Rcpp Version 1.0.14
Loading...
Searching...
No Matches
is_infinite.h
Go to the documentation of this file.
1// -*- mode: C++; c-indent-level: 4; c-basic-offset: 4; tab-width: 8 -*-
2//
3// is_infinite.h: Rcpp R/C++ interface class library -- is_infinite
4//
5// Copyright (C) 2013 Dirk Eddelbuettel and Romain Francois
6//
7// This file is part of Rcpp.
8//
9// Rcpp is free software: you can redistribute it and/or modify it
10// under the terms of the GNU General Public License as published by
11// the Free Software Foundation, either version 2 of the License, or
12// (at your option) any later version.
13//
14// Rcpp is distributed in the hope that it will be useful, but
15// WITHOUT ANY WARRANTY; without even the implied warranty of
16// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17// GNU General Public License for more details.
18//
19// You should have received a copy of the GNU General Public License
20// along with Rcpp. If not, see <http://www.gnu.org/licenses/>.
21
22#ifndef Rcpp__sugar__is_infinite_h
23#define Rcpp__sugar__is_infinite_h
24
25namespace Rcpp{
26namespace sugar{
27
28template <int RTYPE, bool NA, typename VEC_TYPE>
29class IsInfinite : public ::Rcpp::VectorBase< LGLSXP, false, IsInfinite<RTYPE,NA,VEC_TYPE> > {
30public:
31
32 IsInfinite( const VEC_TYPE& obj_) : obj(obj_){}
33
34 inline int operator[]( R_xlen_t i ) const {
35 return ::Rcpp::traits::is_infinite<RTYPE>( obj[i] ) ;
36 }
37
38 inline R_xlen_t size() const { return obj.size() ; }
39
40private:
41 const VEC_TYPE& obj ;
42
43} ;
44
45
46} // sugar
47
48template <int RTYPE, bool NA, typename T>
52
53} // Rcpp
54#endif
55
VECTOR & get_ref()
Definition VectorBase.h:37
const VEC_TYPE & obj
Definition is_infinite.h:41
int operator[](R_xlen_t i) const
Definition is_infinite.h:34
R_xlen_t size() const
Definition is_infinite.h:38
IsInfinite(const VEC_TYPE &obj_)
Definition is_infinite.h:32
Rcpp API.
Definition algo.h:28
sugar::IsInfinite< RTYPE, NA, T > is_infinite(const Rcpp::VectorBase< RTYPE, NA, T > &t)
Definition is_infinite.h:49
T as(SEXP x)
Definition as.h:151