
SEAMLESS R AND C++
INTEGRATION WITH RCPP

Dirk Eddelbuettel

Online Tutorial for useR! 2020

14 July 2020

https://dirk.eddelbuettel.com/papers/useR2020_rcpp_tutorial.pdf

https://dirk.eddelbuettel.com/papers/useR2020_rcpp_tutorial.pdf

BEFORE WE GET STARTED

Special Thank You! to

• organizers of useR! 2020 in St. Louis
• organizers of iseR! 2020 satellite in Munich
• R Ladies Groups

• Santiago
• Valparaíso
• Concepción

• R User Group Santiago

Rcpp @ useR 2020 2/100

BEFORE WE GET STARTED

Special Thank You! to

• organizers of useR! 2020 in St. Louis
• organizers of iseR! 2020 satellite in Munich
• R Ladies Groups

• Santiago
• Valparaíso
• Concepción

• R User Group Santiago

Rcpp @ useR 2020 2/100

OVERVIEW

Rcpp @ useR 2020 3/100

VERY BROAD OUTLINE

Overview

• Motivation: Why R?

• Who Use This?

• How Does One Use it?

• Usage Illustrations

Rcpp @ useR 2020 4/100

WHY R?

Rcpp @ useR 2020 5/100

WHY R? PAT BURN’S VIEW

Why the R Language?

Screen shot on the left part of
short essay at Burns-Stat

His site has more truly
excellent (and free) writings.

The (much longer) R Inferno
(free pdf, also paperback) is
highly recommended.

Rcpp @ useR 2020 6/100

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/
https://www.burns-stat.com/documents/books/the-r-inferno/

WHY R? PAT BURN’S VIEW

Why the R Language?

• R is not just a statistics package, it’s a language.
• R is designed to operate the way that problems
are thought about.

• R is both flexible and powerful.

Source: https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

Rcpp @ useR 2020 7/100

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

WHY R? PAT BURN’S VIEW

Why R for data analysis?

R is not the only language that can be used for data
analysis. Why R rather than another? Here is a list:

• interactive language
• data structures
• graphics
• missing values
• functions as first class objects
• packages
• community

Source: https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

Rcpp @ useR 2020 8/100

https://www.burns-stat.com/documents/tutorials/why-use-the-r-language/

WHY R: PROGRAMMING WITH DATA

Rcpp @ useR 2020 9/100

WHY R? R AS MIDDLE MAN

R as an Extensible Environment

• As R users we know that R can
• ingest data in many formats from many sources
• aggregate, slice, dice, summarize, …
• visualize in many forms, …
• model in just about any way
• report in many useful and scriptable forms

• It has become central for programming with data
• Sometimes we want to extend it further than R code goes

Rcpp @ useR 2020 10/100

R AS CENTRAL POINT

Rcpp @ useR 2020 11/100

R AS CENTRAL POINT

From any one of
• csv

• txt

• xlsx

• xml, json, ...

• web scraping, ...

• hdf5, netcdf, ...

• sas, stata, spss, ...

• various SQL + NOSQL DBs

• various binary protocols

via into any one of
• txt

• html

• latex and pdf

• html and js

• word

• shiny

• most graphics formats

• other dashboards

• web frontends

Rcpp @ useR 2020 12/100

WHY R: HISTORICAL PERSPECTIVE

Rcpp @ useR 2020 13/100

R AS ‘THE INTERFACE’

A sketch of ‘The Interface’
AT&T Research lab meeting notes

Describes an outer ‘user interface’
layer to core Fortran algorithms

Key idea of abstracting away inner
details giving higher-level more
accessible view for user / analyst

Lead to “The Interface”

Which became S which lead to R

Source: John Chambers, personal communication;
Chambers (2020), S, R, and Data Science, Proc ACM Prog
Lang, doi.org/10.1145/3386334.

Rcpp @ useR 2020 14/100

https://doi.org/10.1145/3386334

CHAMBERS (2020)

Very recent, and
very nice, paper.

Rcpp @ useR 2020 15/100

WHY R? : PROGRAMMING WITH DATA FROM 1977 TO 2016

Thanks to John Chambers for high-resolution cover images. The publication years are, respectively, 1977, 1988, 1992, 1998, 2008 and 2016.

Rcpp @ useR 2020 16/100

CHAMBERS (2008)

Software For Data Analysis

Chapters 10 and 11 devoted to
Interfaces I: C and Fortran and
Interfaces II: Other Systems.

Rcpp @ useR 2020 17/100

CHAMBERS (2016)

Extending R

Object: Everything that exists in
R is an object

Function: Everything happens in
R is a function call

Interface: Interfaces to other
software are part of R

Rcpp @ useR 2020 18/100

CHAMBERS (2016)

Extending R, Chapter 4

The fundamental lesson about
programming in the large is that
requires a correspondingly broad
and flexible response. In particular,
no single language or software
system os likely to be ideal for all
aspects. Interfacing multiple
systems is the essence. Part IV
explores the design of of interfaces
from R.

Rcpp @ useR 2020 19/100

C++ AND RCPP FOR EXTENDING R

Rcpp @ useR 2020 20/100

R AND C/C++

A good fit, it turns out

• A good part of R is written in C (besides R and Fortran code)
• The principle interface to external code is a function .Call()
• It takes one or more of the high-level data structures R uses
• … and returns one. Formally:

SEXP .Call(SEXP a, SEXP b, ...)

Rcpp @ useR 2020 21/100

R AND C/C++

A good fit, it turns out (cont.)

• An SEXP (or S-Expression Pointer) is used for everything
• (An older C trick approximating object-oriented programming)
• We can ignore the details but retain that

• everything in R is a SEXP
• the SEXP is self-describing
• can matrix, vector, list, function, …
• 27 types in total

• The key thing for Rcpp is that via C++ features we can map
• each of the (limited number of) SEXP types
• to a specific C++ class representing that type
• and the conversion is automated back and forth

Rcpp @ useR 2020 22/100

R AND C/C++

Other good reasons

• It is fast – compiled C++ is hard to beat in other languages
• (That said, you can of course write bad and slow code….)

• It is very general and widely used
• many libraries
• many tools

• It is fairly universal:
• just about anything will have C interface so C++ can play
• just about any platform / OS will have it

Rcpp @ useR 2020 23/100

R AND C/C++

Key Features

• (Fairly) Easy to learn as it really does not have to be that
complicated – there are numerous examples

• Easy to use as it avoids build and OS system complexities
thanks to the R infrastrucure

• Expressive as it allows for vectorised C++ using Rcpp Sugar
• Seamless access to all R objects: vector, matrix, list,
S3/S4/RefClass, Environment, Function, …

• Speed gains for a variety of tasks Rcpp excels precisely where
R struggles: loops, function calls, …

• Extensions greatly facilitates access to external libraries
directly or via eg Rcpp modules

Rcpp @ useR 2020 24/100

WHO ?

Rcpp @ useR 2020 25/100

GROWTH

2010 2012 2014 2016 2018 2020

0
50

0
10

00
15

00
20

00

Growth of Rcpp usage on CRAN

n

Number of CRAN packages using Rcpp (left axis)
Percentage of CRAN packages using Rcpp (right axis)

0
50

0
10

00
15

00
20

00

2010 2012 2014 2016 2018 2020

0
2

4
6

8
10

12

Figure reflects data as of 4 July 2020.

Rcpp @ useR 2020 26/100

USERS ON CORE REPOSITORIES

Rcpp is currently used by

• 2013 CRAN packages

• 203 BioConductor packages

• an unknown (“large”) number of GitHub, GitLab, … projects

Rcpp @ useR 2020 27/100

PAGERANK

suppressMessages(library(utils))
library(pagerank) # cf github.com/andrie/pagerank

cran <- ”http://cloud.r-project.org”
pr <- compute_pagerank(cran)
round(100*pr[1:5], 3)

Rcpp ggplot2 MASS dplyr Matrix
2.858 1.429 1.280 1.067 0.751

Rcpp @ useR 2020 28/100

PAGERANK

scales
zoo
RColorBrewer
lubridate
raster
doParallel
reshape2
lattice
sp
igraph
foreach
shiny
purrr
tidyr
httr
plyr
rlang
tibble
survival
RcppArmadillo
jsonlite
data.table
mvtnorm
stringr
magrittr
Matrix
dplyr
MASS
ggplot2
Rcpp

0.005 0.010 0.015 0.020 0.025

Top 30 of Page Rank as of July 2020

Rcpp @ useR 2020 29/100

PERCENTAGE OF COMPILED PACKAGES

db <- tools::CRAN_package_db() # added in R 3.4.0
db <- db[!duplicated(db[,1]),]
nTot <- nrow(db)
all direct Rcpp reverse depends, ie packages using Rcpp
nRcpp <- length(tools::dependsOnPkgs(”Rcpp”, recursive=FALSE,

installed=db))
nComp <- table(db[, ”NeedsCompilation”])[[”yes”]]
print(data.frame(tot=nTot, totRcpp=nRcpp, pctTot=nRcpp/nTot*100,

totComp=nComp, pctComp=nRcpp/nComp*100),
row.names=FALSE)

tot totRcpp pctTot totComp pctComp
16050 2013 12.5421 3916 51.4045

Calculations updated on 13 July 2020.

Rcpp @ useR 2020 30/100

HOW?

Rcpp @ useR 2020 31/100

A QUICK PRELIMINARY TEST

evaluate simple expression
... as C++
Rcpp::evalCpp(”2 + 2”)

[1] 4

more complex example
set.seed(42)
Rcpp::evalCpp(”Rcpp::rnorm(2)”)

[1] 1.370958 -0.564698

This should just work.

Windows users may need Rtools.
Everybody else has a compiler.

Use https://rstudio.cloud
for a working setup.

We discuss the commands on
the left in a bit.

Rcpp @ useR 2020 32/100

https://rstudio.cloud

HOW: MAIN TOOLS FOR EXPLORATION

Rcpp @ useR 2020 33/100

BASIC USAGE: EVALCPP()

As seen, evalCpp() evaluates a single C++ expression. Includes
and dependencies can be declared.

This allows us to quickly check C++ constructs.

library(Rcpp)
evalCpp(”2 + 2”) # simple test

[1] 4

evalCpp(”std::numeric_limits<double>::max()”)

[1] 1.79769e+308

Rcpp @ useR 2020 34/100

FIRST EXERCISE

Exercise 1
Evaluate an expression in C++ via Rcpp::evalCpp()

Rcpp @ useR 2020 35/100

BASIC USAGE: CPPFUNCTION()

cppFunction() creates, compiles and links a C++ file, and creates
an R function to access it.

cppFunction(”
int exampleCpp11() {

auto x = 10; // guesses type
return x;

}”, plugins=c(”cpp11”)) ## turns on C++11

R function with same name as C++ function
exampleCpp11()

Rcpp @ useR 2020 36/100

SECOND EXERCISE

library(Rcpp)
cppFunction(”int f(int a, int b) { return(a + b); }”)
f(21, 21)

Exercise 2
Write a C++ function on the R command-line via cppFunction()

Should the above work? Yes? No?
What can you see and examine it?
Can you “break it” ?

Rcpp @ useR 2020 37/100

BASIC USAGE: SOURCECPP()

sourceCpp() is the actual workhorse behind evalCpp() and
cppFunction(). It is described in more detail in the package
vignette Rcpp-attributes.

sourceCpp() builds on and extends cxxfunction() from
package inline, but provides even more ease-of-use, control and
helpers – freeing us from boilerplate scaffolding.

A key feature are the plugins and dependency options: other
packages can provide a plugin to supply require compile-time
parameters (cf RcppArmadillo, RcppEigen, RcppGSL). Plugins can
also turn on support for C++11, OpenMP, and more.

Rcpp @ useR 2020 38/100

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf
http://dirk.eddelbuettel.com/code/rcpp/Rcpp-attributes.pdf

JUMPING RIGHT IN: VIA RSTUDIO

Rcpp @ useR 2020 39/100

A FIRST EXAMPLE: CONT’ED

#include <Rcpp.h>
using namespace Rcpp;

// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar). ...

// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {

return x * 2;
}

// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.

/*** R
timesTwo(42)
*/

Rcpp @ useR 2020 40/100

A FIRST EXAMPLE: CONT’ED

So what just happened?

• We defined a simple C++ function
• It operates on a numeric vector argument
• We ask Rcpp to ‘source it’ for us
• Behind the scenes Rcpp creates a wrapper
• Rcpp then compiles, links, and loads the wrapper
• The function is available in R under its C++ name

Rcpp @ useR 2020 41/100

THIRD EXERCISE

Exercise 3
Modify the timesTwo function used via Rcpp::sourceCpp()

Use the RStudio File -> New File -> C++ File template.

Rcpp @ useR 2020 42/100

FIRST EXAMPLE: SPEED

Rcpp @ useR 2020 43/100

AN EXAMPLE WITH FOCUS ON SPEED

Consider a function defined as

f(n) such that

 n when n < 2
f(n − 1) + f(n − 2) when n ≥ 2

Rcpp @ useR 2020 44/100

AN INTRODUCTORY EXAMPLE: SIMPLE R IMPLEMENTATION

R implementation and use:

f <- function(n) {
if (n < 2) return(n)
return(f(n-1) + f(n-2))

}

Using it on first 11 arguments
sapply(0:10, f)

[1] 0 1 1 2 3 5 8 13 21 34 55

Rcpp @ useR 2020 45/100

AN INTRODUCTORY EXAMPLE: TIMING R IMPLEMENTATION

Timing:

library(rbenchmark)
benchmark(f(10), f(15), f(20))[,1:4]

test replications elapsed relative
1 f(10) 100 0.009 1.000
2 f(15) 100 0.094 10.444
3 f(20) 100 1.017 113.000

Rcpp @ useR 2020 46/100

AN INTRODUCTORY EXAMPLE: C++ IMPLEMENTATION

int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

deployed as

Rcpp::cppFunction('int g(int n) {
if (n < 2) return(n);
return(g(n-1) + g(n-2)); }')

Using it on first 11 arguments
sapply(0:10, g)

[1] 0 1 1 2 3 5 8 13 21 34 55
Rcpp @ useR 2020 47/100

AN INTRODUCTORY EXAMPLE: COMPARING TIMING

Timing:

library(rbenchmark)
benchmark(f(20), g(20))[,1:4]

test replications elapsed relative
1 f(20) 100 1.011 505.5
2 g(20) 100 0.002 1.0

A nice gain of a few orders of magnitude.

Rcpp @ useR 2020 48/100

AN INTRODUCTORY EXAMPLE: COMPARING TIMING

res <- microbenchmark::microbenchmark(f(20), g(20))
res

Unit: microseconds
expr min lq mean median uq max neval cld
f(20) 8938.83 9614.76 10257.36 10026.38 10806.23 12439.03 100 b
g(20) 17.57 18.09 21.38 19.67 22.43 38.29 100 a

suppressMessages(microbenchmark:::autoplot.microbenchmark(res))

f(20)

g(20)

100 1000 10000
Time [microseconds]

Rcpp @ useR 2020 49/100

FOURTH EXERCISE

// [[Rcpp::export]]
int g(int n) {

if (n < 2) return(n);
return(g(n-1) + g(n-2));

}

Exercise 4
Run the C++ fibonacci function and maybe try some larger values.

Easiest:

• Add function to C++ file template
• Remember to add // [[Rcpp::export]]

Rcpp @ useR 2020 50/100

A (VERY) BRIEF C++ PRIMER

Rcpp @ useR 2020 51/100

C++ IS COMPILED NOT INTERPRETED

We may need to supply:

• header location via -I,
• library location via -L,
• library via -llibraryname

g++ -I/usr/include -c qnorm_rmath.cpp
g++ -o qnorm_rmath qnorm_rmath.o -L/usr/lib -lRmath

Locations may be OS and/or installation-dependent

Rcpp @ useR 2020 52/100

C++ IS STATICALLY TYPED

Examples

• R is dynamically typed: x <- 3.14; x <- ”foo” is valid.

• In C++, each variable must be declared before first use.

• Common types are int and long (possibly with unsigned),
float and double, bool, as well as char.

• No standard string type, though std::string is close.

• All these variables types are scalars which is fundamentally
different from R where everything is a vector.

• class (and struct) allow creation of composite types;
classes add behaviour to data to form objects.

• Variables need to be declared, cannot change

Rcpp @ useR 2020 53/100

C++ IS A BETTER C

Examples

• control structures similar to R: for, while, if, switch

• functions are similar too but note the difference in
positional-only matching, also same function name but
different arguments allowed in C++

• pointers and memory management: very different, but lots of
issues people had with C can be avoided via STL (which is
something Rcpp promotes too)

• sometimes still useful to know what a pointer is …

Rcpp @ useR 2020 54/100

C++ IS OBJECT-ORIENTED

A 2nd key feature of C++, and it does it differently from S3 and S4.

struct Date {
unsigned int year;
unsigned int month;
unsigned int day

};

struct Person {
char firstname[20];
char lastname[20];
struct Date birthday;
unsigned long id;

};
Rcpp @ useR 2020 55/100

C++ IS OBJECT-ORIENTED

Object-orientation in the C++ sense matches data with code
operating on it:

class Date {
private:

unsigned int year
unsigned int month;
unsigned int date;

public:
void setDate(int y, int m, int d);
int getDay();
int getMonth();
int getYear();

}
Rcpp @ useR 2020 56/100

C++ AND R TYPES

R Type mapping by Rcpp

Standard R types (integer, numeric, list, function, … and compound
objects) are mapped to corresponding C++ types using extensive
template meta-programming – it just works.

Rcpp @ useR 2020 57/100

C++ AND R TYPES

So-called atomistic base types in C and C++ contain one value.

By contrast, in R everything is a vector so we have vector classes (as
well as corresponding *Matrix classes like NumericalMatrix.

Basic C and C++: Scalar

• int
• double
• char[]; std::string
• bool
• complex

Rcpp Vectors
• IntegerVector
• NumericVector
• CharacterVector
• LogicalVector
• ComplexVector

Rcpp @ useR 2020 58/100

SECOND EXAMPLE: VECTORS

Rcpp @ useR 2020 59/100

TYPES: VECTOR EXAMPLE

A “teaching-only” first example – there are better ways:

#include <Rcpp.h>
// [[Rcpp::export]]
double getMax(Rcpp::NumericVector v) {

int n = v.size(); // vectors are describing
double m = v[0]; // initialize
for (int i=0; i<n; i++) {

if (v[i] > m) {
Rcpp::Rcout << ”Now ” << m << std::endl;
m = v[i];

}
}
return(m);

}Rcpp @ useR 2020 60/100

TYPES: VECTOR EXAMPLE

cppFunction(”double getMax(NumericVector v) {
int n = v.size(); // vectors are describing
double m = v[0]; // initialize
for (int i=0; i<n; i++) {

if (v[i] > m) {
m = v[i];
Rcpp::Rcout << \”Now \” << m << std::endl;

}
}
return(m);

}”)
getMax(c(4,5,2))

Now 5

[1] 5

Rcpp @ useR 2020 61/100

ANOTHER VECTOR EXAMPLE: COLUMN SUMS

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector colSums(Rcpp::NumericMatrix mat) {

size_t cols = mat.cols();
Rcpp::NumericVector res(cols);
for (size_t i=0; i<cols; i++) {

res[i] = sum(mat.column(i));
}
return(res);

}

Rcpp @ useR 2020 62/100

ANOTHER VECTOR EXAMPLE: COLUMN SUMS

Key Elements

• NumericMatrix and NumericVector go-to types for matrix
and vector operations on floating point variables

• We prefix with Rcpp:: to make the namespace explicit
• Accessor functions .rows() and .cols() for dimensions
• Result vector allocated based on number of columns column
• Function column(i) extracts a column, gets a vector, and
sum() operates on it

• That last sum() was internally vectorised, no need to loop
over all elements

Rcpp @ useR 2020 63/100

FIFTH EXERCISE

Exercise 5
Modify this vector
example to compute on
vectors

Compute a min. Or the
sum. Or loop backwards.

Try a few things.

// [[Rcpp::export]]
double getMax(NumericVector v) {

int n = v.size(); // vectors are describing
double m = v[0]; // initialize
for (int i=0; i<n; i++) {

if v[i] > m {
Rcpp::Rcout << ”Now ”

<< m << std::endl;
m = v[i];

}
}
return(m);

}

Rcpp @ useR 2020 64/100

STL VECTORS

C++ has vectors as well: written as std::vector<T> where the T
denotes template meaning different types can be used to
instantiate.

cppFunction(”double getMax2(std::vector<double> v) {
int n = v.size(); // vectors are describing
double m = v[0]; // initialize
for (int i=0; i<n; i++) {

if (v[i] > m) {
m = v[i];

}
}
return(m);

}”)
getMax2(c(4,5,2))

[1] 5

Rcpp @ useR 2020 65/100

STL VECTORS

Useful to know

• STL vectors are widely used so Rcpp supports them
• Very useful to access other C++ code and libraries
• One caveat: Rcpp vectors reuse R memory so no copies
• STL vectors have different underpinning so copies
• But not a concern unless you have

• either HUGE data structurs,
• or many many calls

Rcpp @ useR 2020 66/100

ONE IMPORTANT ISSUE

cppFunction(”void setSecond(Rcpp::NumericVector v) {
v[1] = 42;

}”)
v <- c(1,2,3); setSecond(v); v # as expected

[1] 1 42 3

v <- c(1L,2L,3L); setSecond(v); v # different

[1] 1 2 3

Rcpp @ useR 2020 67/100

SIXTH EXERCISE

Exercise 6
Please reason about the previous example.

What might cause this?

Rcpp @ useR 2020 68/100

TWO MORE THINGS ON RCPP VECTORS

Easiest solution on the getMax() problem:

double getMax(NumericVector v) {
return(max(v));

}

Just use the Sugar function max()!

For Rcpp data structure we have many functions which act on C++
vectors just like their R counterparts.

But this requires Rcpp vectors – not STL.

Rcpp @ useR 2020 69/100

TWO MORE THINGS ON RCPP VECTORS

Little explicit Math support

• Rcpp vectors (and matrices) do not really do linear algebra.

• So do not use them for the usual “math” operations.

• Rather use RcppArmadillo – more on that later.

Rcpp @ useR 2020 70/100

HOW: PACKAGES

Rcpp @ useR 2020 71/100

BASIC USAGE: PACKAGES

Packages

• The standard unit of R code organization.

• Creating packages with Rcpp is easy:
• create an empty one via Rcpp.package.skeleton()
• also RcppArmadillo.package.skeleton() for Armadillo
• RStudio has the File -> New Project -> Directory Choices ->
Package Choices (as we show on the next slide)

• The vignette Rcpp-packages has fuller details.

• As of July 2020, there are about 2013 CRAN and 203
BioConductor packages which use Rcpp all offering working,
tested, and reviewed examples.

Rcpp @ useR 2020 72/100

http://dirk.eddelbuettel.com/code/rcpp/Rcpp-packages.pdf

PACKAGES AND RCPP

Rcpp @ useR 2020 73/100

PACKAGES AND RCPP

Rcpp.package.skeleton() and its derivatives, e.g.
RcppArmadillo.package.skeleton(), create working packages.
// another simple example: outer product of a vector,
// returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
//
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}

Rcpp @ useR 2020 74/100

PACKAGES AND RCPP

Two (or three) ways to link to external libraries

• Full copies: Do what RcppMLPACK (v1) does and embed a full
copy; larger build time, harder to update, self-contained

• With linking of libraries: Do what RcppGSL or RcppMLPACK (v2)
do and use hooks in the package startup to store compiler
and linker flags which are passed to environment variables

• With C++ template headers only: Do what RcppArmadillo and
other do and just point to the headers

More details in extra vignettes. Not enough time here today to work
through.

Rcpp @ useR 2020 75/100

RCPPARMADILLO

Rcpp @ useR 2020 76/100

ARMADILLO

Source: http://arma.sf.net

Rcpp @ useR 2020 77/100

http://arma.sf.net

ARMADILLO

What is Armadillo?

• Armadillo is a C++ linear algebra library (matrix maths) aiming
towards a good balance between speed and ease of use.

• The syntax is deliberately similar to Matlab.
• Integer, floating point and complex numbers are supported.
• A delayed evaluation approach is employed (at compile-time)
to combine several operations into one and reduce (or
eliminate) the need for temporaries.

• Useful for conversion of research code into production
environments, or if C++ has been decided as the language of
choice, due to speed and/or integration capabilities.

Source: http://arma.sf.net

Rcpp @ useR 2020 78/100

http://arma.sf.net

ARMADILLO HIGHLIGHTS

Key Points

• Provides integer, floating point and complex vectors, matrices,
cubes and fields with all the common operations.

• Very good documentation and examples
• website,
• technical report (Sanderson, 2010),
• CSDA paper (Sanderson and Eddelbuettel, 2014),
• JOSS paper (Sanderson and Curtin, 2016),
• ICMS paper (Sanderson and Curtin, 2018).

• Modern code, extending from earlier matrix libraries.
• Responsive and active maintainer, frequent updates.
• Used eg by MLPACK, see Curtin et al (JMLR 2013, JOSS 2018).

Rcpp @ useR 2020 79/100

http://arma.sf.net
http://elec.uq.edu.au/~conrad/code.html
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://joss.theoj.org/papers/10.21105/joss.00026
http://arma.sourceforge.net/arma_spmat_icms_2018.pdf
http://www.mlpack.org
http://jmlr.org/papers/volume14/curtin13a/curtin13a.pdf
https://www.mlpack.org/papers/mlpack2018.pdf

RCPPARMADILLO HIGHLIGHTS

Key Points

• Template-only builds—no linking, and available whereever R
and a compiler work (but Rcpp is needed)

• Easy to use, just add LinkingTo: RcppArmadillo, Rcpp
to DESCRIPTION (i.e. no added cost beyond Rcpp)

• Really easy from R via Rcpp and automatic converters
• Frequently updated, widely used – now 756 CRAN packages

Rcpp @ useR 2020 80/100

EXAMPLE: COLUMN SUMS

#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::rowvec colSums(arma::mat mat) {

size_t cols = mat.n_cols;
arma::rowvec res(cols);

for (size_t i=0; i<cols; i++) {
res[i] = sum(mat.col(i));

}
return(res);

}

Rcpp @ useR 2020 81/100

EXAMPLE: COLUMN SUMS

Key Features

• The [[Rcpp::depends(RcppArmadillo)]] tag lets R tell
g++ (or clang++) about the need for Armadillo headers

• Dimension accessor via member variables n_rows and
n_cols; not function calls

• We return a rowvec; default vec is alias for colvec
• Column accessor is just col(i) here
• This is a simple example of how similar features may have
slightly different names across libraries

Rcpp @ useR 2020 82/100

EXAMPLE: EIGEN VALUES

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]
arma::vec getEigenValues(arma::mat M) {

return arma::eig_sym(M);
}

Rcpp @ useR 2020 83/100

EXAMPLE: EIGEN VALUES

Rcpp::sourceCpp(”code/arma_eigenvalues.cpp”)
M <- cbind(c(1,-1), c(-1,1))
getEigenValues(M)

[,1]
[1,] 0
[2,] 2

eigen(M)[[”values”]]

[1] 2 0

Rcpp @ useR 2020 84/100

SEVENTH EXERCISE

Exercise 7
Write an inner and outer product of a vector

Hints:

• arma::mat and arma::colvec (aka arma::vec) are useful
• the .t() function transposes
• as_scalar() lets you assign to a double

Rcpp @ useR 2020 85/100

VECTOR PRODUCTS

#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

// simple example: outer product of a vector, returning a matrix
//
// [[Rcpp::export]]
arma::mat rcpparma_outerproduct(const arma::colvec & x) {

arma::mat m = x * x.t();
return m;

}

// and the inner product returns a scalar
//
// [[Rcpp::export]]
double rcpparma_innerproduct(const arma::colvec & x) {

double v = arma::as_scalar(x.t() * x);
return v;

}

Rcpp @ useR 2020 86/100

PACKAGE WITH RCPPARMADILLO

Straightforward

• The package itself contains the
RcppArmadillo.package.skeleton() helper

• RStudio also offers File -> New Project -> (New | Existing)
Direction -> Package with RcppArmadillo

• Easy and reliable to deploy as header-only without linking
• Caveat: on macOS is the need for gfortran, see online help

Rcpp @ useR 2020 87/100

THIRD EXAMPLE: FASTLM

Rcpp @ useR 2020 88/100

FastLm CASE STUDY: FASTER LINEAR MODEL WITH FASTLM

Background

• Implementations of fastLm() have been a staple during the
early development of Rcpp

• First version was in response to a question on r-help.
• Request was for a fast function to estimate parameters – and
their standard errors – from a linear model,

• It used GSL functions to estimate β̂ as well as its standard
errors σ̂ – as lm.fit() in R only returns the former.

• It has been reimplemented for RcppArmadillo and RcppEigen

Rcpp @ useR 2020 89/100

INITIAL FASTLM

#include <RcppArmadillo.h>

extern ”C” SEXP fastLm(SEXP Xs, SEXP ys) {

try {
Rcpp::NumericVector yr(ys); // creates Rcpp vector from SEXP
Rcpp::NumericMatrix Xr(Xs); // creates Rcpp matrix from SEXP
int n = Xr.nrow(), k = Xr.ncol();
arma::mat X(Xr.begin(), n, k, false); // reuses memory, avoids extra copy
arma::colvec y(yr.begin(), yr.size(), false);

arma::colvec coef = arma::solve(X, y); // fit model y ~ X
arma::colvec res = y - X*coef; // residuals
double s2 = std::inner_product(res.begin(), res.end(), res.begin(), 0.0)/(n - k);
arma::colvec std_err = // std.errors of coefficients

arma::sqrt(s2*arma::diagvec(arma::pinv(arma::trans(X)*X)));

return Rcpp::List::create(Rcpp::Named(”coefficients”) = coef,
Rcpp::Named(”stderr”) = std_err,
Rcpp::Named(”df.residual”) = n - k);

} catch(std::exception &ex) {
forward_exception_to_r(ex);

} catch(...) {
::Rf_error(”c++ exception (unknown reason)”);

}
return R_NilValue; // -Wall

}
Rcpp @ useR 2020 90/100

NEWER VERSION

// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp;
using namespace arma;

// [[Rcpp::export]]
List fastLm(NumericVector yr, NumericMatrix Xr) {

int n = Xr.nrow(), k = Xr.ncol();
mat X(Xr.begin(), n, k, false);
colvec y(yr.begin(), yr.size(), false);

colvec coef = solve(X, y);
colvec resid = y - X*coef;

double sig2 = as_scalar(trans(resid)*resid/(n-k));
colvec stderrest = sqrt(sig2 * diagvec(inv(trans(X)*X)));

return List::create(Named(”coefficients”) = coef,
Named(”stderr”) = stderrest,
Named(”df.residual”) = n - k);

}Rcpp @ useR 2020 91/100

CURRENT VERSION

// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

// [[Rcpp::export]]
Rcpp::List fastLm(const arma::mat& X, const arma::colvec& y) {

int n = X.n_rows, k = X.n_cols;

arma::colvec coef = arma::solve(X, y);
arma::colvec resid = y - X*coef;

double sig2 = arma::as_scalar(arma::trans(resid)*resid/(n-k));
arma::colvec sterr = arma::sqrt(sig2 *

arma::diagvec(arma::pinv(arma::trans(X)*X)));

return Rcpp::List::create(Rcpp::Named(”coefficients”) = coef,
Rcpp::Named(”stderr”) = sterr,
Rcpp::Named(”df.residual”) = n - k);

}

Rcpp @ useR 2020 92/100

INTERFACE CHANGES

arma::colvec y = Rcpp::as<arma::colvec>(ys);
arma::mat X = Rcpp::as<arma::mat>(Xs);

Convenient, yet incurs an additional copy. Next variant uses two
steps, but only a pointer to objects is copied:

Rcpp::NumericVector yr(ys);
Rcpp::NumericMatrix Xr(Xs);
int n = Xr.nrow(), k = Xr.ncol();
arma::mat X(Xr.begin(), n, k, false);
arma::colvec y(yr.begin(), yr.size(), false);

Better if performance is a concern. But now RcppArmadillo has
efficient const references too.

Rcpp @ useR 2020 93/100

BENCHMARK

edd@brad:~$ Rscript ~/git/rcpparmadillo/inst/examples/fastLm.r
test replications relative elapsed

2 fLmTwoCasts(X, y) 5000 1.000 0.072
4 fLmSEXP(X, y) 5000 1.000 0.072
3 fLmConstRef(X, y) 5000 1.014 0.073
6 fastLmPureDotCall(X, y) 5000 1.028 0.074
1 fLmOneCast(X, y) 5000 1.250 0.090
5 fastLmPure(X, y) 5000 1.486 0.107
8 lm.fit(X, y) 5000 2.542 0.183
7 fastLm(frm, data = trees) 5000 36.153 2.603
9 lm(frm, data = trees) 5000 43.694 3.146
continued below with subset

Rcpp @ useR 2020 94/100

BENCHMARK

continued from above with larger N
test replications relative elapsed

1 fLmOneCast(X, y) 50000 1.000 0.676
3 fLmSEXP(X, y) 50000 1.027 0.694
4 fLmConstRef(X, y) 50000 1.061 0.717
6 fastLmPureDotCall(X, y) 50000 1.061 0.717
2 fLmTwoCasts(X, y) 50000 1.123 0.759
5 fastLmPure(X, y) 50000 1.583 1.070
7 lm.fit(X, y) 50000 2.530 1.710
edd@brad:~$

Rcpp @ useR 2020 95/100

MORE

Rcpp @ useR 2020 96/100

DOCUMENTATION

Where to go for next steps

• The package comes with nine pdf vignettes, and help pages.
• The introductory vignettes are now published (Rcpp and
RcppEigen in J Stat Software, RcppArmadillo in Comp Stat &
Data Anlys, Rcpp again in TAS)

• The rcpp-devel list is the recommended resource, generally
very helpful, and fairly low volume.

• StackOverflow has a fair number of posts too.
• And a number of blog posts introduce/discuss features.

Rcpp @ useR 2020 97/100

RCPP GALLERY

Rcpp @ useR 2020 98/100

THE RCPP BOOK

On sale since June 2013.

Rcpp @ useR 2020 99/100

THANK YOU!

slides http://dirk.eddelbuettel.com/presentations/

web http://dirk.eddelbuettel.com/

mail dirk@eddelbuettel.com

github @eddelbuettel

twitter @eddelbuettel

Rcpp @ useR 2020 100/100

http://dirk.eddelbuettel.com/presentations/
http://dirk.eddelbuettel.com/
dirk@eddelbuettel.com
@eddelbuettel
@eddelbuettel

	Overview
	Why R?
	Why R: Programming with Data
	Why R: Historical Perspective
	C++ and Rcpp for Extending R
	Who ?
	How?
	How: Main Tools for Exploration
	First Example: Speed
	A (Very) Brief C++ Primer
	Second Example: Vectors
	How: Packages
	RcppArmadillo
	Third Example: FastLm
	More

