
Extending R Rcpp

Seamless R and C++ Integration:
Rcpp and RInside

Dirk Eddelbuettel
Debian Project

Joint work with Romain François

Invited seminar presentation
Institute for Statistics and Mathematics

Wirtschaftsuniversität Wien
20 May 2010

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Preliminaries

We assume a recent version of R so that
install.packages(c("Rcpp","RInside","inline"))
gets us current versions of the packages
All examples shown should work ’as is’ on Linux, OS X and
Windows provided a complete R development environment
The R Installation and Administration manual is an
excellent start if you need to address the preceding point
In particular, one must use the same compilers used to
build R in order to extend or embed the R engine
However, there is a known issue with the current RInside /
Rcpp on Windows; but releases 0.2.1 and 0.7.1 do work

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Preliminaries

We assume a recent version of R so that
install.packages(c("Rcpp","RInside","inline"))
gets us current versions of the packages

All examples shown should work ’as is’ on Linux, OS X and
Windows provided a complete R development environment
The R Installation and Administration manual is an
excellent start if you need to address the preceding point
In particular, one must use the same compilers used to
build R in order to extend or embed the R engine
However, there is a known issue with the current RInside /
Rcpp on Windows; but releases 0.2.1 and 0.7.1 do work

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Preliminaries

We assume a recent version of R so that
install.packages(c("Rcpp","RInside","inline"))
gets us current versions of the packages
All examples shown should work ’as is’ on Linux, OS X and
Windows provided a complete R development environment

The R Installation and Administration manual is an
excellent start if you need to address the preceding point
In particular, one must use the same compilers used to
build R in order to extend or embed the R engine
However, there is a known issue with the current RInside /
Rcpp on Windows; but releases 0.2.1 and 0.7.1 do work

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Preliminaries

We assume a recent version of R so that
install.packages(c("Rcpp","RInside","inline"))
gets us current versions of the packages
All examples shown should work ’as is’ on Linux, OS X and
Windows provided a complete R development environment
The R Installation and Administration manual is an
excellent start if you need to address the preceding point

In particular, one must use the same compilers used to
build R in order to extend or embed the R engine
However, there is a known issue with the current RInside /
Rcpp on Windows; but releases 0.2.1 and 0.7.1 do work

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Preliminaries

We assume a recent version of R so that
install.packages(c("Rcpp","RInside","inline"))
gets us current versions of the packages
All examples shown should work ’as is’ on Linux, OS X and
Windows provided a complete R development environment
The R Installation and Administration manual is an
excellent start if you need to address the preceding point
In particular, one must use the same compilers used to
build R in order to extend or embed the R engine

However, there is a known issue with the current RInside /
Rcpp on Windows; but releases 0.2.1 and 0.7.1 do work

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Preliminaries

We assume a recent version of R so that
install.packages(c("Rcpp","RInside","inline"))
gets us current versions of the packages
All examples shown should work ’as is’ on Linux, OS X and
Windows provided a complete R development environment
The R Installation and Administration manual is an
excellent start if you need to address the preceding point
In particular, one must use the same compilers used to
build R in order to extend or embed the R engine
However, there is a known issue with the current RInside /
Rcpp on Windows; but releases 0.2.1 and 0.7.1 do work

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers. Software for
Data Analysis:
Programming with R.
Springer, 2008

Chambers (2008) opens chapter 11 (Interfaces I:
Using C and Fortran) with these words:

Since the core of R is in fact a program
written in the C language, it’s not surprising
that the most direct interface to non-R
software is for code written in C, or directly
callable from C. All the same, including
additional C code is a serious step, with
some added dangers and often a substantial
amount of programming and debugging
required. You should have a good reason.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers. Software for
Data Analysis:
Programming with R.
Springer, 2008

Chambers (2008) opens chapter 11 (Interfaces I:
Using C and Fortran) with these words:

Since the core of R is in fact a program
written in the C language, it’s not surprising
that the most direct interface to non-R
software is for code written in C, or directly
callable from C. All the same, including
additional C code is a serious step, with
some added dangers and often a substantial
amount of programming and debugging
required. You should have a good reason.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers. Software for
Data Analysis:
Programming with R.
Springer, 2008

Chambers (2008) opens chapter 11 (Interfaces I:
Using C and Fortran) with these words:

Since the core of R is in fact a program
written in the C language, it’s not surprising
that the most direct interface to non-R
software is for code written in C, or directly
callable from C. All the same, including
additional C code is a serious step, with
some added dangers and often a substantial
amount of programming and debugging
required. You should have a good reason.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work

Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite

Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency

Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations

Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed

Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Motivation

Chambers (2008) then proceeds with this rough map of the
road ahead:

Against:

It’s more work
Bugs will bite
Potential platform
dependency
Less readable software

In Favor:

New and trusted
computations
Speed
Object references

So is the deck stacked against us?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: The Basics

R offers several functions to access compiled code: we focus
on .C and .Call here. (R Extensions, sections 5.2 and 5.9;
Software for Data Analysis).

The canonical example is the convolution function:
1 void convolve (double ∗a , i n t ∗na , double ∗b ,
2 i n t ∗nb , double ∗ab)
3 {
4 i n t i , j , nab = ∗na + ∗nb − 1;
5
6 for (i = 0 ; i < nab ; i ++)
7 ab [i] = 0 . 0 ;
8 for (i = 0 ; i < ∗na ; i ++)
9 for (j = 0 ; j < ∗nb ; j ++)

10 ab [i + j] += a [i] ∗ b [j] ;
11 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: The Basics

R offers several functions to access compiled code: we focus
on .C and .Call here. (R Extensions, sections 5.2 and 5.9;
Software for Data Analysis).
The canonical example is the convolution function:

1 void convolve (double ∗a , i n t ∗na , double ∗b ,
2 i n t ∗nb , double ∗ab)
3 {
4 i n t i , j , nab = ∗na + ∗nb − 1;
5
6 for (i = 0 ; i < nab ; i ++)
7 ab [i] = 0 . 0 ;
8 for (i = 0 ; i < ∗na ; i ++)
9 for (j = 0 ; j < ∗nb ; j ++)

10 ab [i + j] += a [i] ∗ b [j] ;
11 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: The Basics cont.

The convolution function is called from R by

1 conv <− function (a , b)
2 .C(" convolve " ,
3 as . double (a) ,
4 as . integer (length (a)) ,
5 as . double (b) ,
6 as . integer (length (b)) ,
7 ab = double (length (a) + length (b) − 1)) $ab

As stated in the manual, one must take care to coerce all the
arguments to the correct R storage mode before calling .C as
mistakes in matching the types can lead to wrong results or
hard-to-catch errors.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: The Basics cont.

The convolution function is called from R by
1 conv <− function (a , b)
2 .C(" convolve " ,
3 as . double (a) ,
4 as . integer (length (a)) ,
5 as . double (b) ,
6 as . integer (length (b)) ,
7 ab = double (length (a) + length (b) − 1)) $ab

As stated in the manual, one must take care to coerce all the
arguments to the correct R storage mode before calling .C as
mistakes in matching the types can lead to wrong results or
hard-to-catch errors.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Example: Running the convolution code via .C
All these files are at http://dirk.eddelbuettel.com/code/rcppTut

Turn the C source file into a dynamic library using
R CMD SHLIB convolve.C.c

Load it inside an R script or session using
dyn.load("convolve.C.so")

Use it via the .C() interface as shown on previous slide
All together in a helper file convolve.C.sh
#!/bin/sh

R CMD SHLIB convolve.C.c

cat convolve.C.call.R | R --no-save

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Example: Running the convolution code via .C
All these files are at http://dirk.eddelbuettel.com/code/rcppTut

Turn the C source file into a dynamic library using
R CMD SHLIB convolve.C.c

Load it inside an R script or session using
dyn.load("convolve.C.so")

Use it via the .C() interface as shown on previous slide
All together in a helper file convolve.C.sh
#!/bin/sh

R CMD SHLIB convolve.C.c

cat convolve.C.call.R | R --no-save

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Example: Running the convolution code via .C
All these files are at http://dirk.eddelbuettel.com/code/rcppTut

Turn the C source file into a dynamic library using
R CMD SHLIB convolve.C.c

Load it inside an R script or session using
dyn.load("convolve.C.so")

Use it via the .C() interface as shown on previous slide

All together in a helper file convolve.C.sh
#!/bin/sh

R CMD SHLIB convolve.C.c

cat convolve.C.call.R | R --no-save

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Example: Running the convolution code via .C
All these files are at http://dirk.eddelbuettel.com/code/rcppTut

Turn the C source file into a dynamic library using
R CMD SHLIB convolve.C.c

Load it inside an R script or session using
dyn.load("convolve.C.so")

Use it via the .C() interface as shown on previous slide
All together in a helper file convolve.C.sh
#!/bin/sh

R CMD SHLIB convolve.C.c

cat convolve.C.call.R | R --no-save

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: The Basics cont.

Using .Call, the example becomes

1 #include <R. h>
2 #include <Rdefines . h>
3
4 extern "C" SEXP convolve2 (SEXP a , SEXP b)
5 {
6 i n t i , j , na , nb , nab ;
7 double ∗xa , ∗xb , ∗xab ;
8 SEXP ab ;
9

10 PROTECT(a = AS_NUMERIC(a)) ;
11 PROTECT(b = AS_NUMERIC(b)) ;
12 na = LENGTH(a) ; nb = LENGTH(b) ; nab = na + nb − 1;
13 PROTECT(ab = NEW_NUMERIC(nab)) ;
14 xa = NUMERIC_POINTER(a) ; xb = NUMERIC_POINTER(b) ;
15 xab = NUMERIC_POINTER(ab) ;
16 for (i = 0 ; i < nab ; i ++) xab [i] = 0 . 0 ;
17 for (i = 0 ; i < na ; i ++)
18 for (j = 0 ; j < nb ; j ++) xab [i + j] += xa [i] ∗ xb [j] ;
19 UNPROTECT(3) ;
20 return (ab) ;
21 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: The Basics cont.

Using .Call, the example becomes
1 #include <R. h>
2 #include <Rdefines . h>
3
4 extern "C" SEXP convolve2 (SEXP a , SEXP b)
5 {
6 i n t i , j , na , nb , nab ;
7 double ∗xa , ∗xb , ∗xab ;
8 SEXP ab ;
9

10 PROTECT(a = AS_NUMERIC(a)) ;
11 PROTECT(b = AS_NUMERIC(b)) ;
12 na = LENGTH(a) ; nb = LENGTH(b) ; nab = na + nb − 1;
13 PROTECT(ab = NEW_NUMERIC(nab)) ;
14 xa = NUMERIC_POINTER(a) ; xb = NUMERIC_POINTER(b) ;
15 xab = NUMERIC_POINTER(ab) ;
16 for (i = 0 ; i < nab ; i ++) xab [i] = 0 . 0 ;
17 for (i = 0 ; i < na ; i ++)
18 for (j = 0 ; j < nb ; j ++) xab [i + j] += xa [i] ∗ xb [j] ;
19 UNPROTECT(3) ;
20 return (ab) ;
21 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: The Basics cont.

Now the call simplifies to just the function name and the vector
arguments—all other handling is done at the C/C++ level:

1 conv <− function (a , b) . Cal l (" convolve2 " , a , b)

In summary, we see that

there are different entry points
using different calling conventions
leading to code that may need to do more work at the
lower level.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: The Basics cont.

Now the call simplifies to just the function name and the vector
arguments—all other handling is done at the C/C++ level:

1 conv <− function (a , b) . Cal l (" convolve2 " , a , b)

In summary, we see that
there are different entry points

using different calling conventions
leading to code that may need to do more work at the
lower level.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: The Basics cont.

Now the call simplifies to just the function name and the vector
arguments—all other handling is done at the C/C++ level:

1 conv <− function (a , b) . Cal l (" convolve2 " , a , b)

In summary, we see that
there are different entry points
using different calling conventions

leading to code that may need to do more work at the
lower level.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: The Basics cont.

Now the call simplifies to just the function name and the vector
arguments—all other handling is done at the C/C++ level:

1 conv <− function (a , b) . Cal l (" convolve2 " , a , b)

In summary, we see that
there are different entry points
using different calling conventions
leading to code that may need to do more work at the
lower level.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Example: Running the convolution code via .Call

Turn the C source file into a dynamic library using
R CMD SHLIB convolve.Call.c

Load it inside an R script or session using
dyn.load("convolve.Call.so")

Use it via the .Call() interface as shown previously
All together in a helper file convolve.Call.sh
#!/bin/sh

R CMD SHLIB convolve.Call.c

cat convolve.Call.call.R | R --no-save

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Example: Running the convolution code via .Call

Turn the C source file into a dynamic library using
R CMD SHLIB convolve.Call.c

Load it inside an R script or session using
dyn.load("convolve.Call.so")

Use it via the .Call() interface as shown previously
All together in a helper file convolve.Call.sh
#!/bin/sh

R CMD SHLIB convolve.Call.c

cat convolve.Call.call.R | R --no-save

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Example: Running the convolution code via .Call

Turn the C source file into a dynamic library using
R CMD SHLIB convolve.Call.c

Load it inside an R script or session using
dyn.load("convolve.Call.so")

Use it via the .Call() interface as shown previously

All together in a helper file convolve.Call.sh
#!/bin/sh

R CMD SHLIB convolve.Call.c

cat convolve.Call.call.R | R --no-save

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Example: Running the convolution code via .Call

Turn the C source file into a dynamic library using
R CMD SHLIB convolve.Call.c

Load it inside an R script or session using
dyn.load("convolve.Call.so")

Use it via the .Call() interface as shown previously
All together in a helper file convolve.Call.sh
#!/bin/sh

R CMD SHLIB convolve.Call.c

cat convolve.Call.call.R | R --no-save

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the
function cfunction which can wrap Fortran, C or C++ code.

1 ## A simple For t ran example
2 code <− "
3 i n t e g e r i
4 do 1 i =1 , n (1)
5 1 x (i) = x (i) ∗∗3
6 "
7 cubefn <− c f un c t i on (s igna tu re (n=" i n t e g e r " , x= " numeric ") ,
8 code , convent ion=" . For t ran ")
9 x <− as . numeric (1 : 1 0)

10 n <− as . integer (10)
11 cubefn (n , x) $x

cfunction takes care of compiling, linking, loading, . . . by
placing the resulting dynamically-loadable object code in the
per-session temporary directory used by R.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the
function cfunction which can wrap Fortran, C or C++ code.

1 ## A simple For t ran example
2 code <− "
3 i n t e g e r i
4 do 1 i =1 , n (1)
5 1 x (i) = x (i) ∗∗3
6 "
7 cubefn <− c f un c t i on (s igna tu re (n=" i n t e g e r " , x= " numeric ") ,
8 code , convent ion=" . For t ran ")
9 x <− as . numeric (1 : 1 0)

10 n <− as . integer (10)
11 cubefn (n , x) $x

cfunction takes care of compiling, linking, loading, . . . by
placing the resulting dynamically-loadable object code in the
per-session temporary directory used by R.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the
function cfunction which can wrap Fortran, C or C++ code.

1 ## A simple For t ran example
2 code <− "
3 i n t e g e r i
4 do 1 i =1 , n (1)
5 1 x (i) = x (i) ∗∗3
6 "
7 cubefn <− c f un c t i on (s igna tu re (n=" i n t e g e r " , x= " numeric ") ,
8 code , convent ion=" . For t ran ")
9 x <− as . numeric (1 : 1 0)

10 n <− as . integer (10)
11 cubefn (n , x) $x

cfunction takes care of compiling, linking, loading, . . . by
placing the resulting dynamically-loadable object code in the
per-session temporary directory used by R.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Why ? The standard API Inline

Example: Convolution via .C with inline
Using the file convolve.C.inline.R

1 require (i n l i n e)
2
3 code <− " i n t i , j , nab = ∗na + ∗nb − 1;
4
5 f o r (i = 0 ; i < nab ; i ++)
6 ab [i] = 0 . 0 ;
7
8 f o r (i = 0 ; i < ∗na ; i ++) {
9 f o r (j = 0 ; j < ∗nb ; j ++)

10 ab [i + j] += a [i] ∗ b [j] ;
11 }
12 "
13
14 fun <− c f un c t i on (s igna tu re (a=" numeric " , na=" numeric " ,
15 b=" numeric " , nb=" numeric " ,
16 ab=" numeric ") ,
17 code , language="C" , convent ion=" .C")
18
19 fun (1 :10 , 10 , 10:1 , 10 , numeric (19)) $ab

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Why ? The standard API Inline

Example: Convolution via .Call with inline
Using the file convolve.Call.inline.R

1 require (i n l i n e)
2 code <− " i n t i , j , na , nb , nab ;
3 double ∗xa , ∗xb , ∗xab ;
4 SEXP ab ;
5
6 PROTECT(a = AS_NUMERIC(a)) ; PROTECT(b = AS_NUMERIC(b)) ;
7 na = LENGTH(a) ; nb = LENGTH(b) ; nab = na + nb − 1;
8 PROTECT(ab = NEW_NUMERIC(nab)) ;
9

10 xa = NUMERIC_POINTER(a) ; xb = NUMERIC_POINTER(b) ;
11 xab = NUMERIC_POINTER(ab) ;
12 f o r (i = 0 ; i < nab ; i ++) xab [i] = 0 . 0 ;
13
14 f o r (i = 0 ; i < na ; i ++)
15 f o r (j = 0 ; j < nb ; j ++)
16 xab [i + j] += xa [i] ∗ xb [j] ;
17
18 UNPROTECT(3) ;
19 r e t u r n (ab) ; "
20
21 fun <− c f un c t i on (s igna tu re (a=" numeric " , b= " numeric ") ,
22 code , language="C")
23
24 fun (1 :10 , 10 :1)

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Compiled Code: Rcpp

In a nutshell:

Rcpp makes it easier to interface C++ and R code.
Using the .Call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.
One major advantage of using .Call is that richer R
objects (vectors, matrices, lists, . . . in fact most SEXP
types incl functions, environments etc) can be passed
directly between R and C++ without the need for explicit
passing of dimension arguments.
By using the C++ class layers, we do not need to
manipulate the SEXP objects using any of the old-school C
macros.
inline eases usage, development and testing.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Compiled Code: Rcpp

In a nutshell:
Rcpp makes it easier to interface C++ and R code.

Using the .Call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.
One major advantage of using .Call is that richer R
objects (vectors, matrices, lists, . . . in fact most SEXP
types incl functions, environments etc) can be passed
directly between R and C++ without the need for explicit
passing of dimension arguments.
By using the C++ class layers, we do not need to
manipulate the SEXP objects using any of the old-school C
macros.
inline eases usage, development and testing.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Compiled Code: Rcpp

In a nutshell:
Rcpp makes it easier to interface C++ and R code.
Using the .Call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.

One major advantage of using .Call is that richer R
objects (vectors, matrices, lists, . . . in fact most SEXP
types incl functions, environments etc) can be passed
directly between R and C++ without the need for explicit
passing of dimension arguments.
By using the C++ class layers, we do not need to
manipulate the SEXP objects using any of the old-school C
macros.
inline eases usage, development and testing.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Compiled Code: Rcpp

In a nutshell:
Rcpp makes it easier to interface C++ and R code.
Using the .Call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.
One major advantage of using .Call is that richer R
objects (vectors, matrices, lists, . . . in fact most SEXP
types incl functions, environments etc) can be passed
directly between R and C++ without the need for explicit
passing of dimension arguments.

By using the C++ class layers, we do not need to
manipulate the SEXP objects using any of the old-school C
macros.
inline eases usage, development and testing.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Compiled Code: Rcpp

In a nutshell:
Rcpp makes it easier to interface C++ and R code.
Using the .Call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.
One major advantage of using .Call is that richer R
objects (vectors, matrices, lists, . . . in fact most SEXP
types incl functions, environments etc) can be passed
directly between R and C++ without the need for explicit
passing of dimension arguments.
By using the C++ class layers, we do not need to
manipulate the SEXP objects using any of the old-school C
macros.

inline eases usage, development and testing.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Compiled Code: Rcpp

In a nutshell:
Rcpp makes it easier to interface C++ and R code.
Using the .Call interface, we can use features of the C++
language to automate the tedious bits of the macro-based
C-level interface to R.
One major advantage of using .Call is that richer R
objects (vectors, matrices, lists, . . . in fact most SEXP
types incl functions, environments etc) can be passed
directly between R and C++ without the need for explicit
passing of dimension arguments.
By using the C++ class layers, we do not need to
manipulate the SEXP objects using any of the old-school C
macros.
inline eases usage, development and testing.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Example: Convolution using classic Rcpp
Using the file convolve.Call.Rcpp.classic.R

1 require (i n l i n e)
2 code <− ’
3 RcppVector<double > xa (a) ;
4 RcppVector<double > xb (b) ;
5
6 i n t nab = xa . s ize () + xb . s ize () − 1;
7 RcppVector<double > xab (nab) ;
8 f o r (i n t i = 0 ; i < nab ; i ++) xab (i) = 0 . 0 ;
9

10 f o r (i n t i = 0 ; i < xa . s ize () ; i ++)
11 f o r (i n t j = 0 ; j < xb . s ize () ; j ++)
12 xab (i + j) += xa (i) ∗ xb (j) ;
13
14 RcppResultSet rs ;
15 rs . add (" ab " , xab) ;
16 r e t u r n rs . ge tRe tu rnL i s t () ;
17 ’
18
19 fun <− cppfunc t ion (s igna tu re (a=" numeric " , b= " numeric ") , code)
20 fun (1 :10 , 10 :1)

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Rcpp: The ’New API’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

1 SEXP ab ;
2 PROTECT(ab = a l l ocVec to r (STRSXP, 2)) ;
3 SET_STRING_ELT(ab , 0 , mkChar (" foo ")) ;
4 SET_STRING_ELT(ab , 1 , mkChar (" bar ")) ;
5 UNPROTECT(1) ;

1 CharacterVector ab (2) ;
2 ab [0] = " foo " ;
3 ab [1] = " bar " ;

Data types, including STL containers and iterators, can be
nested and other niceties. Implicit converters allow us to
combine types:

1 std : : vector <double> vec ;
2 [. . .]
3 L i s t x (3) ;
4 x [0] = vec ;
5 x [1] = "some t e x t " ;
6 x [2] = 42;

1 / / With Rcpp 0.7 .11 or l a t e r we can do :
2 s td : : vector <double> vec ;
3 [. . .]
4 L i s t x = L i s t : : c reate (vec ,
5 "some t e x t " ,
6 42) ;

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Rcpp: The ’New API’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

1 SEXP ab ;
2 PROTECT(ab = a l l ocVec to r (STRSXP, 2)) ;
3 SET_STRING_ELT(ab , 0 , mkChar (" foo ")) ;
4 SET_STRING_ELT(ab , 1 , mkChar (" bar ")) ;
5 UNPROTECT(1) ;

1 CharacterVector ab (2) ;
2 ab [0] = " foo " ;
3 ab [1] = " bar " ;

Data types, including STL containers and iterators, can be
nested and other niceties. Implicit converters allow us to
combine types:

1 std : : vector <double> vec ;
2 [. . .]
3 L i s t x (3) ;
4 x [0] = vec ;
5 x [1] = "some t e x t " ;
6 x [2] = 42;

1 / / With Rcpp 0.7 .11 or l a t e r we can do :
2 s td : : vector <double> vec ;
3 [. . .]
4 L i s t x = L i s t : : c reate (vec ,
5 "some t e x t " ,
6 42) ;

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Rcpp: The ’New API’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

1 SEXP ab ;
2 PROTECT(ab = a l l ocVec to r (STRSXP, 2)) ;
3 SET_STRING_ELT(ab , 0 , mkChar (" foo ")) ;
4 SET_STRING_ELT(ab , 1 , mkChar (" bar ")) ;
5 UNPROTECT(1) ;

1 CharacterVector ab (2) ;
2 ab [0] = " foo " ;
3 ab [1] = " bar " ;

Data types, including STL containers and iterators, can be
nested and other niceties. Implicit converters allow us to
combine types:

1 std : : vector <double> vec ;
2 [. . .]
3 L i s t x (3) ;
4 x [0] = vec ;
5 x [1] = "some t e x t " ;
6 x [2] = 42;

1 / / With Rcpp 0.7 .11 or l a t e r we can do :
2 s td : : vector <double> vec ;
3 [. . .]
4 L i s t x = L i s t : : c reate (vec ,
5 "some t e x t " ,
6 42) ;

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Rcpp: The ’New API’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

1 SEXP ab ;
2 PROTECT(ab = a l l ocVec to r (STRSXP, 2)) ;
3 SET_STRING_ELT(ab , 0 , mkChar (" foo ")) ;
4 SET_STRING_ELT(ab , 1 , mkChar (" bar ")) ;
5 UNPROTECT(1) ;

1 CharacterVector ab (2) ;
2 ab [0] = " foo " ;
3 ab [1] = " bar " ;

Data types, including STL containers and iterators, can be
nested and other niceties. Implicit converters allow us to
combine types:

1 std : : vector <double> vec ;
2 [. . .]
3 L i s t x (3) ;
4 x [0] = vec ;
5 x [1] = "some t e x t " ;
6 x [2] = 42;

1 / / With Rcpp 0.7 .11 or l a t e r we can do :
2 s td : : vector <double> vec ;
3 [. . .]
4 L i s t x = L i s t : : c reate (vec ,
5 "some t e x t " ,
6 42) ;

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Rcpp: The ’New API’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

1 SEXP ab ;
2 PROTECT(ab = a l l ocVec to r (STRSXP, 2)) ;
3 SET_STRING_ELT(ab , 0 , mkChar (" foo ")) ;
4 SET_STRING_ELT(ab , 1 , mkChar (" bar ")) ;
5 UNPROTECT(1) ;

1 CharacterVector ab (2) ;
2 ab [0] = " foo " ;
3 ab [1] = " bar " ;

Data types, including STL containers and iterators, can be
nested and other niceties. Implicit converters allow us to
combine types:

1 std : : vector <double> vec ;
2 [. . .]
3 L i s t x (3) ;
4 x [0] = vec ;
5 x [1] = "some t e x t " ;
6 x [2] = 42;

1 / / With Rcpp 0.7 .11 or l a t e r we can do :
2 s td : : vector <double> vec ;
3 [. . .]
4 L i s t x = L i s t : : c reate (vec ,
5 "some t e x t " ,
6 42) ;

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Rcpp: The ’New API’

Rcpp was significantly extended over the last few months to
permit more natural expressions. Consider this comparison
between the R API and the new Rcpp API:

1 SEXP ab ;
2 PROTECT(ab = a l l ocVec to r (STRSXP, 2)) ;
3 SET_STRING_ELT(ab , 0 , mkChar (" foo ")) ;
4 SET_STRING_ELT(ab , 1 , mkChar (" bar ")) ;
5 UNPROTECT(1) ;

1 CharacterVector ab (2) ;
2 ab [0] = " foo " ;
3 ab [1] = " bar " ;

Data types, including STL containers and iterators, can be
nested and other niceties. Implicit converters allow us to
combine types:

1 std : : vector <double> vec ;
2 [. . .]
3 L i s t x (3) ;
4 x [0] = vec ;
5 x [1] = "some t e x t " ;
6 x [2] = 42;

1 / / With Rcpp 0.7 .11 or l a t e r we can do :
2 s td : : vector <double> vec ;
3 [. . .]
4 L i s t x = L i s t : : c reate (vec ,
5 "some t e x t " ,
6 42) ;

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Functional programming in both languages

In R, functional programming is easy:

1 R> data (f a i t h f u l) ; lapply (f a i t h f u l , summary)
2 $ erup t ions
3 Min . 1 s t Qu. Median Mean 3rd Qu. Max .
4 1.60 2.16 4.00 3.49 4.45 5.10
5
6 $ wa i t i ng
7 Min . 1 s t Qu. Median Mean 3rd Qu. Max .
8 43.0 58.0 76.0 70.9 82.0 96.0

We can do that in C++ as well and pass the R function down to
the data that we let the STL transform function iterate over:

1 src <− ’Rcpp : : L i s t i npu t (data) ;
2 Rcpp : : Funct ion f (fun) ;
3 Rcpp : : L i s t output (i npu t . s i ze ()) ;
4 s td : : t rans form (i np u t . begin () , i npu t . end () , ou tput . begin () , f) ;
5 output . names () = i np u t . names () ;
6 r e t u r n output ; ’
7 cpp_ l a p p l y <− cpp func t ion (s igna tu re (data=" l i s t " , fun = " f u n c t i o n ") , s rc)

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Functional programming in both languages

In R, functional programming is easy:

1 R> data (f a i t h f u l) ; lapply (f a i t h f u l , summary)
2 $ erup t ions
3 Min . 1 s t Qu. Median Mean 3rd Qu. Max .
4 1.60 2.16 4.00 3.49 4.45 5.10
5
6 $ wa i t i ng
7 Min . 1 s t Qu. Median Mean 3rd Qu. Max .
8 43.0 58.0 76.0 70.9 82.0 96.0

We can do that in C++ as well and pass the R function down to
the data that we let the STL transform function iterate over:

1 src <− ’Rcpp : : L i s t i npu t (data) ;
2 Rcpp : : Funct ion f (fun) ;
3 Rcpp : : L i s t output (i np u t . s i ze ()) ;
4 s td : : t rans form (i npu t . begin () , i npu t . end () , ou tput . begin () , f) ;
5 output . names () = i npu t . names () ;
6 r e t u r n output ; ’
7 cpp_ l a p p l y <− cpp func t ion (s igna tu re (data=" l i s t " , fun = " f u n c t i o n ") , s rc)

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Functional programming in both languages

In R, functional programming is easy:

1 R> data (f a i t h f u l) ; lapply (f a i t h f u l , summary)
2 $ erup t ions
3 Min . 1 s t Qu. Median Mean 3rd Qu. Max .
4 1.60 2.16 4.00 3.49 4.45 5.10
5
6 $ wa i t i ng
7 Min . 1 s t Qu. Median Mean 3rd Qu. Max .
8 43.0 58.0 76.0 70.9 82.0 96.0

We can do that in C++ as well and pass the R function down to
the data that we let the STL transform function iterate over:

1 src <− ’Rcpp : : L i s t i npu t (data) ;
2 Rcpp : : Funct ion f (fun) ;
3 Rcpp : : L i s t output (i npu t . s i ze ()) ;
4 s td : : t rans form (i npu t . begin () , i npu t . end () , ou tput . begin () , f) ;
5 output . names () = i np u t . names () ;
6 r e t u r n output ; ’
7 cpp_ l a p p l y <− cpp func t ion (s igna tu re (data=" l i s t " , fun = " f u n c t i o n ") , s rc)

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Exception handling

Automatic catching and conversion of C++ exceptions:

R> library(Rcpp); library(inline)
R> cpp <- ’
+ Rcpp::NumericVector x(xs); // automatic conversion from SEXP
+ for (int i=0; i<x.size(); i++) {
+ if (x[i] < 0)
+ throw std::range_error("Non-negative values required");
+ x[i] = log(x[i]);
+ }
+ return x; // automatic conversion to SEXP
+ ’
R> fun <- cppfunction(signature(xs="numeric"), cpp)
R> fun(seq(2, 5))

[1] 0.6931 1.0986 1.3863 1.6094

R> fun(seq(5, -2))

Error in fun(seq(5, -2)) : Non-negative values required

R> fun(LETTERS[1:5])

Error in fun(LETTERS[1:5]) : not compatible with INTSXP

R>

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Exception handling

Automatic catching and conversion of C++ exceptions:
R> library(Rcpp); library(inline)
R> cpp <- ’
+ Rcpp::NumericVector x(xs); // automatic conversion from SEXP
+ for (int i=0; i<x.size(); i++) {
+ if (x[i] < 0)
+ throw std::range_error("Non-negative values required");
+ x[i] = log(x[i]);
+ }
+ return x; // automatic conversion to SEXP
+ ’
R> fun <- cppfunction(signature(xs="numeric"), cpp)
R> fun(seq(2, 5))

[1] 0.6931 1.0986 1.3863 1.6094

R> fun(seq(5, -2))

Error in fun(seq(5, -2)) : Non-negative values required

R> fun(LETTERS[1:5])

Error in fun(LETTERS[1:5]) : not compatible with INTSXP

R>

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Exception handling: Usage

We attempted to automate forwarding of exceptions from
the C++ layer to the R layer.

This works (thanks to some gcc magic) on operating
system with an X in their name, but not on Windows.
We therefore once again recommend to wrap code with

try {

and
} catch(std::exception &ex) {

forward_exception_to_r(ex);
} catch(...) {

::Rf_error("c++ exception (unknown reason)");
}

Because this is invariant, we provide macros BEGIN_RCPP
and END_RCPP.
We provide a variant cppfunction of
inline::cfunction which automatically inserts these
at the beginning and end of the code snippets.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Exception handling: Usage

We attempted to automate forwarding of exceptions from
the C++ layer to the R layer.
This works (thanks to some gcc magic) on operating
system with an X in their name, but not on Windows.

We therefore once again recommend to wrap code with
try {

and
} catch(std::exception &ex) {

forward_exception_to_r(ex);
} catch(...) {

::Rf_error("c++ exception (unknown reason)");
}

Because this is invariant, we provide macros BEGIN_RCPP
and END_RCPP.
We provide a variant cppfunction of
inline::cfunction which automatically inserts these
at the beginning and end of the code snippets.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Exception handling: Usage

We attempted to automate forwarding of exceptions from
the C++ layer to the R layer.
This works (thanks to some gcc magic) on operating
system with an X in their name, but not on Windows.
We therefore once again recommend to wrap code with

try {

and
} catch(std::exception &ex) {

forward_exception_to_r(ex);
} catch(...) {

::Rf_error("c++ exception (unknown reason)");
}

Because this is invariant, we provide macros BEGIN_RCPP
and END_RCPP.
We provide a variant cppfunction of
inline::cfunction which automatically inserts these
at the beginning and end of the code snippets.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Exception handling: Usage

We attempted to automate forwarding of exceptions from
the C++ layer to the R layer.
This works (thanks to some gcc magic) on operating
system with an X in their name, but not on Windows.
We therefore once again recommend to wrap code with

try {

and
} catch(std::exception &ex) {

forward_exception_to_r(ex);
} catch(...) {

::Rf_error("c++ exception (unknown reason)");
}

Because this is invariant, we provide macros BEGIN_RCPP
and END_RCPP.

We provide a variant cppfunction of
inline::cfunction which automatically inserts these
at the beginning and end of the code snippets.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Exception handling: Usage

We attempted to automate forwarding of exceptions from
the C++ layer to the R layer.
This works (thanks to some gcc magic) on operating
system with an X in their name, but not on Windows.
We therefore once again recommend to wrap code with

try {

and
} catch(std::exception &ex) {

forward_exception_to_r(ex);
} catch(...) {

::Rf_error("c++ exception (unknown reason)");
}

Because this is invariant, we provide macros BEGIN_RCPP
and END_RCPP.
We provide a variant cppfunction of
inline::cfunction which automatically inserts these
at the beginning and end of the code snippets.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Example: Convolution using new Rcpp
Using the file convolve.Call.Rcpp.new.R

1 require (i n l i n e)
2
3 code <− ’
4 Rcpp : : NumericVector xa (a) ; / / automat ic convers ion from SEXP
5 Rcpp : : NumericVector xb (b) ;
6
7 i n t n_xa = xa . s ize () ;
8 i n t n_xb = xb . s ize () ;
9 i n t nab = n_xa + n_xb − 1;

10
11 Rcpp : : NumericVector xab (nab) ;
12
13 f o r (i n t i = 0 ; i < n_xa ; i ++)
14 f o r (i n t j = 0 ; j < n_xb ; j ++)
15 xab [i + j] += xa [i] ∗ xb [j] ;
16
17 r e t u r n xab ; / / automat ic convers ion to SEXP
18 ’
19
20 fun <− cppfunc t ion (s igna tu re (a=" numeric " , b= " numeric ") , code)
21
22 fun (1 :10 , 10 :1)

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Speed comparison
See the directory Rcpp/examples/ConvolveBenchmarks

In a recently-submitted paper, the following table summarises
the performance of convolution examples:

Implementation Time in Relative
millisec to R API

R API (as benchmark) 32
RcppVector<double> 354 11.1
NumericVector::operator[] 52 1.6
NumericVector::begin 33 1.0

Table 1: Performance for convolution example

We averaged 1000 replications with two 100-element vectors –
see examples/ConvolveBenchmarks/ in Rcpp for details.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Speed comparison
See the directory Rcpp/examples/ConvolveBenchmarks

In a recently-submitted paper, the following table summarises
the performance of convolution examples:

Implementation Time in Relative
millisec to R API

R API (as benchmark) 32
RcppVector<double> 354 11.1
NumericVector::operator[] 52 1.6
NumericVector::begin 33 1.0

Table 1: Performance for convolution example

We averaged 1000 replications with two 100-element vectors –
see examples/ConvolveBenchmarks/ in Rcpp for details.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Speed comparison
See the directory Rcpp/examples/ConvolveBenchmarks

In a recently-submitted paper, the following table summarises
the performance of convolution examples:

Implementation Time in Relative
millisec to R API

R API (as benchmark) 32
RcppVector<double> 354 11.1
NumericVector::operator[] 52 1.6
NumericVector::begin 33 1.0

Table 1: Performance for convolution example

We averaged 1000 replications with two 100-element vectors –
see examples/ConvolveBenchmarks/ in Rcpp for details.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Another Speed Comparison Example

Regression is a key component of many studies. In
simulations, we often want to run a very large number of
regressions.

R has lm() as the general purposes function. It is very
powerful and returns a rich object—but it is not lightweight.
For this purpose, R has lm.fit(). But, this does not
provide all relevant auxiliary data as e.g. the standard error
of the estimate.
For the most recent Introduction to High-Performance
Computing with R tutorial, I had written a hybrid R/C/C++
solution using the GNU GSL.
We complement this with a new C++ implementation
around the Armadillo linear algebra classes.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Another Speed Comparison Example

Regression is a key component of many studies. In
simulations, we often want to run a very large number of
regressions.
R has lm() as the general purposes function. It is very
powerful and returns a rich object—but it is not lightweight.

For this purpose, R has lm.fit(). But, this does not
provide all relevant auxiliary data as e.g. the standard error
of the estimate.
For the most recent Introduction to High-Performance
Computing with R tutorial, I had written a hybrid R/C/C++
solution using the GNU GSL.
We complement this with a new C++ implementation
around the Armadillo linear algebra classes.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Another Speed Comparison Example

Regression is a key component of many studies. In
simulations, we often want to run a very large number of
regressions.
R has lm() as the general purposes function. It is very
powerful and returns a rich object—but it is not lightweight.
For this purpose, R has lm.fit(). But, this does not
provide all relevant auxiliary data as e.g. the standard error
of the estimate.

For the most recent Introduction to High-Performance
Computing with R tutorial, I had written a hybrid R/C/C++
solution using the GNU GSL.
We complement this with a new C++ implementation
around the Armadillo linear algebra classes.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Another Speed Comparison Example

Regression is a key component of many studies. In
simulations, we often want to run a very large number of
regressions.
R has lm() as the general purposes function. It is very
powerful and returns a rich object—but it is not lightweight.
For this purpose, R has lm.fit(). But, this does not
provide all relevant auxiliary data as e.g. the standard error
of the estimate.
For the most recent Introduction to High-Performance
Computing with R tutorial, I had written a hybrid R/C/C++
solution using the GNU GSL.

We complement this with a new C++ implementation
around the Armadillo linear algebra classes.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Another Speed Comparison Example

Regression is a key component of many studies. In
simulations, we often want to run a very large number of
regressions.
R has lm() as the general purposes function. It is very
powerful and returns a rich object—but it is not lightweight.
For this purpose, R has lm.fit(). But, this does not
provide all relevant auxiliary data as e.g. the standard error
of the estimate.
For the most recent Introduction to High-Performance
Computing with R tutorial, I had written a hybrid R/C/C++
solution using the GNU GSL.
We complement this with a new C++ implementation
around the Armadillo linear algebra classes.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp Overview New API Examples

Linear regression via GSL: lmGSL()
See the directory Rcpp/examples/FastLM

1 lmGSL <− function () {
2 src <− ’
3
4 RcppVectorView<double > Yr (Ysexp) ;
5 RcppMatrixView <double > Xr (Xsexp) ;
6
7 i n t i , j , n = Xr . dim1 () , k = Xr . dim2 () ;
8 double ch i2 ;
9

10 gs l _ mat r i x ∗X = gs l _ mat r i x _ a l l o c (n , k) ;
11 gs l _ vec to r ∗y = gs l _ vec to r _ a l l o c (n) ;
12 gs l _ vec to r ∗c = gs l _ vec to r _ a l l o c (k) ;
13 gs l _ mat r i x ∗cov = gs l _ mat r i x _ a l l o c (k , k) ;
14
15 f o r (i = 0 ; i < n ; i ++) {
16 f o r (j = 0 ; j < k ; j ++) {
17 gs l _ mat r i x _set (X, i , j , Xr (i , j)) ;
18 }
19 gs l _ vec to r _set (y , i , Yr (i)) ;
20 }
21
22 gs l _ m u l t i f i t _ l i n e a r _workspace ∗wk =
23 gs l _ m u l t i f i t _ l i n e a r _ a l l o c (n , k) ;
24 gs l _ m u l t i f i t _ l i n e a r (X, y , c , cov ,&chi2 , wk) ;
25 gs l _ m u l t i f i t _ l i n e a r _ f r ee (wk) ;
26 RcppVector<double > StdErr (k) ;
27 RcppVector<double > Coef (k) ;

28 for (i = 0 ; i < k ; i ++) {
29 Coef (i) = gs l _vector_get (c , i) ;
30 StdErr (i) =
31 sqrt (gs l _matrix_get (cov , i , i)) ;
32 }
33
34 gs l _matrix_ f r ee (X) ;
35 gs l _vector_ f r ee (y) ;
36 gs l _vector_ f r ee (c) ;
37 gs l _matrix_ f r ee (cov) ;
38
39 RcppResultSet rs ;
40 rs . add (" coef " , Coef) ;
41 rs . add (" s t d e r r " , StdErr) ;
42
43 return = rs . ge tRe tu rnL i s t () ;
44 ’
45 ## tu rn i n t o a f u n c t i o n t h a t R can c a l l
46 ## args redundant on Debian / Ubuntu
47 fun <−
48 cppfunc t ion (s igna tu re (Ysexp=" numeric " ,
49 Xsexp=" numeric ") , src ,
50 inc ludes=
51 "# inc lude <gs l / gs l _ m u l t i f i t . h >" ,
52 cppargs="− I / usr / i nc lude " ,
53 l i b a r g s="− l g s l −l g s l c b l a s ")
54 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Linear regression via Armadillo: lmArmadillo example
Also see the directory Rcpp/examples/FastLM

1 lmArmadi l lo <− function () {
2 src <− ’
3 Rcpp : : NumericVector y r (Ysexp) ;
4 Rcpp : : NumericVector Xr (Xsexp) ; / / a c t u a l l y an n x k mat r i x
5 s td : : vector < i n t > dims = Xr . a t t r (" dim ") ;
6 i n t n = dims [0] , k = dims [1] ;
7 arma : : mat X(Xr . begin () , n , k , f a l s e) ; / / use advanced a rmad i l l o cons t ruc to rs
8 arma : : co lvec y (y r . begin () , y r . s i ze ()) ;
9 arma : : co lvec coef = solve (X, y) ; / / model f i t

10 arma : : co lvec res i d = y − X∗coef ; / / to comp . s td . e r r r o f the c o e f f i c i e n t s
11 arma : : mat covmat = t rans (res i d)∗ r es i d / (n−k) ∗ arma : : i nv (arma : : t rans (X)∗X) ;
12
13 Rcpp : : NumericVector coe f r (k) , s t d e r r e s t r (k) ;
14 f o r (i n t i =0; i <k ; i ++) { / / wi th RcppArmadil lo template conver te rs
15 coe f r [i] = coef [i] ; / / t h i s would not be needed but we only
16 s t d e r r e s t r [i] = s q r t (covmat (i , i)) ; / / have Rcpp . h here
17 }
18
19 r e t u r n Rcpp : : L i s t : : c reate (Rcpp : : Named(" c o e f f i c i e n t s " , coe f r) , / / Rcpp 0.7 .11
20 Rcpp : : Named(" s t d e r r " , s t d e r r e s t r)) ;
21 ’
22
23 ## tu rn i n t o a f u n c t i o n t h a t R can c a l l
24 fun <− cpp func t ion (s igna tu re (Ysexp=" numeric " , Xsexp=" numeric ") ,
25 src , inc ludes=" # inc lude <armad i l lo > " ,
26 cppargs="−I / usr / i nc lude " , l i b a r g s ="−l a r m a d i l l o ")
27 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Linear regression via Armadillo: RcppArmadillo
See fastLm in the RcppArmadillo package

fastLm in the new RcppArmadillo release does even better:
1 #include <RcppArmadil lo . h>
2 extern "C" SEXP fastLm (SEXP ys , SEXP Xs) {
3 t ry {
4 Rcpp : : NumericVector y r (ys) ; / / creates Rcpp vec to r from SEXP
5 Rcpp : : NumericMatr ix Xr (Xs) ; / / creates Rcpp mat r i x from SEXP
6 i n t n = Xr . nrow () , k = Xr . nco l () ;
7
8 arma : : mat X(Xr . begin () , n , k , fa lse) ; / / reuses memory and avoids ex t ra copy
9 arma : : co lvec y (y r . begin () , y r . s i ze () , fa lse) ;

10
11 arma : : co lvec coef = arma : : so lve (X, y) ; / / f i t model y ~ X
12 arma : : co lvec res = y − X∗coef ; / / r e s i d ua l s
13
14 double s2 = std : : i nne r _product (res . begin () , res . end () , res . begin () , double ()) / (n−k) ;
15 / / s td . e r r o r s o f c o e f f i c i e n t s
16 arma : : co lvec s t d e r r = arma : : s q r t (s2∗arma : : diagvec (arma : : i nv (arma : : t rans (X)∗X))) ;
17
18 return Rcpp : : L i s t : : c reate (Rcpp : : Named(" c o e f f i c i e n t s ") = coef ,
19 Rcpp : : Named(" s t d e r r ") = s tde r r ,
20 Rcpp : : Named(" d f ") = n − k) ;
21 } catch (s td : : except ion &ex) {
22 forward_except ion_ to _ r (ex) ;
23 } catch (. . .) {
24 : : Rf_ e r r o r (" c++ except ion (unknown reason) ") ;
25 }
26 return R_ Ni lVa lue ; / / −Wall
27 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Linear regression via GNU GSL: RcppGSL
See fastLm in the RcppGSL package (on R-Forge)

We also wrote fastLm in a new package RcppGSL:
1 extern "C" SEXP fastLm (SEXP ys , SEXP Xs) {
2 BEGIN_RCPP
3 RcppGSL : : vector <double> y = ys ; / / create gs l data s t r u c t u r e s from SEXP
4 RcppGSL : : matr ix <double> X = Xs ;
5 i n t n = X. nrow () , k = X. nco l () ;
6 double chisq ;
7 RcppGSL : : vector <double> coef (k) ; / / to hold the c o e f f i c i e n t vec to r
8 RcppGSL : : matr ix <double> cov (k , k) ; / / and the covar iance mat r i x
9 / / the ac tua l f i t r equ i res working memory we a l l o c a t e and f r ee

10 gs l _ m u l t i f i t _ l i n e a r _workspace ∗work = gs l _ m u l t i f i t _ l i n e a r _ a l l o c (n , k) ;
11 gs l _ m u l t i f i t _ l i n e a r (X, y , coef , cov , &chisq , work) ;
12 gs l _ m u l t i f i t _ l i n e a r _ f r ee (work) ;
13 / / e x t r a c t the d iagonal as a vec to r view
14 gs l _ vec to r _view diag = gs l _ mat r i x _diagonal (cov) ;
15 / / c u r r e n t l y there i s not a more d i r e c t i n t e r f a c e i n Rcpp : : NumericVector
16 / / t h a t takes advantage of wrap , so we have to do i t i n two steps
17 Rcpp : : NumericVector s t d e r r ; s t d e r r = diag ;
18 std : : t rans form (s t d e r r . begin () , s t d e r r . end () , s t d e r r . begin () , s q r t) ;
19 Rcpp : : L i s t res = Rcpp : : L i s t : : c reate (Rcpp : : Named(" c o e f f i c i e n t s ") = coef ,
20 Rcpp : : Named(" s t d e r r ") = s tde r r ,
21 Rcpp : : Named(" d f ") = n − k) ;
22 / / f r ee a l l the GSL vec to rs and matr ices −− as these are r e a l l y C data s t r u c t u r e s
23 / / we cannot take advantage of automat ic memory management
24 coef . f r ee () ; cov . f r ee () ; y . f r ee () ; X . f r ee () ;
25 return res ; / / return the r e s u l t l i s t to R
26 END_RCPP
27 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Rcpp Example: Regression timings

lm lm.fit lmGSL lmArmadillo

Comparison of R and linear model fit routines

tim
e

in
 m

ill
is

ec
on

ds

0
50

10
0

15
0

20
0

25
0

longley (16 x 7 obs)
simulated (10000 x 3)

Source: Our calculations, see examples/FastLM/ in Rcpp.

The small longley
example exhibits less
variability between
methods, but the larger
data set shows the gains
more clearly.

For the small data set, all
three appear to improve
similarly on lm.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Another Rcpp example (cont.)

lm lm.fit lmGSL lmArmadillo

Comparison of R and linear model fit routines

ra
tio

 to
 lm

()
 b

as
el

in
e

0
10

20
30

40

longley (16 x 7 obs)
simulated (10000 x 3)

Source: Our calculations, see examples/FastLM/ in Rcpp.

By dividing the lm time by
the respective times, we
obtain the ’possible gains’
from switching.

One caveat,
measurements depends
critically on the size of the
data as well as the cpu
and libraries that are
used.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp Overview New API Examples

Possible gains from template meta-programming

Armadillo uses delayed evaluation (via recursive template and
template meta-programming) to combine several operations
into one expression reducing / eliminating temporary objects.

Operation Relative performance improvement for
small matrices medium to large

IT++ Newmat IT++ Newmat

A + B 15.0 10.0 3.5 1.0
A + B + C + D 15.0 10.0 6.0 1.5
A * B * C * D 2.5 10.0 2.5 20.0
B.row(size-1) = A.row(0) 16.0 44.0 2.0 4.5
trans(p)*inv(diagmat(q))*r 77.0 23.0 1086.0 5.0

Table 2: Gains from C++ template programming

See http://arma.sourceforge.net/speed.html for details.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://arma.sourceforge.net/speed.html

Extending R Rcpp Overview New API Examples

Possible gains from template meta-programming

Armadillo uses delayed evaluation (via recursive template and
template meta-programming) to combine several operations
into one expression reducing / eliminating temporary objects.

Operation Relative performance improvement for
small matrices medium to large

IT++ Newmat IT++ Newmat

A + B 15.0 10.0 3.5 1.0
A + B + C + D 15.0 10.0 6.0 1.5
A * B * C * D 2.5 10.0 2.5 20.0
B.row(size-1) = A.row(0) 16.0 44.0 2.0 4.5
trans(p)*inv(diagmat(q))*r 77.0 23.0 1086.0 5.0

Table 2: Gains from C++ template programming

See http://arma.sourceforge.net/speed.html for details.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://arma.sourceforge.net/speed.html

Extending R Rcpp

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

From RApache to littler to RInside
See the file RInside/standard/rinside_sample0.cpp

Jeff Horner’s work on RApache lead to joint work in littler,
a scripting / cmdline front-end. As it embeds R and simply
’feeds’ the REPL loop, the next step was to embed R in proper
C++ classes: RInside.

1 #include <RInside . h> / / for the embedded R v ia RInside
2
3 i n t main (i n t argc , char ∗argv []) {
4
5 RInside R(argc , argv) ; / / create an embedded R ins tance
6
7 R[" t x t "] = " Hel lo , wor ld ! \ n " ; / / assign a char∗ (s t r i n g) to ’ t x t ’
8
9 R. parseEvalQ (" cat (t x t) ") ; / / eval the i n i t s t r i n g , i gno r i ng any re tu rns

10
11 e x i t (0) ;
12 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp

From RApache to littler to RInside
See the file RInside/standard/rinside_sample0.cpp

Jeff Horner’s work on RApache lead to joint work in littler,
a scripting / cmdline front-end. As it embeds R and simply
’feeds’ the REPL loop, the next step was to embed R in proper
C++ classes: RInside.

1 #include <RInside . h> / / for the embedded R v ia RInside
2
3 i n t main (i n t argc , char ∗argv []) {
4
5 RInside R(argc , argv) ; / / create an embedded R ins tance
6
7 R[" t x t "] = " Hel lo , wor ld ! \ n " ; / / assign a char∗ (s t r i n g) to ’ t x t ’
8
9 R. parseEvalQ (" cat (t x t) ") ; / / eval the i n i t s t r i n g , i gno r i ng any re tu rns

10
11 e x i t (0) ;
12 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org

Extending R Rcpp

Another simple example
See RInside/standard/rinside_sample8.cpp (in SVN, older version in pkg)

This example shows some of the new assignment and
converter code:

1
2 #include <RInside . h> / / for the embedded R v ia RInside
3
4 i n t main (i n t argc , char ∗argv []) {
5
6 RInside R(argc , argv) ; / / create an embedded R ins tance
7
8 R[" x "] = 10 ;
9 R[" y "] = 20 ;

10
11 R. parseEvalQ (" z <− x + y ") ;
12
13 i n t sum = R[" z "] ;
14
15 std : : cout << " 10 + 20 = " << sum << std : : endl ;
16 e x i t (0) ;
17 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

A finance example
See the file RInside/standard/rinside_sample4.cpp (edited)

1 #include <RInside . h> / / for the embedded R v ia RInside
2 #include <iomanip >
3 i n t main (i n t argc , char ∗argv []) {
4 RInside R(argc , argv) ; / / create an embedded R ins tance
5 SEXP ans ;
6 R. parseEvalQ (" suppressMessages (l i b r a r y (f P o r t f o l i o)) ") ;
7 t x t = " lppData <− 100 ∗ LPP2005 .RET[, 1 : 6] ; "
8 "ewSpec <− p o r t f o l i o S p e c () ; nAssets <− ncol (lppData) ; " ;
9 R. parseEval (t x t , ans) ; / / prepare problem

10 const double dvec [6] = { 0 .1 , 0 .1 , 0 .1 , 0 .1 , 0 .3 , 0.3 } ; / / weights
11 const std : : vector <double> w(dvec , &dvec [6]) ;
12 R. assign (w, " weightsvec ") ; / / assign STL vec to R ’ s ’ weightsvec ’
13
14 R. parseEvalQ (" setWeights (ewSpec) <− weightsvec ") ;
15 t x t = " ewPor t f o l i o <− f e a s i b l e P o r t f o l i o (data = lppData , spec = ewSpec , "
16 " c o n s t r a i n t s = \ " LongOnly \ ") ; "
17 " p r i n t (ewPor t f o l i o) ; "
18 " vec <− getCovRiskBudgets (e w P o r t f o l i o @ p o r t f o l i o) " ;
19 ans = R. parseEval (t x t) ; / / assign covRiskBudget weights to ans
20 Rcpp : : NumericVector V(ans) ; / / conver t SEXP v a r i a b l e to an RcppVector
21
22 ans = R. parseEval (" names(vec) ") ; / / assign columns names to ans
23 Rcpp : : CharacterVector n (ans) ;
24
25 f o r (i n t i =0; i <names . s ize () ; i ++) {
26 std : : cout << std : : setw (16) << n [i] << " \ t " << std : : setw (11) << V[i] << " \ n " ;
27 }
28 e x i t (0) ;
29 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

And another parallel example
See the file RInside/mpi/rinside_mpi_sample2.cpp

1 / / MPI C++ API vers ion o f f i l e con t r i bu ted by J ianp ing Hua
2
3 #include <mpi . h> / / mpi header
4 #include <RInside . h> / / for the embedded R v ia RInside
5
6 i n t main (i n t argc , char ∗argv []) {
7
8 MPI : : I n i t (argc , argv) ; / / mpi i n i t i a l i z a t i o n
9 i n t myrank = MPI : :COMM_WORLD. Get_ rank () ; / / obta in cu r ren t node rank

10 i n t nodesize = MPI : :COMM_WORLD. Get_ s ize () ; / / obta in t o t a l nodes running .
11
12 RInside R(argc , argv) ; / / create an embedded R ins tance
13
14 std : : s t r i ngs t ream t x t ;
15 t x t << " He l lo from node " << myrank / / node in fo rma t i on
16 << " o f " << nodesize << " nodes ! " << std : : endl ;
17 R. assign (t x t . s t r () , " t x t ") ; / / assign s t r i n g to R v a r i a b l e ’ t x t ’
18
19 std : : s t r i n g e v a l s t r = " cat (t x t) " ; / / show node in fo rma t i on
20 R. parseEvalQ (e v a l s t r) ; / / eval the s t r i n g , ign . any re tu rns
21
22 MPI : : F i n a l i z e () ; / / mpi f i n a l i z a t i o n
23
24 e x i t (0) ;
25 }

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.

Data is saved and analysed before a new ’run’ is launched.
With RInside we now skip a step:

collect data in a vector or matrix
pass data to R — easy thanks to Rcpp wrappers
pass one or more short ’scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters
resume main execution based on new results

A number of simple examples ship with RInside

nine different examples in examples/standard
four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.
Data is saved and analysed before a new ’run’ is launched.

With RInside we now skip a step:

collect data in a vector or matrix
pass data to R — easy thanks to Rcpp wrappers
pass one or more short ’scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters
resume main execution based on new results

A number of simple examples ship with RInside

nine different examples in examples/standard
four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.
Data is saved and analysed before a new ’run’ is launched.
With RInside we now skip a step:

collect data in a vector or matrix
pass data to R — easy thanks to Rcpp wrappers
pass one or more short ’scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters
resume main execution based on new results

A number of simple examples ship with RInside

nine different examples in examples/standard
four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.
Data is saved and analysed before a new ’run’ is launched.
With RInside we now skip a step:

collect data in a vector or matrix

pass data to R — easy thanks to Rcpp wrappers
pass one or more short ’scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters
resume main execution based on new results

A number of simple examples ship with RInside

nine different examples in examples/standard
four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.
Data is saved and analysed before a new ’run’ is launched.
With RInside we now skip a step:

collect data in a vector or matrix
pass data to R — easy thanks to Rcpp wrappers

pass one or more short ’scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters
resume main execution based on new results

A number of simple examples ship with RInside

nine different examples in examples/standard
four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.
Data is saved and analysed before a new ’run’ is launched.
With RInside we now skip a step:

collect data in a vector or matrix
pass data to R — easy thanks to Rcpp wrappers
pass one or more short ’scripts’ as strings to R to evaluate

pass data back to C++ programm — easy thanks to Rcpp
converters
resume main execution based on new results

A number of simple examples ship with RInside

nine different examples in examples/standard
four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.
Data is saved and analysed before a new ’run’ is launched.
With RInside we now skip a step:

collect data in a vector or matrix
pass data to R — easy thanks to Rcpp wrappers
pass one or more short ’scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters

resume main execution based on new results

A number of simple examples ship with RInside

nine different examples in examples/standard
four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.
Data is saved and analysed before a new ’run’ is launched.
With RInside we now skip a step:

collect data in a vector or matrix
pass data to R — easy thanks to Rcpp wrappers
pass one or more short ’scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters
resume main execution based on new results

A number of simple examples ship with RInside

nine different examples in examples/standard
four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.
Data is saved and analysed before a new ’run’ is launched.
With RInside we now skip a step:

collect data in a vector or matrix
pass data to R — easy thanks to Rcpp wrappers
pass one or more short ’scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters
resume main execution based on new results

A number of simple examples ship with RInside

nine different examples in examples/standard
four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.
Data is saved and analysed before a new ’run’ is launched.
With RInside we now skip a step:

collect data in a vector or matrix
pass data to R — easy thanks to Rcpp wrappers
pass one or more short ’scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters
resume main execution based on new results

A number of simple examples ship with RInside
nine different examples in examples/standard

four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

RInside workflow

C++ programs compute, gather or aggregate raw data.
Data is saved and analysed before a new ’run’ is launched.
With RInside we now skip a step:

collect data in a vector or matrix
pass data to R — easy thanks to Rcpp wrappers
pass one or more short ’scripts’ as strings to R to evaluate
pass data back to C++ programm — easy thanks to Rcpp
converters
resume main execution based on new results

A number of simple examples ship with RInside
nine different examples in examples/standard
four different examples in examples/mpi

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

About Google ProtoBuf

Quoting from the page at Google Code:
Protocol buffers are a flexible, efficient, automated mechanism for
serializing structured data—think XML, but smaller, faster, and
simpler.

You define how you want your data to be structured once, then
you can use special generated source code to easily write and
read your structured data to and from a variety of data streams
and using a variety of languages.

You can even update your data structure without breaking
deployed programs that are compiled against the "old" format.

Google provides native bindings for C++, Java and Python.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

About Google ProtoBuf

Quoting from the page at Google Code:
Protocol buffers are a flexible, efficient, automated mechanism for
serializing structured data—think XML, but smaller, faster, and
simpler.

You define how you want your data to be structured once, then
you can use special generated source code to easily write and
read your structured data to and from a variety of data streams
and using a variety of languages.

You can even update your data structure without breaking
deployed programs that are compiled against the "old" format.

Google provides native bindings for C++, Java and Python.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

About Google ProtoBuf

Quoting from the page at Google Code:
Protocol buffers are a flexible, efficient, automated mechanism for
serializing structured data—think XML, but smaller, faster, and
simpler.

You define how you want your data to be structured once, then
you can use special generated source code to easily write and
read your structured data to and from a variety of data streams
and using a variety of languages.

You can even update your data structure without breaking
deployed programs that are compiled against the "old" format.

Google provides native bindings for C++, Java and Python.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Google ProtoBuf

1 R> l i b r a r y (RProtoBuf) ## load the package
2 R> readPro toF i les (" addressbook . pro to ") ## acqui re pro tobu f i n f o rma t i on
3 R> bob <− new(t u t o r i a l . Person , ## create new ob jec t
4 + emai l = "bob@example . com" ,
5 + name = "Bob" ,
6 + i d = 123)
7 R> wr i t eL ines (bob$ t o S t r i n g ()) ## s e r i a l i z e to s tdou t
8 name : "Bob"
9 i d : 123

10 emai l : " bob@example . com"
11
12 R> bob$emai l ## access and / or ove r r i de
13 [1] "bob@example . com"
14 R> bob$ i d <− 5
15 R> bob$ i d
16 [1] 5
17
18 R> s e r i a l i z e (bob , " person . pb ") ## s e r i a l i z e to compact b ina ry format

Under the hood, Rcpp is used and works very well in
conjunction with the rich C++ API provided by Google.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Users of Rcpp

RInside uses Rcpp for object transfer and more

RcppArmadillo and RcppGSL (which contain fastLm())
RcppExamples is a ’this is how you can do it’ stanza
RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp
RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp
mvabund, sdcTable, bifactorial, minqa, pcaMethods (BioC),
phylobase are truly external users which are all on CRAN
upcoming: possibly lme4a
Your package here next?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo and RcppGSL (which contain fastLm())

RcppExamples is a ’this is how you can do it’ stanza
RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp
RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp
mvabund, sdcTable, bifactorial, minqa, pcaMethods (BioC),
phylobase are truly external users which are all on CRAN
upcoming: possibly lme4a
Your package here next?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo and RcppGSL (which contain fastLm())
RcppExamples is a ’this is how you can do it’ stanza

RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp
RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp
mvabund, sdcTable, bifactorial, minqa, pcaMethods (BioC),
phylobase are truly external users which are all on CRAN
upcoming: possibly lme4a
Your package here next?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo and RcppGSL (which contain fastLm())
RcppExamples is a ’this is how you can do it’ stanza
RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp

RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp
mvabund, sdcTable, bifactorial, minqa, pcaMethods (BioC),
phylobase are truly external users which are all on CRAN
upcoming: possibly lme4a
Your package here next?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo and RcppGSL (which contain fastLm())
RcppExamples is a ’this is how you can do it’ stanza
RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp
RQuantLib is where Rcpp orginally started

highlight is Romain’s first re-use of Rcpp
mvabund, sdcTable, bifactorial, minqa, pcaMethods (BioC),
phylobase are truly external users which are all on CRAN
upcoming: possibly lme4a
Your package here next?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo and RcppGSL (which contain fastLm())
RcppExamples is a ’this is how you can do it’ stanza
RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp
RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp

mvabund, sdcTable, bifactorial, minqa, pcaMethods (BioC),
phylobase are truly external users which are all on CRAN
upcoming: possibly lme4a
Your package here next?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo and RcppGSL (which contain fastLm())
RcppExamples is a ’this is how you can do it’ stanza
RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp
RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp
mvabund, sdcTable, bifactorial, minqa, pcaMethods (BioC),
phylobase are truly external users which are all on CRAN

upcoming: possibly lme4a
Your package here next?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo and RcppGSL (which contain fastLm())
RcppExamples is a ’this is how you can do it’ stanza
RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp
RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp
mvabund, sdcTable, bifactorial, minqa, pcaMethods (BioC),
phylobase are truly external users which are all on CRAN
upcoming: possibly lme4a

Your package here next?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Users of Rcpp

RInside uses Rcpp for object transfer and more
RcppArmadillo and RcppGSL (which contain fastLm())
RcppExamples is a ’this is how you can do it’ stanza
RProtoBuf is what got Romain and me here, it may get
rewritten to take more advantage of Rcpp
RQuantLib is where Rcpp orginally started
highlight is Romain’s first re-use of Rcpp
mvabund, sdcTable, bifactorial, minqa, pcaMethods (BioC),
phylobase are truly external users which are all on CRAN
upcoming: possibly lme4a
Your package here next?

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Wrapping up

This tutorial has tried to show you that

While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play
R can be extended in many ways; we focus on something
that allows us write extensions

that are efficient: we want speed and features
that correspond to the R object model
that also allow us to embed R inside C++

And all this while retaining ’high-level’ STL-alike semantics,
templates and other goodies in C++
Using C++ abstractions wisely can keep the code both
clean and readable – yet very efficient

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Wrapping up

This tutorial has tried to show you that

While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play

R can be extended in many ways; we focus on something
that allows us write extensions

that are efficient: we want speed and features
that correspond to the R object model
that also allow us to embed R inside C++

And all this while retaining ’high-level’ STL-alike semantics,
templates and other goodies in C++
Using C++ abstractions wisely can keep the code both
clean and readable – yet very efficient

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Wrapping up

This tutorial has tried to show you that

While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play
R can be extended in many ways; we focus on something
that allows us write extensions

that are efficient: we want speed and features
that correspond to the R object model
that also allow us to embed R inside C++

And all this while retaining ’high-level’ STL-alike semantics,
templates and other goodies in C++
Using C++ abstractions wisely can keep the code both
clean and readable – yet very efficient

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Wrapping up

This tutorial has tried to show you that

While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play
R can be extended in many ways; we focus on something
that allows us write extensions

that are efficient: we want speed and features

that correspond to the R object model
that also allow us to embed R inside C++

And all this while retaining ’high-level’ STL-alike semantics,
templates and other goodies in C++
Using C++ abstractions wisely can keep the code both
clean and readable – yet very efficient

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Wrapping up

This tutorial has tried to show you that

While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play
R can be extended in many ways; we focus on something
that allows us write extensions

that are efficient: we want speed and features
that correspond to the R object model

that also allow us to embed R inside C++

And all this while retaining ’high-level’ STL-alike semantics,
templates and other goodies in C++
Using C++ abstractions wisely can keep the code both
clean and readable – yet very efficient

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Wrapping up

This tutorial has tried to show you that

While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play
R can be extended in many ways; we focus on something
that allows us write extensions

that are efficient: we want speed and features
that correspond to the R object model
that also allow us to embed R inside C++

And all this while retaining ’high-level’ STL-alike semantics,
templates and other goodies in C++
Using C++ abstractions wisely can keep the code both
clean and readable – yet very efficient

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Wrapping up

This tutorial has tried to show you that

While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play
R can be extended in many ways; we focus on something
that allows us write extensions

that are efficient: we want speed and features
that correspond to the R object model
that also allow us to embed R inside C++

And all this while retaining ’high-level’ STL-alike semantics,
templates and other goodies in C++

Using C++ abstractions wisely can keep the code both
clean and readable – yet very efficient

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Wrapping up

This tutorial has tried to show you that

While the deck way be stacked against you (when adding
C/C++ to R), you can still pick where to play
R can be extended in many ways; we focus on something
that allows us write extensions

that are efficient: we want speed and features
that correspond to the R object model
that also allow us to embed R inside C++

And all this while retaining ’high-level’ STL-alike semantics,
templates and other goodies in C++
Using C++ abstractions wisely can keep the code both
clean and readable – yet very efficient

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Extending R Rcpp

Outline

1 Extending R
Why ?
The standard API
Inline

2 Rcpp
Overview
New API
Examples

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

Extending R Rcpp

Some pointers

http://dirk.eddelbuettel.com/code/rcpp.html

http://dirk.eddelbuettel.com/code/rcppTut/

http://romainfrancois.blog.free.fr/index.php?
category/R-package/Rcpp

http://cran.r-project.org/package=Rcpp

http://r-forge.r-project.org/projects/rcpp/

and likewise for RInside, RProtoBuf and more.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://dirk.eddelbuettel.com/code/rcppTut/
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Extending R Rcpp

Some pointers

http://dirk.eddelbuettel.com/code/rcpp.html

http://dirk.eddelbuettel.com/code/rcppTut/

http://romainfrancois.blog.free.fr/index.php?
category/R-package/Rcpp

http://cran.r-project.org/package=Rcpp

http://r-forge.r-project.org/projects/rcpp/

and likewise for RInside, RProtoBuf and more.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://dirk.eddelbuettel.com/code/rcppTut/
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Extending R Rcpp

Some pointers

http://dirk.eddelbuettel.com/code/rcpp.html

http://dirk.eddelbuettel.com/code/rcppTut/

http://romainfrancois.blog.free.fr/index.php?
category/R-package/Rcpp

http://cran.r-project.org/package=Rcpp

http://r-forge.r-project.org/projects/rcpp/

and likewise for RInside, RProtoBuf and more.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://dirk.eddelbuettel.com/code/rcppTut/
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Extending R Rcpp

Some pointers

http://dirk.eddelbuettel.com/code/rcpp.html

http://dirk.eddelbuettel.com/code/rcppTut/

http://romainfrancois.blog.free.fr/index.php?
category/R-package/Rcpp

http://cran.r-project.org/package=Rcpp

http://r-forge.r-project.org/projects/rcpp/

and likewise for RInside, RProtoBuf and more.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://dirk.eddelbuettel.com/code/rcppTut/
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Extending R Rcpp

Some pointers

http://dirk.eddelbuettel.com/code/rcpp.html

http://dirk.eddelbuettel.com/code/rcppTut/

http://romainfrancois.blog.free.fr/index.php?
category/R-package/Rcpp

http://cran.r-project.org/package=Rcpp

http://r-forge.r-project.org/projects/rcpp/

and likewise for RInside, RProtoBuf and more.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://dirk.eddelbuettel.com/code/rcppTut/
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Extending R Rcpp

Some pointers

http://dirk.eddelbuettel.com/code/rcpp.html

http://dirk.eddelbuettel.com/code/rcppTut/

http://romainfrancois.blog.free.fr/index.php?
category/R-package/Rcpp

http://cran.r-project.org/package=Rcpp

http://r-forge.r-project.org/projects/rcpp/

and likewise for RInside, RProtoBuf and more.

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://dirk.eddelbuettel.com/code/rcppTut/
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://romainfrancois.blog.free.fr/index.php?category/R-package/Rcpp
http://cran.r-project.org/package=Rcpp
http://r-forge.r-project.org/projects/rcpp/

Extending R Rcpp

The end

Thank you!

Dirk Eddelbuettel Seamless R and C++ Integration @ WU Wien, May 2010

http://www.debian.org

	Extending R
	Why ?
	The standard API
	Inline

	Rcpp
	Overview
	New API
	Examples

