(XRJulia)
> ev <- RJulia()
Trying to add Julia package JSON; expect some messages and some delay

INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

Initializing package repository /home/edd/.julia/ve.6

Cloning METADATA from https://github.com/JuliaLang/METADATA.jl

Cloning cache of Compat from https://github.com/JulialLang/Compat.jl.git

Cloning cache of JSON from https://github.com/JuliaI0/JSON.jl.git

Cloning cache of Nullables from https://github.com/JuliaArchive/Nullables.jl.git
Installing Compat v0.60.0

Installing JSON v0.17.1

Installing Nullables v0.0.4

Package database updated

Here METADATA is 220 mb...

U Illinois Stat 480 Guest Lecture 31/68

‘IIHHHI!HIII

library(XRJulia)
set.seed(123)
X <- matrix(rnorm(1000), 20, 5)

xm <- juliaSend(x)
xjm <- juliaGet(xm)

all.equal(x, xjm)
1] TRUE

—/ VvV VvV Vv A\ A\ v Vv \V4

U Illinois Stat 480 Guest Lecture 32/68

XRJULIA

> svdJ <- JuliaFunction(”svdfact”)

> sxm <- svdJ(xm)

> sxm

Julia proxy object

Server Class: Base.LinAlg.SVD{Float64,Float64,Array{Float64,2}}; size: NA
>

> sj <- juliaGet(sxm)

> sjafields$s

[1] 4.75995 4.69669 4.32063 3.74208 2.43318

>

sr <- svd(x) ## cf inst/tests/testSVD.R
all.equal(srd, epEval(”%s.S”,sj,.get=TRUE))
all.equal(sru, epEval(”%s.U”,sj,.get=TRUE))

>
>
>
> all.equal(t(sr$v), ep$Eval(”%s.Vt”,sj,.get=TRUE))

U Illinois Stat 480 Guest Lecture 33/68

ALTERNATIVES

U Illinois Stat 480 Guest Lecture 34/68

GENERIC PYTHON WRAPPING

R Interface to Python

The reticulate package provides a comprehensive set of tools for interopability between Python and R. The
package includes facilites for:

* Translation between R and Python objects (for example, between R and
Pandas data frames, or between R matrices and NumPy arrays).

= Calling Python from R in a variety of ways including R Markdown,
sourcing Python scripts, importing Python modules, and using Python
interactively within an R session.

+ Flexible binding to different versions of Python including virtual
environments and Conda environments.

Reticulate embeds a Python session within your R session, enabling seamless, high-performance
interoperability. If you are an R developer that uses Python for some of your work or a member of data science
team that uses both languages, reticulate can dramatically streamline your workflow!

Source: https://rstudio.github.io/reticulate/

U Illinois Stat 480 Guest Lecture 35/68

https://rstudio.github.io/reticulate/

GENERIC PYTHON WRAPPING

reticulate

- Written to support tensorflow and keras

- Already used by several packages including

- greta: think stan or bugs, but on tensorflow
- spacyr: accesses the spaCy NLP engine

- h204gpu: access to h2o.ai GPU-based ML solvers

- Also used by XRPython
- Uses Rcpp

U Illinois Stat 480 Guest Lecture 36/68

http://spacy.io
https://www.h2o.ai/

GENERIC PYTHON WRAPPING

The RcppCNPy package lets us load and save NumPy files (by
wrapping the C library cnpy).

library(RcppCNPy)
mat <- npyLoad(”fmat.npy”)

vec <- npyLoad(”fvec.npy”)

mat2 <- npyLoad(”fmat.npy.gz")

U Illinois Stat 480 Guest Lecture 37/68

GENERIC PYTHON WRAPPING

But reticulate lets us load and save NumPy files directly!

library(reticulate)

np <- import(”numpy”)

mat <- np$load(”fmat.npy”))
vec <- np$load(”fvec.npy”))

compressed data: import gzip

gz <- import(”gzip”)

use it to create handle to uncompressed file
mat2 <- np$load(gz$GzipFile(”fmat.npy.gz”,”r"))

U Illinois Stat 480 Guest Lecture 38/68

GENERIC JULIA WRAPPING

JuliaCall for Seamless Integration of R and Julia

Table of Contents.

Package JuliaCallis an R interface 1o Julia’, which is a high-level, high-performance dynamic programming language for numerical
computing, see hitps:/julialang.org/ for more information. Below is an image for JuliaCall brings more than 100 times
speedup of the calculation! See hitps/github. com/Non-C ionlJuliaCalltree plefmandelbrot for more information.

ys
-02200 02199 -0.2198

-0.2201

-0.2202

0.3750 0.3751 0.3752 0.3753 0.3754

Source: https://non-contradiction.github.io/JuliaCall/

U Illinois Stat 480 Guest Lecture 39/68

https://non-contradiction.github.io/JuliaCall/

GENERIC JULIA WRAPPING

Similar initial setup issues as XRJulia

library(JuliaCall)
j1 <- julia_setup()

Julia version 0.6.2 at location /opt/julia/bin will be used.
Julia initiation...

Finish Julia initiation.

Loading setup script for JuliaCall...

Finish loading setup script for JuliaCall.

(but it did blow up for me with RMarkdown)

U Illinois Stat 480 Guest Lecture 40/68

GENERIC JULIA WRAPPING

Different ways for using Julia to calculate sqrt(2)

julia_command(”a = sqrt(2);"”); julia_eval(”a”)
[1] 1.414214

julia_eval(”sqrt(2)”)

[1] 1.414214

julia_call(”sqrt”, 2)

[1] 1.414214

julia_eval(”sqrt”)(2)

#> [1] 1.414214

julia_assign(”x”, sqrt(2)); julia_eval(”x")

#> [1] 1.414214

julia_assign(”rsqrt”, sqrt); julia_call(”rsqrt”, 2)
#> [1] 1.414214

2 %>3% sqrt

#> [1] 1.414214

U Illinois Stat 480 Guest Lecture 41/68

CASE STUDY

U Illinois Stat 480 Guest Lecture 42/68

A TIME-TESTED PROBLEM: MATH

Consider a function defined as

when n <2

f(n) such that
(n) f(n —1) +f(n—2) when n > 2

U Illinois Stat 480 Guest Lecture 43/68

A TIME-TESTED PROBLEM: R

R implementation and use:

fr <- function(n) {
if (n < 2) return(n)
return(fr(n-1) + fr(n-2))

Using it on first 11 arguments
sapply(0:10, fr)

[1] © 1 1 2 3 5 8 13 21 34 55

U Illinois Stat 480 Guest Lecture 44168

A TIME-TESTED PROBLEM: R

Timing:

library(rbenchmark)
benchmark(fr(10), fr(15), fr(20))[,1:4]

#it test replications elapsed relative
1 fr(10) 100 0.014 1.000
2 fr(15) 100 0.149 10.643
3 fr(20) 100 1.562 111.571

U Illinois Stat 480 Guest Lecture 45/68

A TIME-TESTED PROBLEM: PYTHON

def F(n):
if n < 2: return n
return F(n-1) + F(n-2)

saved as fib.py

U Illinois Stat 480 Guest Lecture 46/68

A TIME-TESTED PROBLEM: PYTHON

We can use reticulate:

Python

library(reticulate)
py_run_file(”examples/fib.py”)

pr <- py_eval(”F(10)") # example call

fp <- function(n) py_eval(sprintf(”"F(%d)”, n))

Using it on first 11 arguments
sapply(0:10, fp)

[1] © 1 1 2 3 5 8 13 21 34 55

U Illinois Stat 480 Guest Lecture 47/68

A TIME-TESTED PROBLEM: JULIA

In Julia, a one-liner will do

f(n) =n<27?2n: f(n-1) + f(n-2)

U Illinois Stat 480 Guest Lecture 48/68

A TIME-TESTED PROBLEM: JULIA

We can use JuliaCall

library(JuliaCall)
fj <- julia_eval(”"f(n) =n< 2 ?n : f(n-1) + f(n-2)")
jr <- fj(10)

Using it on first 11 arguments
sapply(0:10, fj)

[1] © 1 1 2 3 5 8 13 21 34 55

U Illinois Stat 480 Guest Lecture 49/68

A TIME-TESTED PROBLEM: C++

int g(int n) {
if (n < 2) return(n);

return(g(n-1) + g(n-2));

U Illinois Stat 480 Guest Lecture 50/68

A TIME-TESTED PROBLEM: C++

Deployed e.g. as
Rcpp: :cppFunction(”int fcpp(int n) {
if (n < 2) return(n);

return(fcpp(n-1) + fcpp(n-2)); }")
sapply(0:10, fcpp)

[1] © 1 1 2 3 5 8 13 21 34 55

U Illinois Stat 480 Guest Lecture 51/68

A TIME-TESTED PROBLEM: C++

Timing:

library(rbenchmark)
benchmark(fr(20), fp(20), fcpp(20),

order="relative”)[,1:4]

#it test replications elapsed relative
3 fcpp(20) 100 0.006 1.000
#it 2 fp(20) 100 0.232 38.667
#it 1 fr(20) 100 1.557 259.500

A nice gain of a few orders of magnitude.

U Illinois Stat 480 Guest Lecture 52/68

A TIME-TEST EXAMPLE: FOUR-WAYS

library(rbenchmark)

N <- 20

benchmark(fr(N), fp(N), fj(N), fcpp(N))[,1:4]
#it test replications elapsed relative
4 fcpp(N) 100 0.002 1.0
##t 3 fj(N) 100 0.004 2.0
#it 2 fp(N) 100 0.135 67.5
#it 1 fr(N) 100 0.493 246.5

U Illinois Stat 480 Guest Lecture 53/68

A TIME-TEST EXAMPLE: FOUR-WAYS

N <- 30

benchmark(fr(N), fp(N), fj(N), fcpp(N))[,1:4]
#it test replications elapsed relative
4 fcpp(N) 100 0.207 1.000
#t 3 fi(N) 100 0.365 1.763
#it 2 fp(N) 100 17.110 82.657
#it 1 fr(N) 100 61.662 297.884
R>

U Illinois Stat 480 Guest Lecture 54/68

OTHERS

U Illinois Stat 480 Guest Lecture 55/68

JAVA

rJava

- oldest interface package
- fairly widely used
- mentioned in Extending R

- also:

- jdx for data exchange
- js223 for Groovy, JavaScript, JRuby, Jython, Kotlin, ...

- rscala for di-rectional Scala interface

U Illinois Stat 480 Guest Lecture 56/68

Interface to Javascript

- V8is a C++-based interface to Javascript

- large set of JS-based packages for browser-based work
- mentioned in Extending R

- Uses Rcpp

U Illinois Stat 480 Guest Lecture 57/68

Over 15 years old !

- still not widely known, yet used
- ‘headless’ R listening over tcp/ip
- by R Core member Simon Urbanek

- different client implementations

U Illinois Stat 480 Guest Lecture 58/68

RESTRSERVE

RestRserve

RestRserve is an R web API framework for building high-performance microservices and app backends. The main difference
with other framewaorks (plumber, jug) is that it is parallel by design (thanks to Rserve).

YES - it means it will handle all the incomming requests in parallel - each request in a separate fork.

Features

Create a http APl by simply setting up a handler (R function) for a given route - Hello-world

Deploy applications with a couple of lines of the code. Easily stop them.

Build high performance web API - more than 20000 requests per second on a laptop with 4 cores / 8 threads (Intel i7-
7820HQ CPU), which is about 40x faster than plumber (but of course these numbers are for illustration only - everything
depends on the user code!).

Generate OpenAP| specification by parsing annotations in R code

Expose Swagger Ul

Serve static files

RestRserve is a very thin layer on the top of Rserve - most of the credits should go to Simon Urbanek.

Source: http://restrserve.org/

U Illinois Stat 480 Guest Lecture 59/68

http://restrserve.org/

SOME OTHER THINGS

U Illinois Stat 480 Guest Lecture 60/68

PYTHON THE OTHER WAY

RPy2

- Python package to call R from Python
- mature, well-tested

- but different direction

U Illinois Stat 480 Guest Lecture 61/68

Simple service definition

Define you

ervice using Prot zation toolset and lan

y generate idiomatic

Ruby Client

gRPC Server

G4+ Service

o
© Responsel(s)

Android-Java Client

Source: https://grpc.io

U Illinois Stat 480 Guest Lecture 62/68

https://grpc.io

Different Approach

- define an interface (as Protocol Buffer)

- have code generated for both server and client side

- across 0Ss: Linux, Windows, Android, i0S, ...

- across languages: C++, Python, Go, Javascript, Ruby, C#, PHP, ...

U Illinois Stat 480 Guest Lecture 63/68

Apache Arrow

A cross-language development platform for in-memory data

Install 0 Release - 18 December 2017)

See Latest News

Apache Arrow s a cross-language development platform for in-memory data. It specifies a standardized language-independent columnar memory
format for flat and hierarchical data, organized for efficient analytic operations on modern hardware. It also provides computational libraries and zero-
copy streaming messaging and interprocess communication. Languages currently supported include C, C++, Java, JavaScript, Python, and Ruby.

Fast

Apache Arrow™ enables execution engines to
take advantage of the latest SIMD (Single input
multiple data) operations included in modern
processors, for native vectorized optimization of
analytical data processing. Columnar layout is
optimized for data locality for better performance
on modern hardware like CPUs and GPUs.

The Arrow memory format supports zero-copy
reads for lightning-fast data access without
serialization overhead.

Source: https://arrow.apache.org/

U Illinois Stat 480 Guest Lecture

Flexible

ArTow acts as a new high-performance interface
between various systems. It is also focused on
supporting a wide variety of industry-standard
programming languages. Java, C, C++, Python,
Ruby, and JavaScript implementations are in
progress and more languages are welcome.

Standard

Apache Arrow is backed by key developers of 13
major open source projects, including Calcite,
Cassandra, Drill, Hadoop, HBase, Ibis, Impala,
Kudu, Pandas, Parquet, Phoenix, Spark, and
Storm making it the de-facto standard for
columnar in-memory analytics.

Learn more about projects that are Powered By
Apache Arrow

64/68

https://arrow.apache.org/

XTENSOR

The C++ Tensor Algebra Library

Multi-dimensional arrays with broadcasting and lazy computing - all open-source.

o Browse the Code

9 Documentation

> TryitNow
Introduction

xtensor is a C++ library meant for numerical analysis with multi-dimensional array expressions.

xtensor provides

® an extensible expression system enabling lazy broadcasting.
® an API following the idioms of the C++standard library.
® tools to manipulate array expressions and build upon xtensor.

Source: http://quantstack.net/xtensor

U Illinois Stat 480 Guest Lecture 65/68

http://quantstack.net/xtensor

SUMMARY

U Illinois Stat 480 Guest Lecture 66/68

INTERFACES

Interfaces from R

- are a natural part of the language!

- give us access to best of breed tools in other languages
- require some thought and care for design

- which Extending R discusses well

U Illinois Stat 480 Guest Lecture 67/68

THANK YOU!

slides http://dirk.eddelbuettel.com/presentations/
web http://dirk.eddelbuettel.com/
mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

U Illinois Stat 480 Guest Lecture 68/68

http://dirk.eddelbuettel.com/presentations/
http://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Overview
	R and its role
	R per John Chambers (2016)
	Interlude
	XR
	Alternatives
	Case Study
	Others
	Some other things
	Summary

