Title: Replication Interval Functions
Diff between replicationInterval versions 0.2 dated 2014-10-24 and 0.3 dated 2015-02-04
More information about replicationInterval at CRAN
Description: A common problem faced by journal reviewers and authors is the
question of whether the results of a replication study are consistent with
the original published study. One solution to this problem is to examine
the effect size from the published study and generate the range of effect
sizes that could reasonably be obtained (due to random sampling) in a
replication attempt (i.e., calculate a replication interval). If a
replication effect size falls outside the replication interval then that
value could not have occurred to due the effects of sampling error alone.
Alternatively, if a replication effect size falls within the replication
interval then the replication results could have reasonably occurred due to
the effects of sampling error alone. This package has functions that
calculate the replication interval for two different types of effect sizes,
namely correlation (i.e., r) and the standardized mean difference
(i.e., d-value).
Author: David Stanley
Maintainer: David Stanley
DESCRIPTION | 10 +--
MD5 | 10 +--
R/replicationInterval.R | 102 +++++++++++++++++++++++--------------
man/replicationInterval-package.Rd | 8 +-
man/ri.d.Rd | 8 ++
man/ri.r.Rd | 5 +
6 files changed, 91 insertions(+), 52 deletions(-)
Permanent link
Title: Mark-Recapture Distance Sampling
Diff between mrds versions 2.1.10 dated 2014-09-27 and 2.1.12 dated 2015-02-04
Description: Animal abundance estimation via conventional, multiple covariate
and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function
fitting is performed via maximum likelihood. Also included are diagnostics
and plotting for fitted detection functions. Abundance estimation is via a
Horvitz-Thompson-like estimator.
Author: Jeff Laake
Maintainer: David Miller
DESCRIPTION | 27 -
MD5 | 58 +--
NEWS | 569 ++++++++++++++++++-------------------
R/ddf.R | 125 +++-----
R/ddf.trial.R | 4
R/detfct.R | 24 -
R/detfct.fit.opt.R | 85 +++--
R/dht.R | 13
R/flpt.lnl.r | 4
R/gstdint.R | 129 ++++++--
R/integratepdf.r | 73 +++-
R/mrds-package.R | 335 ++++++++++++---------
R/pdot.dsr.integrate.logistic.R | 26 +
R/predict.ds.R | 22 -
R/setcov.R | 36 --
R/varn.R | 194 +++++-------
README.md | 2
data/book.tee.data.rda |binary
man/ddf.Rd | 125 +++-----
man/detfct.fit.opt.Rd | 9
man/dht.Rd | 2
man/distpdf.Rd | 24 -
man/gstdint.Rd | 4
man/integratepdf.Rd | 2
man/lfbcvi.Rd | 109 ++++---
man/lfgcwa.Rd | 215 ++++++++-----
man/pdot.dsr.integrate.logistic.Rd | 10
man/predict.ds.Rd | 21 -
man/stake77.Rd | 8
man/varn.Rd | 28 -
30 files changed, 1209 insertions(+), 1074 deletions(-)
Title: Distance Sampling Detection Function and Abundance Estimation
Diff between Distance versions 0.9.2 dated 2014-09-15 and 0.9.3 dated 2015-02-04
Description: A simple way of fitting detection functions to distance sampling
data for both line and point transects. Adjustment term selection, left and
right truncation as well as monotonicity constraints and binning are
supported. Abundance and density estimates can also be calculated (via a
Horvitz-Thompson-like estimator) if survey area information is provided.
Author: David Lawrence Miller
Maintainer: David Lawrence Miller
Distance-0.9.2/Distance/tests |only
Distance-0.9.3/Distance/DESCRIPTION | 22 -
Distance-0.9.3/Distance/MD5 | 47 +-
Distance-0.9.3/Distance/NAMESPACE | 2
Distance-0.9.3/Distance/NEWS | 8
Distance-0.9.3/Distance/R/Distance-package.R | 2
Distance-0.9.3/Distance/R/checkdata.R | 13
Distance-0.9.3/Distance/R/create.bins.R | 5
Distance-0.9.3/Distance/R/ds.R | 4
Distance-0.9.3/Distance/R/plot.dsmodel.R | 2
Distance-0.9.3/Distance/R/print.dsmodel.R | 2
Distance-0.9.3/Distance/R/print.summary.dsmodel.R | 2
Distance-0.9.3/Distance/R/summary.dsmodel.R | 2
Distance-0.9.3/Distance/man/Distance-package.Rd | 24 -
Distance-0.9.3/Distance/man/checkdata.Rd | 17
Distance-0.9.3/Distance/man/create.bins.Rd | 13
Distance-0.9.3/Distance/man/ds.Rd | 374 +++++++------------
Distance-0.9.3/Distance/man/flatfile.Rd | 29 -
Distance-0.9.3/Distance/man/minke.Rd | 22 -
Distance-0.9.3/Distance/man/plot.dsmodel.Rd | 10
Distance-0.9.3/Distance/man/print.dsmodel.Rd | 12
Distance-0.9.3/Distance/man/print.summary.dsmodel.Rd | 13
Distance-0.9.3/Distance/man/summary.dsmodel.Rd | 13
23 files changed, 261 insertions(+), 377 deletions(-)
Title: Trust Region Optimization for Nonlinear Functions with Sparse
Hessians
Diff between trustOptim versions 0.8.4.1 dated 2014-09-27 and 0.8.5 dated 2015-02-04
Description: Trust region algorithm for nonlinear optimization. Efficient when the Hessian of the objective function is sparse (i.e., relatively few nonzero cross-partial derivatives).
Author: Michael Braun [aut, cre, cph]
Maintainer: Michael Braun
trustOptim-0.8.4.1/trustOptim/R/hbc_funcs.R |only
trustOptim-0.8.4.1/trustOptim/R/logit.R |only
trustOptim-0.8.4.1/trustOptim/R/rosen_funcs.R |only
trustOptim-0.8.4.1/trustOptim/R/vech.R |only
trustOptim-0.8.4.1/trustOptim/demo |only
trustOptim-0.8.4.1/trustOptim/inst/doc/trustOptim.Rnw |only
trustOptim-0.8.4.1/trustOptim/inst/doc/trustOptim.pdf |only
trustOptim-0.8.4.1/trustOptim/man/demo_funcs_hbc.Rd |only
trustOptim-0.8.4.1/trustOptim/man/inv.vech.Rd |only
trustOptim-0.8.4.1/trustOptim/man/logit.Rd |only
trustOptim-0.8.4.1/trustOptim/man/rosen.Rd |only
trustOptim-0.8.4.1/trustOptim/man/vech.Rd |only
trustOptim-0.8.4.1/trustOptim/vignettes/trustOptim.Rnw |only
trustOptim-0.8.5/trustOptim/DESCRIPTION | 31 -
trustOptim-0.8.5/trustOptim/MD5 | 63 +-
trustOptim-0.8.5/trustOptim/NAMESPACE | 18
trustOptim-0.8.5/trustOptim/NEWS | 121 +++--
trustOptim-0.8.5/trustOptim/R/RcppExports.R |only
trustOptim-0.8.5/trustOptim/R/binary-data.R |only
trustOptim-0.8.5/trustOptim/R/binary.R |only
trustOptim-0.8.5/trustOptim/R/callTrust.R | 36 -
trustOptim-0.8.5/trustOptim/build/vignette.rds |binary
trustOptim-0.8.5/trustOptim/data |only
trustOptim-0.8.5/trustOptim/inst/doc/trustOptim-demo.R |only
trustOptim-0.8.5/trustOptim/inst/doc/trustOptim-demo.Rmd |only
trustOptim-0.8.5/trustOptim/inst/doc/trustOptim-demo.html |only
trustOptim-0.8.5/trustOptim/inst/doc/trustOptim-quick.R |only
trustOptim-0.8.5/trustOptim/inst/doc/trustOptim-quick.Rmd |only
trustOptim-0.8.5/trustOptim/inst/doc/trustOptim-quick.html |only
trustOptim-0.8.5/trustOptim/inst/include/CG-base.h | 7
trustOptim-0.8.5/trustOptim/inst/include/CG-quasi.h | 2
trustOptim-0.8.5/trustOptim/inst/include/CG-sparse.h | 2
trustOptim-0.8.5/trustOptim/inst/include/Rfunc.cpp | 2
trustOptim-0.8.5/trustOptim/inst/include/RfuncHess.cpp | 2
trustOptim-0.8.5/trustOptim/inst/include/common_R.hpp | 4
trustOptim-0.8.5/trustOptim/man/binary-data.Rd |only
trustOptim-0.8.5/trustOptim/man/binary.Rd |only
trustOptim-0.8.5/trustOptim/man/trust.optim.Rd | 24 -
trustOptim-0.8.5/trustOptim/man/trustOptim.Rd | 3
trustOptim-0.8.5/trustOptim/src/Makevars | 5
trustOptim-0.8.5/trustOptim/src/RcppExports.cpp |only
trustOptim-0.8.5/trustOptim/src/trustOptim.cpp | 245 +++++------
trustOptim-0.8.5/trustOptim/tests |only
trustOptim-0.8.5/trustOptim/vignettes/trustOptim-demo.Rmd |only
trustOptim-0.8.5/trustOptim/vignettes/trustOptim-quick.Rmd |only
trustOptim-0.8.5/trustOptim/vignettes/trustOptim.bib | 281 +++----------
46 files changed, 350 insertions(+), 496 deletions(-)
Title: Read and Analyze PLEXOS Solutions
Diff between rplexos versions 0.12 dated 2015-01-27 and 0.12.1 dated 2015-02-04
Description: Efficiently read and analyze PLEXOS solutions by converting them
into SQLite databases that can be easily queried. It supports collation of
solutions that may have been divided into different time partitions,
as well as the comparison across different scenarios.
Author: Eduardo Ibanez [aut, cre],
Marcin Kalicinski [ctb] (for the included RapidXml source),
National Renewable Energy Laboratory [cph]
Maintainer: Eduardo Ibanez
DESCRIPTION | 20 ++++++++++---------
MD5 | 40 +++++++++++++++++++--------------------
R/plexos_open.R | 18 ++++++++---------
R/process_folder.R | 3 ++
R/process_input.R | 26 ++++++++++++++++++++++++-
R/process_solution.R | 4 +--
R/query.R | 5 ++++
inst/web/index.html | 21 ++++++++++----------
inst/web/is_sample_stats.html | 19 ++++++------------
inst/web/list_folders.html | 13 +++---------
inst/web/plexos_close.html | 11 ++--------
inst/web/plexos_open.html | 19 ++++++++++--------
inst/web/process_folder.html | 43 +++++++++++++++++++++++-------------------
inst/web/query_config.html | 11 ++--------
inst/web/query_log.html | 11 ++--------
inst/web/query_master.html | 27 ++++++++++++++------------
inst/web/query_property.html | 11 ++--------
inst/web/rplexos.html | 13 +++---------
inst/web/valid_columns.html | 11 ++--------
man/plexos_open.Rd | 4 +++
man/process_folder.Rd | 3 ++
21 files changed, 173 insertions(+), 160 deletions(-)
Title: Distance and Similarity Measures
Diff between proxy versions 0.4-13 dated 2014-09-22 and 0.4-14 dated 2015-02-04
Description: Provides an extensible framework for the efficient calculation of auto- and cross-proximities, along with implementations of the most popular ones.
Author: David Meyer [aut, cre],
Christian Buchta [aut]
Maintainer: David Meyer
DESCRIPTION | 8 ++++----
MD5 | 30 +++++++++++++++---------------
NAMESPACE | 2 +-
R/dissimilarities.R | 31 +++++++++++++++++++++++++++++++
R/dist.R | 4 ++++
R/similarities.R | 30 ------------------------------
build/vignette.rds |binary
inst/NEWS.Rd | 5 +++++
inst/doc/overview.pdf |binary
man/dist.Rd | 1 +
tests/apply.Rout.save | 10 +++++++---
tests/distance.Rout.save | 12 ++++++++----
tests/distcalls.R | 6 +++++-
tests/distcalls.Rout.save | 25 ++++++++++++++++---------
tests/registry.Rout.save | 14 ++++++++++----
tests/util.Rout.save | 14 ++++++++++----
16 files changed, 117 insertions(+), 75 deletions(-)
Title: General Package for Meta-Analysis
Diff between meta versions 4.0-3 dated 2015-01-07 and 4.1-0 dated 2015-02-04
Description: User-friendly general package providing standard methods for meta-analysis:
- fixed effect and random effects meta-analysis;
- several plots (forest, funnel, Galbraith / radial, L'Abbe, Baujat, bubble);
- statistical tests and trim-and-fill method to evaluate bias in meta-analysis;
- import data from RevMan 5;
- prediction interval, Hartung-Knapp and Paule-Mandel method for random effects model;
- cumulative meta-analysis and leave-one-out meta-analysis;
- meta-regression (if R package metafor is installed).
Author: Guido Schwarzer [cre, aut]
Maintainer: Guido Schwarzer
DESCRIPTION | 12 ++++----
MD5 | 36 +++++++++++++-------------
NAMESPACE | 4 ++
NEWS | 47 ++++++++++++++++++++++++++++++++++
R/catmeth.R | 19 +++++++++++++
R/chklevel.R | 2 -
R/forest.meta.R | 3 +-
R/meta-internal.R | 4 ++
R/metacont.R | 67 ++++++++++++++++++++++++++++++++++++++++---------
R/metagen.R | 5 +--
R/paulemandel.R | 11 +++++++-
R/print.meta.R | 4 ++
R/print.summary.meta.R | 8 ++++-
R/setchar.R | 2 -
R/settings.meta.R | 16 +++++++++++
R/summary.meta.R | 2 +
R/update.meta.R | 3 ++
man/metacont.Rd | 67 ++++++++++++++++++++++++++++++++++++++++++++-----
man/update.meta.Rd | 15 ++++++++++
19 files changed, 271 insertions(+), 56 deletions(-)
Title: Numerical Estimation of Sparse Hessians
Diff between sparseHessianFD versions 0.1.1 dated 2013-11-06 and 0.2.0 dated 2015-02-04
More information about sparseHessianFD at CRAN
Description: Computes Hessian of a scalar-valued function, and returns it in
sparse Matrix format, using ACM TOMS Algorithm 636. The user must supply the objective function, the
gradient, and the row and column indices of the non-zero elements of the
lower triangle of the Hessian (i.e., the sparsity structure must be known
in advance). The algorithm exploits this sparsity, so Hessians can be
computed quickly even when the number of arguments to the objective
functions is large. This package is intended to be useful for numeric
optimization (e.g., with the trustOptim package) or in simulation (e.g.,
the sparseMVN package). The underlying algorithm is ACM TOMS Algorithm 636,
written by Coleman, Garbow and More (ACM Transactions on Mathematical
Software, 11:4, Dec. 1985).
Author: R interface code by Michael Braun
Original Fortran code by Thomas F. Coleman, Burton S. Garbow and
Jorge J. More.
Maintainer: Michael Braun
sparseHessianFD-0.1.1/sparseHessianFD/R/classes.R |only
sparseHessianFD-0.1.1/sparseHessianFD/R/wrappers.R |only
sparseHessianFD-0.1.1/sparseHessianFD/inst/doc/sparseHessianFD.Rnw |only
sparseHessianFD-0.1.1/sparseHessianFD/inst/doc/sparseHessianFD.pdf |only
sparseHessianFD-0.1.1/sparseHessianFD/inst/examples/ex_funcs.R |only
sparseHessianFD-0.1.1/sparseHessianFD/inst/examples/example.R |only
sparseHessianFD-0.1.1/sparseHessianFD/inst/include/Rfunc.cpp |only
sparseHessianFD-0.1.1/sparseHessianFD/inst/include/common_R.hpp |only
sparseHessianFD-0.1.1/sparseHessianFD/inst/include/exceptions.hpp |only
sparseHessianFD-0.1.1/sparseHessianFD/man/Coord.to.Sym.Pattern.Matrix.Rd |only
sparseHessianFD-0.1.1/sparseHessianFD/man/Sym.CSC.to.Matrix.Rd |only
sparseHessianFD-0.1.1/sparseHessianFD/man/newSparseHessian.Rd |only
sparseHessianFD-0.1.1/sparseHessianFD/man/sparseHessianObj-class.Rd |only
sparseHessianFD-0.1.1/sparseHessianFD/man/wrappers.Rd |only
sparseHessianFD-0.1.1/sparseHessianFD/src/Rinterface.cpp |only
sparseHessianFD-0.1.1/sparseHessianFD/vignettes/sparseHessianFD.Rnw |only
sparseHessianFD-0.1.1/sparseHessianFD/vignettes/sparseHessianFD.bib |only
sparseHessianFD-0.2.0/sparseHessianFD/DESCRIPTION | 48 +++--
sparseHessianFD-0.2.0/sparseHessianFD/MD5 | 64 ++++---
sparseHessianFD-0.2.0/sparseHessianFD/NAMESPACE | 18 +-
sparseHessianFD-0.2.0/sparseHessianFD/NEWS | 39 ++++
sparseHessianFD-0.2.0/sparseHessianFD/R/binary-data.R |only
sparseHessianFD-0.2.0/sparseHessianFD/R/binary.R |only
sparseHessianFD-0.2.0/sparseHessianFD/R/deprecated.R |only
sparseHessianFD-0.2.0/sparseHessianFD/R/matrices.R | 84 +++++-----
sparseHessianFD-0.2.0/sparseHessianFD/R/sparseHessianFD-class.R |only
sparseHessianFD-0.2.0/sparseHessianFD/R/sparseHessianFD-new.R |only
sparseHessianFD-0.2.0/sparseHessianFD/R/sparseHessianFD.R |only
sparseHessianFD-0.2.0/sparseHessianFD/build/vignette.rds |binary
sparseHessianFD-0.2.0/sparseHessianFD/data |only
sparseHessianFD-0.2.0/sparseHessianFD/inst/CITATION |only
sparseHessianFD-0.2.0/sparseHessianFD/inst/Rfunc_old.cpp |only
sparseHessianFD-0.2.0/sparseHessianFD/inst/doc/sparseHessianFD.R |only
sparseHessianFD-0.2.0/sparseHessianFD/inst/doc/sparseHessianFD.Rmd |only
sparseHessianFD-0.2.0/sparseHessianFD/inst/doc/sparseHessianFD.html |only
sparseHessianFD-0.2.0/sparseHessianFD/inst/examples/ex2.R |only
sparseHessianFD-0.2.0/sparseHessianFD/inst/include/except.h |only
sparseHessianFD-0.2.0/sparseHessianFD/inst/include/func.h |only
sparseHessianFD-0.2.0/sparseHessianFD/man/Coord.to.Pattern.Matrix.Rd | 46 ++---
sparseHessianFD-0.2.0/sparseHessianFD/man/Matrix.to.Coord.Rd | 31 +--
sparseHessianFD-0.2.0/sparseHessianFD/man/binary-data.Rd |only
sparseHessianFD-0.2.0/sparseHessianFD/man/binary.Rd |only
sparseHessianFD-0.2.0/sparseHessianFD/man/sparseHessianFD-class.Rd |only
sparseHessianFD-0.2.0/sparseHessianFD/man/sparseHessianFD-deprecated.Rd |only
sparseHessianFD-0.2.0/sparseHessianFD/man/sparseHessianFD-package.Rd | 69 +++-----
sparseHessianFD-0.2.0/sparseHessianFD/man/sparseHessianFD.new.Rd |only
sparseHessianFD-0.2.0/sparseHessianFD/src/FDHS-DSSM.c | 6
sparseHessianFD-0.2.0/sparseHessianFD/src/Makevars | 6
sparseHessianFD-0.2.0/sparseHessianFD/src/Makevars.win | 7
sparseHessianFD-0.2.0/sparseHessianFD/src/rcpp_module.cpp |only
sparseHessianFD-0.2.0/sparseHessianFD/tests |only
sparseHessianFD-0.2.0/sparseHessianFD/vignettes/sparseHessianFD.Rmd |only
52 files changed, 236 insertions(+), 182 deletions(-)
Permanent link
Title: Extract Statistics from Articles and Recompute P Values
Diff between statcheck versions 1.0.0 dated 2014-11-20 and 1.0.1 dated 2015-02-04
Description: Extract statistics from articles and recompute p values.
Author: Sacha Epskamp
Maintainer: Michele B. Nuijten
DESCRIPTION | 10 +--
MD5 | 8 +-
R/htmlImport.R | 2
R/statcheck.R | 32 +++++++++--
man/statcheck.Rd | 151 +++++++++++++++++++++++++++++++++++++------------------
5 files changed, 138 insertions(+), 65 deletions(-)
Title: Network Meta-Analysis using Frequentist Methods
Diff between netmeta versions 0.6-0 dated 2014-07-29 and 0.7-0 dated 2015-02-04
Description: Network meta-analysis following methods by Rücker (2012) and Krahn et al. (2013)
Author: Gerta Rücker [aut],
Guido Schwarzer [aut, cre],
Ulrike Krahn [aut],
Jochem König [aut]
Maintainer: Guido Schwarzer
DESCRIPTION | 14 +++---
MD5 | 47 ++++++++++++++--------
NAMESPACE | 6 ++
NEWS | 85 +++++++++++++++++++++++++++++++++++++++++
R/chklist.R |only
R/decomp.tau.R | 2
R/forest.netmeta.R | 29 +++++---------
R/netgraph.R | 73 +++++++++++++++--------------------
R/netheat.R | 19 +++++++--
R/netmeta.R | 88 ++++++++++++++++++-------------------------
R/nma.krahn.R | 14 +++---
R/nma.ruecker.R | 2
R/pairwise.R |only
R/print.decomp.design.R | 14 +++---
R/print.netmeta.R | 11 +++--
R/print.summary.netmeta.R | 48 +++++++++++++++++++----
R/setref.R |only
R/setseq.R |only
R/stress.R | 2
R/summary.netmeta.R | 3 +
R/tau.within.R | 7 ++-
data/dietaryfat.csv.gz |only
data/parkinson.csv.gz |only
data/smokingcessation.csv.gz |only
man/dietaryfat.Rd |only
man/netgraph.Rd | 14 +++---
man/netmeta.Rd | 2
man/pairwise.Rd |only
man/parkinson.Rd |only
man/smokingcessation.Rd |only
30 files changed, 306 insertions(+), 174 deletions(-)
Title: Plot rpart Models. An Enhanced Version of plot.rpart
Diff between rpart.plot versions 1.5.1 dated 2014-12-14 and 1.5.2 dated 2015-02-04
Description: Plot rpart models. Extends plot.rpart and text.rpart in
the rpart package.
Author: Stephen Milborrow
Maintainer: Stephen Milborrow
DESCRIPTION | 6 +++---
MD5 | 14 +++++++-------
NEWS | 4 ++++
R/layout.R | 4 ++--
R/lib.R | 26 +++++++++++---------------
inst/doc/prp.pdf |binary
inst/slowtests/test.prp.R | 11 +++++++++++
inst/slowtests/test.prp.Rout.save | 13 ++++++++++++-
8 files changed, 50 insertions(+), 28 deletions(-)
Title: R Individual Specialization (RInSp)
Diff between RInSp versions 1.0 dated 2013-07-26 and 1.1 dated 2015-02-04
Description: Functions to calculate several ecological indices of individual and population niche width
(Araujo's E, clustering and pairwise similarity among individuals, IS, Petraitis' W, and Roughgarden's
WIC/TNW) to assess individual specialization based on data of resource use. Resource use can be
quantified by counts of categories, measures of mass/lenght or proportions. Monte Carlo resampling
procedures are available for hypothesis testing against multinomial null models.
Author: Dr. Nicola Zaccarelli, Dr. Giorgio Mancinelli, and Prof. Dan Bolnick
Maintainer: Dr. Nicola Zaccarelli
DESCRIPTION | 21 +--
MD5 | 30 ++--
R/Eindex.R | 319 ++++++++++++++++++++++++++-------------------------
R/like.Wi.R | 8 -
inst/citation | 39 +++---
man/Eindex.Rd | 185 +++++++++++++++--------------
man/Emc.Rd | 2
man/RInSp-package.Rd | 18 ++
man/like.Wi.Rd | 107 ++++++++---------
man/overlap.Rd | 18 +-
man/sumMC.RInSp.Rd | 2
src/Emc.c | 61 +++++----
src/MCprocedure.c | 19 +--
src/PSicalc.c | 14 +-
src/WTcMC.c | 17 +-
src/WTdMC.c | 15 +-
16 files changed, 465 insertions(+), 410 deletions(-)
Title: Miscellaneous Useful Functions
Diff between miscFuncs versions 1.2-6 dated 2014-07-23 and 1.2-7 dated 2015-02-04
Description: LaTeX tables, Kalman filter, web scraping, development tools,
relative risk, odds ratio
Author: Benjamin M. Taylor
Maintainer: Benjamin M. Taylor
DESCRIPTION | 8 +++----
MD5 | 48 +++++++++++++++++++++++------------------------
NAMESPACE | 2 -
build/vignette.rds |binary
inst/doc/miscFuncs.Rtex | 6 ++++-
inst/doc/miscFuncs.pdf |binary
man/EKFadvance.Rd | 3 +-
man/KFadvance.Rd | 3 +-
man/KFadvanceAR2.Rd | 3 +-
man/KFtemplates.Rd | 3 +-
man/bin.Rd | 3 +-
man/generic.Rd | 3 +-
man/getstrbetween.Rd | 3 +-
man/getwikicoords.Rd | 3 +-
man/latexformat.Rd | 3 +-
man/latextable.Rd | 3 +-
man/method.Rd | 3 +-
man/print22.Rd | 3 +-
man/roxbc.Rd | 3 +-
man/roxbuild.Rd | 3 +-
man/roxtext.Rd | 3 +-
man/timeop.Rd | 3 +-
man/twotwoinfo.Rd | 3 +-
man/vdc.Rd | 3 +-
vignettes/miscFuncs.Rtex | 6 ++++-
25 files changed, 75 insertions(+), 49 deletions(-)
Title: Multivariable Fractional Polynomials
Diff between mfp versions 1.5.0 dated 2014-10-02 and 1.5.1 dated 2015-02-04
Description: Fractional polynomials are used to represent curvature in regression models. A key reference is Royston and Altman, 1994.
Author: original by Gareth Ambler
Maintainer: Stephan Luecke
mfp-1.5.0/mfp/Changelog |only
mfp-1.5.0/mfp/inst/doc/mfp.R |only
mfp-1.5.0/mfp/inst/doc/mfp.Rnw |only
mfp-1.5.0/mfp/inst/doc/mfp.pdf |only
mfp-1.5.0/mfp/vignettes/mfp.Rnw |only
mfp-1.5.0/mfp/vignettes/mfp.bib |only
mfp-1.5.1/mfp/ChangeLog |only
mfp-1.5.1/mfp/DESCRIPTION | 8
mfp-1.5.1/mfp/MD5 | 20 -
mfp-1.5.1/mfp/build/vignette.rds |binary
mfp-1.5.1/mfp/data/bodyfat.rda |binary
mfp-1.5.1/mfp/inst/doc/mfp_vignette.R |only
mfp-1.5.1/mfp/inst/doc/mfp_vignette.Rnw |only
mfp-1.5.1/mfp/inst/doc/mfp_vignette.pdf |only
mfp-1.5.1/mfp/man/mfp.Rd | 316 +++++++++++++++----------------
mfp-1.5.1/mfp/vignettes/mfp_vignette.Rnw |only
mfp-1.5.1/mfp/vignettes/mfp_vignette.bib |only
17 files changed, 172 insertions(+), 172 deletions(-)
Title: Log-Gaussian Cox Process
Diff between lgcp versions 1.3-7 dated 2015-01-24 and 1.3-8 dated 2015-02-04
Description: Spatial and spatio-temporal modelling of point patterns using the
log-Gaussian Cox process. Bayesian inference for spatial, spatiotemporal,
multivariate and aggregated point processes using Markov chain Monte Carlo.
Author: B. M. Taylor, T. M. Davies, B. S. Rowlingson, P. J. Diggle. Additional
code contributions from E. Pebesma.
Maintainer: Benjamin M. Taylor
DESCRIPTION | 8 ++++----
MD5 | 10 +++++-----
build/vignette.rds |binary
inst/doc/lgcp.Rnw | 8 ++++++--
inst/doc/lgcp.pdf |binary
vignettes/lgcp.Rnw | 8 ++++++--
6 files changed, 21 insertions(+), 13 deletions(-)
Title: Quasi-Periodic Time Series Characteristics
Diff between Tides versions 1.0 dated 2013-08-29 and 1.1 dated 2015-02-04
Description: Calculate Characteristics of Qasi-Periodic Time Series, e.g. Estuarine Water Levels.
Author: Tom Cox
Maintainer: Tom Cox
Tides-1.0/Tides/doc |only
Tides-1.1/Tides/ChangeLog |only
Tides-1.1/Tides/DESCRIPTION | 16 ++++-----
Tides-1.1/Tides/MD5 | 43 +++++++++---------------
Tides-1.1/Tides/R/Tides.R | 49 ++++++++++++++++++++++------
Tides-1.1/Tides/data/data.rda |binary
Tides-1.1/Tides/data/example.RData |binary
Tides-1.1/Tides/inst |only
Tides-1.1/Tides/man/IF.Rd | 2 -
Tides-1.1/Tides/man/IT.Rd | 2 -
Tides-1.1/Tides/man/TidalCharacteristics.Rd | 4 +-
Tides-1.1/Tides/man/Tides.Rd | 6 +--
Tides-1.1/Tides/man/extrema.Rd | 2 -
Tides-1.1/Tides/man/gapsts.Rd | 2 -
Tides-1.1/Tides/man/plot.Tides.Rd | 2 -
Tides-1.1/Tides/man/print.Tides.Rd | 2 -
Tides-1.1/Tides/vignettes |only
17 files changed, 74 insertions(+), 56 deletions(-)
Title: Build Regular Expressions in a Human Readable Way
Diff between rebus versions 0.0-4 dated 2015-01-21 and 0.0-5 dated 2015-02-04
Description: Build regular expressions piece by piece using human readable code.
Author: Richard Cotton [aut, cre]
Maintainer: Richard Cotton
DESCRIPTION | 8 ++++----
MD5 | 9 +++++----
NEWS | 2 ++
R/number_range.R | 28 +++++++++++++++++++++++-----
inst/tests/test-number_range.R |only
man/number_range.Rd | 4 ++++
6 files changed, 38 insertions(+), 13 deletions(-)
Title: Collection of Genetic Data Analysis Tools
Diff between GeneticTools versions 0.3 dated 2014-08-06 and 0.3.1 dated 2015-02-04
Description: A loose collection of tools for the analysis of gene expression and genotype data, currently with main focus on eQTL and MDR analysis.
Author: Daniel Fischer
Maintainer: Daniel Fischer
GeneticTools |only
1 file changed
Title: Readable Check Functions to Ensure Code Integrity
Diff between assertive versions 0.1-8 dated 2013-10-13 and 0.2-1 dated 2015-02-04
Description: Lots of is_* functions to check the state of your variables,
and assert_* functions to throw errors if they aren't in the right form.
Author: Richard Cotton [aut, cre]
Maintainer: Richard Cotton
assertive-0.1-8/assertive/man/is_R.Rd |only
assertive-0.1-8/assertive/man/is_ex_file.Rd |only
assertive-0.1-8/assertive/man/is_hex_colour.Rd |only
assertive-0.2-1/assertive/DESCRIPTION | 41
assertive-0.2-1/assertive/MD5 | 320 ++-
assertive-0.2-1/assertive/NAMESPACE | 145 +
assertive-0.2-1/assertive/NEWS | 7
assertive-0.2-1/assertive/R/are-same.R |only
assertive-0.2-1/assertive/R/assert-are-same.R |only
assertive-0.2-1/assertive/R/assert-is-a-type.R | 12
assertive-0.2-1/assertive/R/assert-is-connection.R | 117 +
assertive-0.2-1/assertive/R/assert-is-empty-scalar.R | 21
assertive-0.2-1/assertive/R/assert-is-file.R | 38
assertive-0.2-1/assertive/R/assert-is-in-range.R | 54
assertive-0.2-1/assertive/R/assert-is-na-nan-null.R | 32
assertive-0.2-1/assertive/R/assert-is-other.R | 92 +
assertive-0.2-1/assertive/R/assert-is-reflection.R | 63
assertive-0.2-1/assertive/R/assert-is-string-uk.R | 140 -
assertive-0.2-1/assertive/R/assert-is-string.R | 112 +
assertive-0.2-1/assertive/R/assert-is-type.R | 12
assertive-0.2-1/assertive/R/assert-r-has-capability.R |only
assertive-0.2-1/assertive/R/assertive-package.R | 17
assertive-0.2-1/assertive/R/has.R | 165 +
assertive-0.2-1/assertive/R/internal.R | 234 ++
assertive-0.2-1/assertive/R/is-a-type.R | 43
assertive-0.2-1/assertive/R/is-connection.R | 267 ++-
assertive-0.2-1/assertive/R/is-empty-scalar.R | 146 +
assertive-0.2-1/assertive/R/is-file.R | 157 +
assertive-0.2-1/assertive/R/is-in-range.R | 17
assertive-0.2-1/assertive/R/is-na-nan-null.R | 141 +
assertive-0.2-1/assertive/R/is-other.R | 112 -
assertive-0.2-1/assertive/R/is-real-imaginary.R | 23
assertive-0.2-1/assertive/R/is-reflection.R | 273 ++-
assertive-0.2-1/assertive/R/is-string-uk.R | 92 -
assertive-0.2-1/assertive/R/is-string-us.R | 85
assertive-0.2-1/assertive/R/is-string.R | 426 +++-
assertive-0.2-1/assertive/R/is-time.R | 30
assertive-0.2-1/assertive/R/is-true-false.R | 70
assertive-0.2-1/assertive/R/is-type.R | 102 -
assertive-0.2-1/assertive/R/r-has-capability.R |only
assertive-0.2-1/assertive/R/utils.R | 350 +++-
assertive-0.2-1/assertive/R/zzz.R | 2
assertive-0.2-1/assertive/inst/tests/test-has.R | 513 +++--
assertive-0.2-1/assertive/inst/tests/test-internal.R | 85
assertive-0.2-1/assertive/inst/tests/test-is-a-type.R | 401 ++--
assertive-0.2-1/assertive/inst/tests/test-is-atomic-recursive-vector.R | 226 +-
assertive-0.2-1/assertive/inst/tests/test-is-connection.R | 266 ++-
assertive-0.2-1/assertive/inst/tests/test-is-empty-scalar.R | 173 --
assertive-0.2-1/assertive/inst/tests/test-is-file.R | 131 -
assertive-0.2-1/assertive/inst/tests/test-is-in-range.R | 294 +--
assertive-0.2-1/assertive/inst/tests/test-is-na-nan-null.R | 64
assertive-0.2-1/assertive/inst/tests/test-is-other.R | 130 -
assertive-0.2-1/assertive/inst/tests/test-is-real-imaginary.R | 77
assertive-0.2-1/assertive/inst/tests/test-is-reflection.R | 313 ++-
assertive-0.2-1/assertive/inst/tests/test-is-string-uk.R | 862 +++-------
assertive-0.2-1/assertive/inst/tests/test-is-string-us.R | 114 -
assertive-0.2-1/assertive/inst/tests/test-is-string.R | 473 ++---
assertive-0.2-1/assertive/inst/tests/test-is-time.R | 38
assertive-0.2-1/assertive/inst/tests/test-is-true-false.R | 111 -
assertive-0.2-1/assertive/inst/tests/test-is-type.R | 735 +++-----
assertive-0.2-1/assertive/inst/tests/test-is-valid-variable-name.R | 174 --
assertive-0.2-1/assertive/inst/tests/test-r-has-capabilities.R |only
assertive-0.2-1/assertive/inst/tests/test-utils.R |only
assertive-0.2-1/assertive/man/DIM.Rd |only
assertive-0.2-1/assertive/man/are_identical.Rd |only
assertive-0.2-1/assertive/man/are_same_length.Rd |only
assertive-0.2-1/assertive/man/as.character.file.Rd |only
assertive-0.2-1/assertive/man/assert_engine.Rd | 32
assertive-0.2-1/assertive/man/assertive.Rd | 30
assertive-0.2-1/assertive/man/bapply.Rd | 22
assertive-0.2-1/assertive/man/call_and_name.Rd | 25
assertive-0.2-1/assertive/man/cause.Rd | 17
assertive-0.2-1/assertive/man/character_to_list_of_integer_vectors.Rd | 13
assertive-0.2-1/assertive/man/coerce_to.Rd | 34
assertive-0.2-1/assertive/man/create_regex.Rd | 31
assertive-0.2-1/assertive/man/d.Rd | 24
assertive-0.2-1/assertive/man/dont_stop.Rd |only
assertive-0.2-1/assertive/man/false.Rd | 16
assertive-0.2-1/assertive/man/get_name_in_parent.Rd | 11
assertive-0.2-1/assertive/man/has_any_attributes.Rd | 17
assertive-0.2-1/assertive/man/has_arg.Rd | 25
assertive-0.2-1/assertive/man/has_attributes.Rd | 27
assertive-0.2-1/assertive/man/has_cols.Rd | 28
assertive-0.2-1/assertive/man/has_dims.Rd | 20
assertive-0.2-1/assertive/man/has_duplicates.Rd | 28
assertive-0.2-1/assertive/man/has_names.Rd | 46
assertive-0.2-1/assertive/man/has_terms.Rd | 22
assertive-0.2-1/assertive/man/is2.Rd | 34
assertive-0.2-1/assertive/man/is_S4.Rd | 25
assertive-0.2-1/assertive/man/is_array.Rd | 31
assertive-0.2-1/assertive/man/is_atomic.Rd | 36
assertive-0.2-1/assertive/man/is_batch_mode.Rd | 21
assertive-0.2-1/assertive/man/is_cas_number.Rd | 42
assertive-0.2-1/assertive/man/is_character.Rd | 87 -
assertive-0.2-1/assertive/man/is_class.Rd | 24
assertive-0.2-1/assertive/man/is_complex.Rd | 38
assertive-0.2-1/assertive/man/is_connection.Rd | 177 +-
assertive-0.2-1/assertive/man/is_credit_card_number.Rd | 40
assertive-0.2-1/assertive/man/is_data.frame.Rd | 22
assertive-0.2-1/assertive/man/is_date_string.Rd | 31
assertive-0.2-1/assertive/man/is_debugged.Rd | 22
assertive-0.2-1/assertive/man/is_dir.Rd | 19
assertive-0.2-1/assertive/man/is_divisible_by.Rd |only
assertive-0.2-1/assertive/man/is_email_address.Rd | 61
assertive-0.2-1/assertive/man/is_empty.Rd | 111 +
assertive-0.2-1/assertive/man/is_empty_file.Rd |only
assertive-0.2-1/assertive/man/is_empty_model.Rd | 31
assertive-0.2-1/assertive/man/is_environment.Rd | 21
assertive-0.2-1/assertive/man/is_error_free.Rd | 15
assertive-0.2-1/assertive/man/is_executable_file.Rd |only
assertive-0.2-1/assertive/man/is_existing.Rd | 55
assertive-0.2-1/assertive/man/is_existing_file.Rd | 24
assertive-0.2-1/assertive/man/is_factor.Rd | 25
assertive-0.2-1/assertive/man/is_finite.Rd | 56
assertive-0.2-1/assertive/man/is_function.Rd | 34
assertive-0.2-1/assertive/man/is_hex_color.Rd |only
assertive-0.2-1/assertive/man/is_honorific.Rd | 35
assertive-0.2-1/assertive/man/is_in_past.Rd | 41
assertive-0.2-1/assertive/man/is_in_range.Rd | 126 -
assertive-0.2-1/assertive/man/is_inherited_from.Rd |only
assertive-0.2-1/assertive/man/is_integer.Rd | 40
assertive-0.2-1/assertive/man/is_ip_address.Rd | 31
assertive-0.2-1/assertive/man/is_isbn_code.Rd | 39
assertive-0.2-1/assertive/man/is_language.Rd | 53
assertive-0.2-1/assertive/man/is_leaf.Rd | 18
assertive-0.2-1/assertive/man/is_library.Rd | 23
assertive-0.2-1/assertive/man/is_list.Rd | 22
assertive-0.2-1/assertive/man/is_loaded.Rd | 27
assertive-0.2-1/assertive/man/is_logical.Rd | 38
assertive-0.2-1/assertive/man/is_na.Rd | 31
assertive-0.2-1/assertive/man/is_nan.Rd | 36
assertive-0.2-1/assertive/man/is_null.Rd | 26
assertive-0.2-1/assertive/man/is_numeric.Rd | 38
assertive-0.2-1/assertive/man/is_on_os_path.Rd | 23
assertive-0.2-1/assertive/man/is_qr.Rd | 22
assertive-0.2-1/assertive/man/is_r.Rd |only
assertive-0.2-1/assertive/man/is_raster.Rd | 25
assertive-0.2-1/assertive/man/is_raw.Rd | 39
assertive-0.2-1/assertive/man/is_real.Rd | 33
assertive-0.2-1/assertive/man/is_relistable.Rd | 26
assertive-0.2-1/assertive/man/is_single_character.Rd |only
assertive-0.2-1/assertive/man/is_symmetric_matrix.Rd | 28
assertive-0.2-1/assertive/man/is_table.Rd | 21
assertive-0.2-1/assertive/man/is_true.Rd | 79
assertive-0.2-1/assertive/man/is_ts.Rd | 29
assertive-0.2-1/assertive/man/is_uk_car_licence.Rd | 43
assertive-0.2-1/assertive/man/is_uk_national_insurance_number.Rd | 35
assertive-0.2-1/assertive/man/is_uk_postcode.Rd | 39
assertive-0.2-1/assertive/man/is_uk_telephone_number.Rd | 35
assertive-0.2-1/assertive/man/is_unsorted.Rd | 49
assertive-0.2-1/assertive/man/is_us_telephone_number.Rd | 41
assertive-0.2-1/assertive/man/is_us_zip_code.Rd | 56
assertive-0.2-1/assertive/man/is_valid_r_code.Rd | 14
assertive-0.2-1/assertive/man/is_valid_variable_name.Rd | 50
assertive-0.2-1/assertive/man/is_whole_number.Rd | 41
assertive-0.2-1/assertive/man/is_windows.Rd | 76
assertive-0.2-1/assertive/man/is_xxx_for_decimal_point.Rd | 49
assertive-0.2-1/assertive/man/locale_categories.Rd | 17
assertive-0.2-1/assertive/man/matches_regex.Rd | 25
assertive-0.2-1/assertive/man/merge.list.Rd |only
assertive-0.2-1/assertive/man/merge_dots_with_list.Rd | 28
assertive-0.2-1/assertive/man/modal_value.Rd | 12
assertive-0.2-1/assertive/man/n_elements.Rd |only
assertive-0.2-1/assertive/man/na.Rd | 16
assertive-0.2-1/assertive/man/parenthesise.Rd |only
assertive-0.2-1/assertive/man/print_and_capture.Rd |only
assertive-0.2-1/assertive/man/r_can_compile_code.Rd |only
assertive-0.2-1/assertive/man/r_has_jpeg_capability.Rd |only
assertive-0.2-1/assertive/man/recycle.Rd |only
assertive-0.2-1/assertive/man/set_cause.Rd |only
assertive-0.2-1/assertive/man/strip_attributes.Rd | 10
assertive-0.2-1/assertive/man/strip_invalid_chars.Rd | 37
assertive-0.2-1/assertive/man/sys_get_locale.Rd | 23
assertive-0.2-1/assertive/man/truncate.Rd |only
assertive-0.2-1/assertive/man/use_first.Rd | 18
assertive-0.2-1/assertive/man/warn_about_file.access_under_windows.Rd |only
assertive-0.2-1/assertive/tests |only
177 files changed, 7432 insertions(+), 4919 deletions(-)
Title: A GAMLSS Add-on Package For Fitting Mixture Distributions
Diff between gamlss.mx versions 4.2-7 dated 2014-01-18 and 4.3-1 dated 2015-02-04
Description: The main purpose of this package is to allow fitting of
mixture distributions with GAMLSS models.
Author: Mikis Stasinopoulos
Maintainer: Mikis Stasinopoulos
DESCRIPTION | 13 +--
MD5 | 14 +--
NAMESPACE | 8 +-
R/gamlssMX-10-11-07.R | 189 ++++++++++++++++++++++++++++----------------------
R/gamlssNP.R | 132 ++++++++++++++++++----------------
data/brains.rda |binary
data/enzyme.rda |binary
man/dMX.Rd | 92 ++++++++++++------------
8 files changed, 240 insertions(+), 208 deletions(-)
Title: Demos for GAMLSS
Diff between gamlss.demo versions 4.2-7 dated 2014-01-11 and 4.3-1 dated 2015-02-04
Description: Demos for smoothing and gamlss.family distributions.
Author: Mikis Stasinopoulos
Maintainer: Mikis Stasinopoulos
gamlss.demo-4.2-7/gamlss.demo/R/LocalSmother.r |only
gamlss.demo-4.3-1/gamlss.demo/DESCRIPTION | 14 -
gamlss.demo-4.3-1/gamlss.demo/MD5 | 31 +-
gamlss.demo-4.3-1/gamlss.demo/NAMESPACE | 19 -
gamlss.demo-4.3-1/gamlss.demo/R/DPO.R |only
gamlss.demo-4.3-1/gamlss.demo/R/Demo_All_Distibutions.r | 46 +--
gamlss.demo-4.3-1/gamlss.demo/R/LocalRegressionDemo.R |only
gamlss.demo-4.3-1/gamlss.demo/R/LocalSmother.R |only
gamlss.demo-4.3-1/gamlss.demo/R/PSPlay_bsplines.R | 2
gamlss.demo-4.3-1/gamlss.demo/R/PSPlay_discrete.r | 90 +++----
gamlss.demo-4.3-1/gamlss.demo/R/PSPlay_psplines.r | 162 +++++++-------
gamlss.demo-4.3-1/gamlss.demo/R/demoDist.R | 6
gamlss.demo-4.3-1/gamlss.demo/R/demoPsplines.R | 92 +++----
gamlss.demo-4.3-1/gamlss.demo/R/gamlss_demo.R | 155 ++++++-------
gamlss.demo-4.3-1/gamlss.demo/R/movMean.R |only
gamlss.demo-4.3-1/gamlss.demo/man/Locmean.Rd |only
gamlss.demo-4.3-1/gamlss.demo/man/demo.BetaSplines.Rd | 16 -
gamlss.demo-4.3-1/gamlss.demo/man/demo.LocalRegression.Rd |only
gamlss.demo-4.3-1/gamlss.demo/man/demo.Locmean.Rd | 2
gamlss.demo-4.3-1/gamlss.demo/man/demo.NO.Rd | 2
20 files changed, 324 insertions(+), 313 deletions(-)
Title: Partial Autoregression
Diff between partialAR versions 1.0.3 dated 2015-01-28 and 1.0.5 dated 2015-02-04
Description: Fits time series models which consist of a sum of a permanent and a transient component.
Author: Matthew Clegg [aut, cre, cph]
Maintainer: Matthew Clegg
DESCRIPTION | 12 ++++++-----
MD5 | 20 +++++++++---------
R/RcppExports.R | 4 +++
R/lr.R | 39 +++++++++++++++++++----------------
R/lrdata.R | 4 +--
R/lrtables.R | 24 +++++++++++-----------
man/fit.par.Rd | 1
man/partialAR-package.Rd | 2 -
src/RcppExports.cpp | 17 +++++++++++++++
src/cfit.cc | 51 ++++++++++++++++++++++-------------------------
tests/tests.R | 6 +++++
11 files changed, 105 insertions(+), 75 deletions(-)
Title: Machine Learning in R
Diff between mlr versions 2.2 dated 2014-10-29 and 2.3 dated 2015-02-04
Description: Interface to a large number of classification and regression
techniques, including machine-readable parameter descriptions. There is
also an experimental extension for survival analysis, clustering and
general, example-specific cost-sensitive learning. Generic resampling,
including cross-validation, bootstrapping and subsampling. Hyperparameter
tuning with modern optimization techniques, for single- and multi-objective
problems. Filter and wrapper methods for feature selection. Extension of
basic learners with additional operations common in machine learning, also
allowing for easy nested resampling. Most operations can be parallelized.
Author: Bernd Bischl [aut, cre],
Michel Lang [aut],
Jakob Richter [aut],
Jakob Bossek [aut],
Leonard Judt [aut],
Tobias Kuehn [aut],
Erich Studerus [aut],
Lars Kotthoff [aut]
Maintainer: Bernd Bischl
mlr-2.2/mlr/R/RLearner_classif_plsDA.R |only
mlr-2.2/mlr/R/RLearner_cluster_DBScan.R |only
mlr-2.2/mlr/R/ResampleDescs.R |only
mlr-2.2/mlr/R/getBaggingModels.R |only
mlr-2.2/mlr/R/getFailuremodelMsg.R |only
mlr-2.2/mlr/man/getBaggingModels.Rd |only
mlr-2.2/mlr/man/getCostSensClassifModel.Rd |only
mlr-2.2/mlr/man/getCostSensRegrModels.Rd |only
mlr-2.2/mlr/man/getCostSensWeightedPairsModels.Rd |only
mlr-2.2/mlr/tests/run-imbal.R |only
mlr-2.2/mlr/tests/run-resample.R |only
mlr-2.2/mlr/tests/testthat/helper_fix_packages.R |only
mlr-2.2/mlr/tests/testthat/test_base_confMatrix.R |only
mlr-2.2/mlr/tests/testthat/test_base_convertColumnNames.R |only
mlr-2.2/mlr/tests/testthat/test_base_toString.R |only
mlr-2.2/mlr/tests/testthat/test_classif_hda.R |only
mlr-2.2/mlr/tests/testthat/test_classif_loclda.R |only
mlr-2.2/mlr/tests/testthat/test_classif_plsDA.R |only
mlr-2.2/mlr/tests/testthat/test_cluster_DBScan.R |only
mlr-2.2/mlr/tests/testthat/test_featsel_extra_FilterWrapper.R |only
mlr-2.2/mlr/tests/testthat/test_imbal_OverBagging.R |only
mlr-2.2/mlr/tests/testthat/test_imbal_overundersample.R |only
mlr-2.2/mlr/tests/testthat/test_imbal_smote.R |only
mlr-2.2/mlr/tests/testthat/test_imbal_weightedclasses.R |only
mlr-2.2/mlr/tests/testthat/test_regr_logicreg.R |only
mlr-2.2/mlr/tests/testthat/test_resample_b632.R |only
mlr-2.2/mlr/tests/testthat/test_resample_b632plus.R |only
mlr-2.2/mlr/tests/testthat/test_resample_bs.R |only
mlr-2.2/mlr/tests/testthat/test_resample_convenience.R |only
mlr-2.2/mlr/tests/testthat/test_resample_cv.R |only
mlr-2.2/mlr/tests/testthat/test_resample_extra_bs.R |only
mlr-2.2/mlr/tests/testthat/test_resample_extra_cv.R |only
mlr-2.2/mlr/tests/testthat/test_resample_extra_repcv.R |only
mlr-2.2/mlr/tests/testthat/test_resample_extra_subsample.R |only
mlr-2.2/mlr/tests/testthat/test_resample_holdout.R |only
mlr-2.2/mlr/tests/testthat/test_resample_loo.R |only
mlr-2.2/mlr/tests/testthat/test_resample_makeResampleDesc.R |only
mlr-2.2/mlr/tests/testthat/test_resample_repcv.R |only
mlr-2.2/mlr/tests/testthat/test_resample_stratify.R |only
mlr-2.2/mlr/tests/testthat/test_resample_subsample.R |only
mlr-2.2/mlr/tests/testthat/test_resample_weights.R |only
mlr-2.2/mlr/tests/testthat/test_tune_TuneWrapper.R |only
mlr-2.3/mlr/DESCRIPTION | 33
mlr-2.3/mlr/MD5 | 917 +++++-----
mlr-2.3/mlr/NAMESPACE | 150 +
mlr-2.3/mlr/NEWS | 63
mlr-2.3/mlr/R/Aggregation.R | 2
mlr-2.3/mlr/R/BaggingWrapper.R | 45
mlr-2.3/mlr/R/BaseEnsemble_operators.R | 7
mlr-2.3/mlr/R/BaseWrapper.R | 61
mlr-2.3/mlr/R/BaseWrapper_operators.R | 2
mlr-2.3/mlr/R/BenchmarkResult_operators.R | 25
mlr-2.3/mlr/R/ChainModel.R | 9
mlr-2.3/mlr/R/CostSensClassifWrapper.R | 36
mlr-2.3/mlr/R/CostSensRegrWrapper.R | 45
mlr-2.3/mlr/R/CostSensWeightedPairsLearner.R | 46
mlr-2.3/mlr/R/DownsampleWrapper.R | 6
mlr-2.3/mlr/R/FailureModel.R | 14
mlr-2.3/mlr/R/FeatSelControl.R | 29
mlr-2.3/mlr/R/FeatSelControlExhaustive.R | 7
mlr-2.3/mlr/R/FeatSelControlGA.R | 17
mlr-2.3/mlr/R/FeatSelControlRandom.R | 6
mlr-2.3/mlr/R/FeatSelControlSequential.R | 10
mlr-2.3/mlr/R/FeatSelResult.R | 21
mlr-2.3/mlr/R/FeatSelWrapper.R | 2
mlr-2.3/mlr/R/Filter.R | 27
mlr-2.3/mlr/R/FilterWrapper.R | 18
mlr-2.3/mlr/R/HomogeneousEnsemble.R |only
mlr-2.3/mlr/R/Impute.R | 4
mlr-2.3/mlr/R/ImputeWrapper.R | 5
mlr-2.3/mlr/R/Learner.R | 12
mlr-2.3/mlr/R/Learner_properties.R | 15
mlr-2.3/mlr/R/Measure.R | 40
mlr-2.3/mlr/R/Measure_custom_resampled.R | 8
mlr-2.3/mlr/R/Measure_make_cost.R | 5
mlr-2.3/mlr/R/ModelMultiplexer.R | 27
mlr-2.3/mlr/R/MulticlassWrapper.R | 22
mlr-2.3/mlr/R/NoFeaturesModel.R | 21
mlr-2.3/mlr/R/OptControl.R | 13
mlr-2.3/mlr/R/OptResult.R | 3
mlr-2.3/mlr/R/OptWrapper.R | 14
mlr-2.3/mlr/R/OverBaggingWrapper.R | 8
mlr-2.3/mlr/R/OverUndersampleWrapper.R | 6
mlr-2.3/mlr/R/Prediction.R | 26
mlr-2.3/mlr/R/PreprocWrapper.R | 3
mlr-2.3/mlr/R/PreprocWrapperCaret.R |only
mlr-2.3/mlr/R/RLearner.R | 4
mlr-2.3/mlr/R/RLearner_classif_LiblineaRBinary.R | 2
mlr-2.3/mlr/R/RLearner_classif_LiblineaRLogReg.R | 14
mlr-2.3/mlr/R/RLearner_classif_ada.R | 4
mlr-2.3/mlr/R/RLearner_classif_bartMachine.R | 20
mlr-2.3/mlr/R/RLearner_classif_bdk.R |only
mlr-2.3/mlr/R/RLearner_classif_binomial.R |only
mlr-2.3/mlr/R/RLearner_classif_blackboost.R | 6
mlr-2.3/mlr/R/RLearner_classif_extraTrees.R |only
mlr-2.3/mlr/R/RLearner_classif_gbm.R | 4
mlr-2.3/mlr/R/RLearner_classif_glmboost.R | 36
mlr-2.3/mlr/R/RLearner_classif_glmnet.R | 22
mlr-2.3/mlr/R/RLearner_classif_lda.R | 10
mlr-2.3/mlr/R/RLearner_classif_logreg.R | 9
mlr-2.3/mlr/R/RLearner_classif_lqa.R | 16
mlr-2.3/mlr/R/RLearner_classif_mda.R | 3
mlr-2.3/mlr/R/RLearner_classif_plr.R | 9
mlr-2.3/mlr/R/RLearner_classif_probit.R |only
mlr-2.3/mlr/R/RLearner_classif_qda.R | 10
mlr-2.3/mlr/R/RLearner_classif_randomForestSRC.R | 7
mlr-2.3/mlr/R/RLearner_classif_rrlda.R | 2
mlr-2.3/mlr/R/RLearner_classif_sda.R | 2
mlr-2.3/mlr/R/RLearner_classif_xgboost.R |only
mlr-2.3/mlr/R/RLearner_classif_xyf.R |only
mlr-2.3/mlr/R/RLearner_regr_bartMachine.R |only
mlr-2.3/mlr/R/RLearner_regr_bcart.R |only
mlr-2.3/mlr/R/RLearner_regr_bdk.R |only
mlr-2.3/mlr/R/RLearner_regr_bgp.R |only
mlr-2.3/mlr/R/RLearner_regr_bgpllm.R |only
mlr-2.3/mlr/R/RLearner_regr_blm.R |only
mlr-2.3/mlr/R/RLearner_regr_brnn.R |only
mlr-2.3/mlr/R/RLearner_regr_btgp.R |only
mlr-2.3/mlr/R/RLearner_regr_btgpllm.R |only
mlr-2.3/mlr/R/RLearner_regr_btlm.R |only
mlr-2.3/mlr/R/RLearner_regr_crs.R | 6
mlr-2.3/mlr/R/RLearner_regr_cubist.R |only
mlr-2.3/mlr/R/RLearner_regr_elmNN.R |only
mlr-2.3/mlr/R/RLearner_regr_extraTrees.R |only
mlr-2.3/mlr/R/RLearner_regr_gbm.R | 2
mlr-2.3/mlr/R/RLearner_regr_glmnet.R | 16
mlr-2.3/mlr/R/RLearner_regr_km.R | 8
mlr-2.3/mlr/R/RLearner_regr_laGP.R |only
mlr-2.3/mlr/R/RLearner_regr_mob.R | 8
mlr-2.3/mlr/R/RLearner_regr_randomForestSRC.R | 7
mlr-2.3/mlr/R/RLearner_regr_xgboost.R |only
mlr-2.3/mlr/R/RLearner_regr_xyf.R |only
mlr-2.3/mlr/R/RLearner_surv_CoxBoost.R | 24
mlr-2.3/mlr/R/RLearner_surv_cvglmnet.R | 18
mlr-2.3/mlr/R/RLearner_surv_glmboost.R | 58
mlr-2.3/mlr/R/RLearner_surv_glmnet.R | 18
mlr-2.3/mlr/R/RLearner_surv_optimCoxBoostPenalty.R | 50
mlr-2.3/mlr/R/RLearner_surv_penalized.R | 16
mlr-2.3/mlr/R/RLearner_surv_randomForestSRC.R | 17
mlr-2.3/mlr/R/RLearner_surv_rpart.R |only
mlr-2.3/mlr/R/ResampleDesc.R | 84
mlr-2.3/mlr/R/ResampleInstance.R | 30
mlr-2.3/mlr/R/ResampleResult.R |only
mlr-2.3/mlr/R/SMOTEWrapper.R | 3
mlr-2.3/mlr/R/Task_operators.R | 47
mlr-2.3/mlr/R/TuneControl.R | 37
mlr-2.3/mlr/R/TuneControlCMAES.R | 7
mlr-2.3/mlr/R/TuneControlGenSA.R | 7
mlr-2.3/mlr/R/TuneControlGrid.R | 8
mlr-2.3/mlr/R/TuneControlIrace.R | 7
mlr-2.3/mlr/R/TuneControlMBO.R | 14
mlr-2.3/mlr/R/TuneControlRandom.R | 7
mlr-2.3/mlr/R/TuneMultiCritControl.R | 8
mlr-2.3/mlr/R/TuneMultiCritControlGrid.R | 4
mlr-2.3/mlr/R/TuneMultiCritControlNSGA2.R | 4
mlr-2.3/mlr/R/TuneMultiCritControlRandom.R | 4
mlr-2.3/mlr/R/TuneMultiCritResult.R | 3
mlr-2.3/mlr/R/TuneResult.R | 12
mlr-2.3/mlr/R/TuneWrapper.R | 18
mlr-2.3/mlr/R/WeightedClassesWrapper.R | 4
mlr-2.3/mlr/R/WrappedModel.R | 64
mlr-2.3/mlr/R/aggregations.R | 62
mlr-2.3/mlr/R/asROCRPrediction.R | 9
mlr-2.3/mlr/R/benchmark.R | 5
mlr-2.3/mlr/R/checkPrediction.R |only
mlr-2.3/mlr/R/checkTunerParset.R | 4
mlr-2.3/mlr/R/configureMlr.R | 18
mlr-2.3/mlr/R/convertX.R | 1
mlr-2.3/mlr/R/evalOptimizationState.R | 47
mlr-2.3/mlr/R/filterFeatures.R | 14
mlr-2.3/mlr/R/fixDataForLearner.R |only
mlr-2.3/mlr/R/getConfMatrix.R | 45
mlr-2.3/mlr/R/getFilterValues.R | 2
mlr-2.3/mlr/R/getHyperPars.R | 1
mlr-2.3/mlr/R/helpers.R | 34
mlr-2.3/mlr/R/isFailureModel.R | 40
mlr-2.3/mlr/R/joinClassLevels.R | 4
mlr-2.3/mlr/R/listLearners.R | 5
mlr-2.3/mlr/R/logFunOpt.R |only
mlr-2.3/mlr/R/measures.R | 512 +++--
mlr-2.3/mlr/R/mergeSmallFactorLevels.R | 2
mlr-2.3/mlr/R/normalizeFeatures.R | 2
mlr-2.3/mlr/R/performance.R | 53
mlr-2.3/mlr/R/plotFilterValues.R | 1
mlr-2.3/mlr/R/plotLearnerPrediction.R | 29
mlr-2.3/mlr/R/plotROCRCurves.R |only
mlr-2.3/mlr/R/plotThreshVsPerf.R | 9
mlr-2.3/mlr/R/plotTuneMultiCritResult.R | 1
mlr-2.3/mlr/R/plotViperCharts.R |only
mlr-2.3/mlr/R/predict.R | 5
mlr-2.3/mlr/R/predictLearner.R | 1
mlr-2.3/mlr/R/removeConstantFeatures.R | 3
mlr-2.3/mlr/R/resample.R | 65
mlr-2.3/mlr/R/selectFeatures.R | 5
mlr-2.3/mlr/R/selectFeaturesExhaustive.R | 7
mlr-2.3/mlr/R/selectFeaturesGA.R | 4
mlr-2.3/mlr/R/selectFeaturesRandom.R | 11
mlr-2.3/mlr/R/selectFeaturesSequential.R | 4
mlr-2.3/mlr/R/setHyperPars.R | 23
mlr-2.3/mlr/R/setPredictThreshold.R |only
mlr-2.3/mlr/R/setThreshold.R | 3
mlr-2.3/mlr/R/smote.R | 6
mlr-2.3/mlr/R/summarizeColumns.R | 20
mlr-2.3/mlr/R/train.R | 5
mlr-2.3/mlr/R/tuneCMAES.R | 5
mlr-2.3/mlr/R/tuneGenSA.R | 6
mlr-2.3/mlr/R/tuneIrace.R | 9
mlr-2.3/mlr/R/tuneMBO.R | 23
mlr-2.3/mlr/R/tuneMultiCritNSGA2.R | 2
mlr-2.3/mlr/R/tuneParams.R | 2
mlr-2.3/mlr/R/tuneParamsMultiCrit.R | 2
mlr-2.3/mlr/R/tuneThreshold.R | 5
mlr-2.3/mlr/R/utils_opt.R | 32
mlr-2.3/mlr/R/zzz.R | 2
mlr-2.3/mlr/man/Aggregation.Rd | 14
mlr-2.3/mlr/man/BenchmarkResult.Rd | 3
mlr-2.3/mlr/man/FailureModel.Rd | 3
mlr-2.3/mlr/man/FeatSelControl.Rd | 33
mlr-2.3/mlr/man/FeatSelResult.Rd | 6
mlr-2.3/mlr/man/FilterValues.Rd | 3
mlr-2.3/mlr/man/LearnerProperties.Rd | 14
mlr-2.3/mlr/man/Prediction.Rd | 3
mlr-2.3/mlr/man/RLearner.Rd | 3
mlr-2.3/mlr/man/ResamplePrediction.Rd | 4
mlr-2.3/mlr/man/ResampleResult.Rd |only
mlr-2.3/mlr/man/Task.Rd | 3
mlr-2.3/mlr/man/TaskDesc.Rd | 3
mlr-2.3/mlr/man/TuneControl.Rd | 38
mlr-2.3/mlr/man/TuneMultiCritControl.Rd | 17
mlr-2.3/mlr/man/TuneMultiCritResult.Rd | 3
mlr-2.3/mlr/man/TuneResult.Rd | 6
mlr-2.3/mlr/man/aggregations.Rd | 45
mlr-2.3/mlr/man/agri.task.Rd | 3
mlr-2.3/mlr/man/analyzeFeatSelResult.Rd | 3
mlr-2.3/mlr/man/asROCRPrediction.Rd | 14
mlr-2.3/mlr/man/bc.task.Rd | 3
mlr-2.3/mlr/man/benchmark.Rd | 8
mlr-2.3/mlr/man/bh.task.Rd | 3
mlr-2.3/mlr/man/capLargeValues.Rd | 3
mlr-2.3/mlr/man/configureMlr.Rd | 12
mlr-2.3/mlr/man/costiris.task.Rd | 3
mlr-2.3/mlr/man/createDummyFeatures.Rd | 3
mlr-2.3/mlr/man/crossover.Rd | 3
mlr-2.3/mlr/man/downsample.Rd | 3
mlr-2.3/mlr/man/dropFeatures.Rd | 3
mlr-2.3/mlr/man/estimateResidualVariance.Rd | 3
mlr-2.3/mlr/man/filterFeatures.Rd | 8
mlr-2.3/mlr/man/getBMRAggrPerformances.Rd | 5
mlr-2.3/mlr/man/getBMRFeatSelResults.Rd | 5
mlr-2.3/mlr/man/getBMRFilteredFeatures.Rd | 5
mlr-2.3/mlr/man/getBMRLearnerIds.Rd | 10
mlr-2.3/mlr/man/getBMRPerformances.Rd | 3
mlr-2.3/mlr/man/getBMRPredictions.Rd | 5
mlr-2.3/mlr/man/getBMRTaskIds.Rd | 3
mlr-2.3/mlr/man/getBMRTuneResults.Rd | 5
mlr-2.3/mlr/man/getConfMatrix.Rd | 6
mlr-2.3/mlr/man/getFailureModelMsg.Rd | 3
mlr-2.3/mlr/man/getFeatSelResult.Rd | 3
mlr-2.3/mlr/man/getFilterValues.Rd | 3
mlr-2.3/mlr/man/getFilteredFeatures.Rd | 3
mlr-2.3/mlr/man/getHomogeneousEnsembleModels.Rd |only
mlr-2.3/mlr/man/getHyperPars.Rd | 10
mlr-2.3/mlr/man/getLearnerModel.Rd | 3
mlr-2.3/mlr/man/getMlrOptions.Rd | 3
mlr-2.3/mlr/man/getParamSet.Rd | 10
mlr-2.3/mlr/man/getProbabilities.Rd | 9
mlr-2.3/mlr/man/getStackedBaseLearnerPredictions.Rd | 3
mlr-2.3/mlr/man/getTaskCosts.Rd | 10
mlr-2.3/mlr/man/getTaskData.Rd | 10
mlr-2.3/mlr/man/getTaskDescription.Rd |only
mlr-2.3/mlr/man/getTaskFeatureNames.Rd | 13
mlr-2.3/mlr/man/getTaskFormula.Rd | 14
mlr-2.3/mlr/man/getTaskId.Rd |only
mlr-2.3/mlr/man/getTaskNFeats.Rd | 9
mlr-2.3/mlr/man/getTaskTargetNames.Rd |only
mlr-2.3/mlr/man/getTaskTargets.Rd | 8
mlr-2.3/mlr/man/getTaskType.Rd |only
mlr-2.3/mlr/man/getTuneResult.Rd | 3
mlr-2.3/mlr/man/imputations.Rd | 3
mlr-2.3/mlr/man/impute.Rd | 3
mlr-2.3/mlr/man/iris.task.Rd | 3
mlr-2.3/mlr/man/isFailureModel.Rd | 3
mlr-2.3/mlr/man/joinClassLevels.Rd | 3
mlr-2.3/mlr/man/learnerArgsToControl.Rd | 3
mlr-2.3/mlr/man/learners.Rd | 3
mlr-2.3/mlr/man/listFilterMethods.Rd | 3
mlr-2.3/mlr/man/listLearners.Rd | 3
mlr-2.3/mlr/man/listMeasures.Rd | 3
mlr-2.3/mlr/man/lung.task.Rd | 3
mlr-2.3/mlr/man/makeAggregation.Rd | 3
mlr-2.3/mlr/man/makeBaggingWrapper.Rd | 6
mlr-2.3/mlr/man/makeCostMeasure.Rd | 35
mlr-2.3/mlr/man/makeCostSensClassifWrapper.Rd | 6
mlr-2.3/mlr/man/makeCostSensRegrWrapper.Rd | 6
mlr-2.3/mlr/man/makeCostSensWeightedPairsWrapper.Rd | 5
mlr-2.3/mlr/man/makeCustomResampledMeasure.Rd | 53
mlr-2.3/mlr/man/makeDownsampleWrapper.Rd | 4
mlr-2.3/mlr/man/makeFeatSelWrapper.Rd | 4
mlr-2.3/mlr/man/makeFilter.Rd | 3
mlr-2.3/mlr/man/makeFilterWrapper.Rd | 9
mlr-2.3/mlr/man/makeFixedHoldoutInstance.Rd | 3
mlr-2.3/mlr/man/makeImputeMethod.Rd | 3
mlr-2.3/mlr/man/makeImputeWrapper.Rd | 4
mlr-2.3/mlr/man/makeLearner.Rd | 23
mlr-2.3/mlr/man/makeMeasure.Rd | 65
mlr-2.3/mlr/man/makeModelMultiplexer.Rd | 3
mlr-2.3/mlr/man/makeModelMultiplexerParamSet.Rd | 3
mlr-2.3/mlr/man/makeMulticlassWrapper.Rd | 4
mlr-2.3/mlr/man/makeOverBaggingWrapper.Rd | 6
mlr-2.3/mlr/man/makePreprocWrapper.Rd | 4
mlr-2.3/mlr/man/makePreprocWrapperCaret.Rd |only
mlr-2.3/mlr/man/makeResampleDesc.Rd | 23
mlr-2.3/mlr/man/makeResampleInstance.Rd | 4
mlr-2.3/mlr/man/makeSMOTEWrapper.Rd | 4
mlr-2.3/mlr/man/makeStackedLearner.Rd | 3
mlr-2.3/mlr/man/makeTuneWrapper.Rd | 4
mlr-2.3/mlr/man/makeUndersampleWrapper.Rd | 4
mlr-2.3/mlr/man/makeWeightedClassesWrapper.Rd | 4
mlr-2.3/mlr/man/makeWrappedModel.Rd | 3
mlr-2.3/mlr/man/measures.Rd | 96 +
mlr-2.3/mlr/man/mergeSmallFactorLevels.Rd | 3
mlr-2.3/mlr/man/mtcars.task.Rd | 3
mlr-2.3/mlr/man/normalizeFeatures.Rd | 3
mlr-2.3/mlr/man/oversample.Rd | 3
mlr-2.3/mlr/man/performance.Rd | 36
mlr-2.3/mlr/man/pid.task.Rd | 3
mlr-2.3/mlr/man/plotFilterValues.Rd | 3
mlr-2.3/mlr/man/plotLearnerPrediction.Rd | 9
mlr-2.3/mlr/man/plotROCRCurves.Rd |only
mlr-2.3/mlr/man/plotThreshVsPerf.Rd | 3
mlr-2.3/mlr/man/plotTuneMultiCritResult.Rd | 3
mlr-2.3/mlr/man/plotViperCharts.Rd |only
mlr-2.3/mlr/man/predict.WrappedModel.Rd | 9
mlr-2.3/mlr/man/predictLearner.Rd | 3
mlr-2.3/mlr/man/reimpute.Rd | 3
mlr-2.3/mlr/man/removeConstantFeatures.Rd | 3
mlr-2.3/mlr/man/removeHyperPars.Rd | 13
mlr-2.3/mlr/man/resample.Rd | 91
mlr-2.3/mlr/man/selectFeatures.Rd | 3
mlr-2.3/mlr/man/setAggregation.Rd | 3
mlr-2.3/mlr/man/setHyperPars.Rd | 13
mlr-2.3/mlr/man/setHyperPars2.Rd | 3
mlr-2.3/mlr/man/setId.Rd | 14
mlr-2.3/mlr/man/setPredictThreshold.Rd |only
mlr-2.3/mlr/man/setPredictType.Rd | 18
mlr-2.3/mlr/man/setThreshold.Rd | 6
mlr-2.3/mlr/man/showHyperPars.Rd | 10
mlr-2.3/mlr/man/smote.Rd | 3
mlr-2.3/mlr/man/sonar.task.Rd | 3
mlr-2.3/mlr/man/subsetTask.Rd | 10
mlr-2.3/mlr/man/summarizeColumns.Rd | 3
mlr-2.3/mlr/man/summarizeLevels.Rd | 3
mlr-2.3/mlr/man/train.Rd | 3
mlr-2.3/mlr/man/trainLearner.Rd | 3
mlr-2.3/mlr/man/tuneParams.Rd | 3
mlr-2.3/mlr/man/tuneParamsMultiCrit.Rd | 3
mlr-2.3/mlr/man/tuneThreshold.Rd | 3
mlr-2.3/mlr/man/wpbc.task.Rd | 3
mlr-2.3/mlr/tests/run-classif.R | 2
mlr-2.3/mlr/tests/run-cluster.R | 2
mlr-2.3/mlr/tests/run-featsel.R | 2
mlr-2.3/mlr/tests/run-learners.R | 2
mlr-2.3/mlr/tests/run-parallel.R | 7
mlr-2.3/mlr/tests/run-regr.R | 2
mlr-2.3/mlr/tests/run-stack.R | 2
mlr-2.3/mlr/tests/run-surv.R | 2
mlr-2.3/mlr/tests/run-tune.R | 2
mlr-2.3/mlr/tests/testthat/Rplots.pdf |binary
mlr-2.3/mlr/tests/testthat/helper_helpers.R | 16
mlr-2.3/mlr/tests/testthat/helper_mock_learners.R | 25
mlr-2.3/mlr/tests/testthat/helper_objects.R | 10
mlr-2.3/mlr/tests/testthat/test_base_BaggingWrapper.R | 14
mlr-2.3/mlr/tests/testthat/test_base_BaseWrapper.R | 3
mlr-2.3/mlr/tests/testthat/test_base_MulticlassWrapper.R | 8
mlr-2.3/mlr/tests/testthat/test_base_PreprocWrapperCaret.R |only
mlr-2.3/mlr/tests/testthat/test_base_TuneWrapper.R |only
mlr-2.3/mlr/tests/testthat/test_base_aggregations.R | 8
mlr-2.3/mlr/tests/testthat/test_base_benchmark.R | 8
mlr-2.3/mlr/tests/testthat/test_base_blocking.R | 51
mlr-2.3/mlr/tests/testthat/test_base_clustering.R | 2
mlr-2.3/mlr/tests/testthat/test_base_configureMlr.R | 5
mlr-2.3/mlr/tests/testthat/test_base_costsens.R | 2
mlr-2.3/mlr/tests/testthat/test_base_dropFeatures.R | 4
mlr-2.3/mlr/tests/testthat/test_base_estimateResidualVariance.R | 2
mlr-2.3/mlr/tests/testthat/test_base_getConfMatrix.R |only
mlr-2.3/mlr/tests/testthat/test_base_getHyperPars.R |only
mlr-2.3/mlr/tests/testthat/test_base_getParamSet.R |only
mlr-2.3/mlr/tests/testthat/test_base_helpers.R | 9
mlr-2.3/mlr/tests/testthat/test_base_hyperpars.R | 67
mlr-2.3/mlr/tests/testthat/test_base_imbal_overbagging.R |only
mlr-2.3/mlr/tests/testthat/test_base_imbal_overundersample.R |only
mlr-2.3/mlr/tests/testthat/test_base_imbal_smote.R |only
mlr-2.3/mlr/tests/testthat/test_base_imbal_weightedclasses.R |only
mlr-2.3/mlr/tests/testthat/test_base_impute.R | 24
mlr-2.3/mlr/tests/testthat/test_base_measures.R | 14
mlr-2.3/mlr/tests/testthat/test_base_performance.R | 22
mlr-2.3/mlr/tests/testthat/test_base_plotViperCharts.R |only
mlr-2.3/mlr/tests/testthat/test_base_predict.R | 27
mlr-2.3/mlr/tests/testthat/test_base_resample.R | 6
mlr-2.3/mlr/tests/testthat/test_base_resample_b632.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_b632plus.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_bs.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_convenience.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_cv.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_holdout.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_loo.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_makeResampleDesc.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_repcv.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_stratify.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_subsample.R |only
mlr-2.3/mlr/tests/testthat/test_base_resample_weights.R |only
mlr-2.3/mlr/tests/testthat/test_base_rocr.R | 17
mlr-2.3/mlr/tests/testthat/test_base_selectFeatures.R |only
mlr-2.3/mlr/tests/testthat/test_base_summarizeColumns.R | 14
mlr-2.3/mlr/tests/testthat/test_base_tuning.R | 53
mlr-2.3/mlr/tests/testthat/test_classif_IBk.R | 8
mlr-2.3/mlr/tests/testthat/test_classif_J48.R | 67
mlr-2.3/mlr/tests/testthat/test_classif_JRip.R | 67
mlr-2.3/mlr/tests/testthat/test_classif_LiblineaRBinary.R | 4
mlr-2.3/mlr/tests/testthat/test_classif_LiblineaRLogReg.R | 10
mlr-2.3/mlr/tests/testthat/test_classif_LiblineaRMultiClass.R | 10
mlr-2.3/mlr/tests/testthat/test_classif_OneR.R | 62
mlr-2.3/mlr/tests/testthat/test_classif_PART.R | 7
mlr-2.3/mlr/tests/testthat/test_classif_ada.R | 10
mlr-2.3/mlr/tests/testthat/test_classif_bartMachine.R | 12
mlr-2.3/mlr/tests/testthat/test_classif_bdk.R |only
mlr-2.3/mlr/tests/testthat/test_classif_binomial.R |only
mlr-2.3/mlr/tests/testthat/test_classif_blackboost.R | 24
mlr-2.3/mlr/tests/testthat/test_classif_boost.R | 20
mlr-2.3/mlr/tests/testthat/test_classif_cforest.R | 18
mlr-2.3/mlr/tests/testthat/test_classif_ctree.R | 12
mlr-2.3/mlr/tests/testthat/test_classif_extraTrees.R |only
mlr-2.3/mlr/tests/testthat/test_classif_fnn.R | 15
mlr-2.3/mlr/tests/testthat/test_classif_gbm.R | 68
mlr-2.3/mlr/tests/testthat/test_classif_geoDA.R | 20
mlr-2.3/mlr/tests/testthat/test_classif_glmboost.R | 56
mlr-2.3/mlr/tests/testthat/test_classif_glmnet.R | 19
mlr-2.3/mlr/tests/testthat/test_classif_kknn.R | 6
mlr-2.3/mlr/tests/testthat/test_classif_knn.R | 14
mlr-2.3/mlr/tests/testthat/test_classif_ksvm.R | 60
mlr-2.3/mlr/tests/testthat/test_classif_lda.R | 6
mlr-2.3/mlr/tests/testthat/test_classif_linDA.R | 20
mlr-2.3/mlr/tests/testthat/test_classif_lqa.R | 14
mlr-2.3/mlr/tests/testthat/test_classif_lssvm.R | 50
mlr-2.3/mlr/tests/testthat/test_classif_mda.R | 72
mlr-2.3/mlr/tests/testthat/test_classif_multinom.R | 54
mlr-2.3/mlr/tests/testthat/test_classif_naiveBayes.R | 10
mlr-2.3/mlr/tests/testthat/test_classif_nnet.R | 8
mlr-2.3/mlr/tests/testthat/test_classif_plr.R | 8
mlr-2.3/mlr/tests/testthat/test_classif_plsdaCaret.R | 4
mlr-2.3/mlr/tests/testthat/test_classif_probit.R |only
mlr-2.3/mlr/tests/testthat/test_classif_qda.R | 15
mlr-2.3/mlr/tests/testthat/test_classif_quaDA.R | 28
mlr-2.3/mlr/tests/testthat/test_classif_randomForest.R | 8
mlr-2.3/mlr/tests/testthat/test_classif_randomForestSRC.R | 10
mlr-2.3/mlr/tests/testthat/test_classif_rda.R | 76
mlr-2.3/mlr/tests/testthat/test_classif_rpart.R | 12
mlr-2.3/mlr/tests/testthat/test_classif_rrlda.R | 10
mlr-2.3/mlr/tests/testthat/test_classif_sda.R | 6
mlr-2.3/mlr/tests/testthat/test_classif_svm.R | 34
mlr-2.3/mlr/tests/testthat/test_classif_xgboost.R |only
mlr-2.3/mlr/tests/testthat/test_classif_xyf.R |only
mlr-2.3/mlr/tests/testthat/test_cluster_EM.R | 36
mlr-2.3/mlr/tests/testthat/test_cluster_FarthestFirst.R | 6
mlr-2.3/mlr/tests/testthat/test_cluster_SimpleKMeans.R | 6
mlr-2.3/mlr/tests/testthat/test_cluster_XMeans.R | 6
mlr-2.3/mlr/tests/testthat/test_cluster_cmeans.R | 10
mlr-2.3/mlr/tests/testthat/test_cluster_kmeans.R | 6
mlr-2.3/mlr/tests/testthat/test_featsel_FilterWrapper.R | 4
mlr-2.3/mlr/tests/testthat/test_featsel_filterFeatures.R | 4
mlr-2.3/mlr/tests/testthat/test_featsel_selectFeatures.R | 77
mlr-2.3/mlr/tests/testthat/test_learners_all.R | 43
mlr-2.3/mlr/tests/testthat/test_learners_classiflabelswitch.R |only
mlr-2.3/mlr/tests/testthat/test_parallel_all.R | 48
mlr-2.3/mlr/tests/testthat/test_regr_IBk.R | 6
mlr-2.3/mlr/tests/testthat/test_regr_bartMachine.R |only
mlr-2.3/mlr/tests/testthat/test_regr_bcart.R |only
mlr-2.3/mlr/tests/testthat/test_regr_bdk.R |only
mlr-2.3/mlr/tests/testthat/test_regr_bgp.R |only
mlr-2.3/mlr/tests/testthat/test_regr_bgpllm.R |only
mlr-2.3/mlr/tests/testthat/test_regr_blackboost.R | 47
mlr-2.3/mlr/tests/testthat/test_regr_blm.R |only
mlr-2.3/mlr/tests/testthat/test_regr_brnn.R |only
mlr-2.3/mlr/tests/testthat/test_regr_btgp.R |only
mlr-2.3/mlr/tests/testthat/test_regr_btgpllm.R |only
mlr-2.3/mlr/tests/testthat/test_regr_btlm.R |only
mlr-2.3/mlr/tests/testthat/test_regr_cforest.R | 14
mlr-2.3/mlr/tests/testthat/test_regr_crs.R | 14
mlr-2.3/mlr/tests/testthat/test_regr_ctree.R | 8
mlr-2.3/mlr/tests/testthat/test_regr_cubist.R |only
mlr-2.3/mlr/tests/testthat/test_regr_earth.R | 40
mlr-2.3/mlr/tests/testthat/test_regr_elmNN.R |only
mlr-2.3/mlr/tests/testthat/test_regr_extraTrees.R |only
mlr-2.3/mlr/tests/testthat/test_regr_fnn.R | 16
mlr-2.3/mlr/tests/testthat/test_regr_gbm.R | 48
mlr-2.3/mlr/tests/testthat/test_regr_glmnet.R | 8
mlr-2.3/mlr/tests/testthat/test_regr_kknn.R | 63
mlr-2.3/mlr/tests/testthat/test_regr_km.R | 10
mlr-2.3/mlr/tests/testthat/test_regr_ksvm.R | 4
mlr-2.3/mlr/tests/testthat/test_regr_laGP.R |only
mlr-2.3/mlr/tests/testthat/test_regr_lm.R | 10
mlr-2.3/mlr/tests/testthat/test_regr_mob.R | 6
mlr-2.3/mlr/tests/testthat/test_regr_penalized_lasso.R | 70
mlr-2.3/mlr/tests/testthat/test_regr_penalized_ridge.R | 66
mlr-2.3/mlr/tests/testthat/test_regr_plsr.R | 36
mlr-2.3/mlr/tests/testthat/test_regr_randomForest.R | 6
mlr-2.3/mlr/tests/testthat/test_regr_randomForestSRC.R | 10
mlr-2.3/mlr/tests/testthat/test_regr_rpart.R | 16
mlr-2.3/mlr/tests/testthat/test_regr_rsm.R | 6
mlr-2.3/mlr/tests/testthat/test_regr_svm.R | 6
mlr-2.3/mlr/tests/testthat/test_regr_xgboost.R |only
mlr-2.3/mlr/tests/testthat/test_regr_xyf.R |only
mlr-2.3/mlr/tests/testthat/test_stack.R | 6
mlr-2.3/mlr/tests/testthat/test_surv_CoxBoost.R |only
mlr-2.3/mlr/tests/testthat/test_surv_cforest.R | 17
mlr-2.3/mlr/tests/testthat/test_surv_coxph.R | 10
mlr-2.3/mlr/tests/testthat/test_surv_cvglmnet.R | 21
mlr-2.3/mlr/tests/testthat/test_surv_glmboost.R | 20
mlr-2.3/mlr/tests/testthat/test_surv_glmnet.R | 16
mlr-2.3/mlr/tests/testthat/test_surv_penalized.R | 8
mlr-2.3/mlr/tests/testthat/test_surv_randomForestSRC.R | 6
mlr-2.3/mlr/tests/testthat/test_tune_ModelMultiplexer.R | 18
mlr-2.3/mlr/tests/testthat/test_tune_tuneIraceR.R | 9
mlr-2.3/mlr/tests/testthat/test_tune_tuneMBO.R | 3
mlr-2.3/mlr/tests/testthat/test_tune_tuneParamsMultiCrit.R | 2
525 files changed, 4390 insertions(+), 2921 deletions(-)
Title: Linear Predictive Models Based on the LIBLINEAR C/C++ Library
Diff between LiblineaR versions 1.80-10 dated 2014-09-16 and 1.94-2 dated 2015-02-04
Description: A wrapper around the LIBLINEAR C/C++ library for
machine learning (available at http://www.csie.ntu.edu.tw/~cjlin/liblinear).
LIBLINEAR is a simple library for solving large-scale regularized linear
classification and regression. It currently supports L2-regularized
classification (such as logistic regression, L2-loss linear SVM and L1-loss
linear SVM) as well as L1-regularized classification (such as L2-loss linear
SVM and logistic regression) and L2-regularized support vector regression
(with L1- or L2-loss). The main features of LiblineaR include multi-class
classification (one-vs-the rest, and Crammer & Singer method), cross
validation for model selection, probability estimates (logistic regression
only) or weights for unbalanced data. The estimation of the models is
particularly fast as compared to other libraries.
Author: Thibault Helleputte
Maintainer: Thibault Helleputte
LiblineaR-1.80-10/LiblineaR/man/LiblineaR-package.Rd |only
LiblineaR-1.94-2/LiblineaR/DESCRIPTION | 28
LiblineaR-1.94-2/LiblineaR/MD5 | 33
LiblineaR-1.94-2/LiblineaR/NEWS | 28
LiblineaR-1.94-2/LiblineaR/R/LiblineaR.R | 493 +++++++--
LiblineaR-1.94-2/LiblineaR/R/heuristicC.R | 76 +
LiblineaR-1.94-2/LiblineaR/R/predict.R | 132 +-
LiblineaR-1.94-2/LiblineaR/README | 50
LiblineaR-1.94-2/LiblineaR/inst/CITATION | 9
LiblineaR-1.94-2/LiblineaR/man/LiblineaR.Rd | 322 +++---
LiblineaR-1.94-2/LiblineaR/man/heuristicC.Rd | 71 -
LiblineaR-1.94-2/LiblineaR/man/predict.LiblineaR.Rd | 168 +--
LiblineaR-1.94-2/LiblineaR/src/linear.cpp | 960 ++++++++++++++-----
LiblineaR-1.94-2/LiblineaR/src/linear.h | 16
LiblineaR-1.94-2/LiblineaR/src/predictLinear.c | 136 +-
LiblineaR-1.94-2/LiblineaR/src/trainLinear.c | 304 +++---
LiblineaR-1.94-2/LiblineaR/src/tron.cpp | 11
LiblineaR-1.94-2/LiblineaR/tests |only
18 files changed, 1949 insertions(+), 888 deletions(-)
Title: A Genetic Algorithm for Fixed-Size Subset Selection
Diff between kofnGA versions 1.0 dated 2014-09-24 and 1.1 dated 2015-02-04
Description: Function kofnGA uses a genetic algorithm to choose a subset of a
fixed size k from the integers 1:n, such that a user-supplied objective function
is minimized at that subset. The selection step is done by tournament selection
based on ranks, and elitism may be used to retain a portion of the best solutions
from one generation to the next.
Author: Mark A. Wolters
Maintainer: Mark A. Wolters
DESCRIPTION | 8 ++++----
MD5 | 10 +++++-----
NAMESPACE | 6 +++++-
inst/CITATION | 4 ++--
man/kofnGA-package.Rd | 6 +++---
man/kofnGA.Rd | 4 +++-
6 files changed, 22 insertions(+), 16 deletions(-)
Title: Categorical Bayesian Network Inference
Diff between catnet versions 1.14.5 dated 2014-12-09 and 1.14.8 dated 2015-02-04
Description: Structure learning and parameter estimation of discrete Bayesian networks using likelihood-based criteria. Exhaustive search for fixed node orders and stochastic search of optimal orders via simulated annealing algorithm are implemented.
Author: Nikolay Balov, Peter Salzman
Maintainer: Nikolay Balov
DESCRIPTION | 8 +--
MD5 | 10 ++--
src/catnet_class.h | 122 ++++++++++++++++++++++++++++++---------------------
src/catnet_search2.h | 10 ++--
src/problist.h | 12 ++++-
src/rcatnet.cpp | 7 ++
6 files changed, 105 insertions(+), 64 deletions(-)
Title: Computation of Bayes Factors for Common Designs
Diff between BayesFactor versions 0.9.10 dated 2015-02-01 and 0.9.10-1 dated 2015-02-04
Description: A suite of functions for computing
various Bayes factors for simple designs, including contingency tables,
one- and two-sample designs, one-way designs, general ANOVA designs, and
linear regression.
Author: Richard D. Morey [aut, cre],
Jeffrey N. Rouder [aut],
Tahira Jamil [ctb]
Maintainer: Richard D. Morey
DESCRIPTION | 8 ++++----
MD5 | 14 +++++++-------
NEWS | 5 +++++
R/BayesFactorPCL-package.R | 2 +-
inst/doc/compare_lme4.html | 10 +++++-----
inst/doc/manual.html | 2 +-
inst/doc/priors.html | 2 +-
src/logSummaryStats.cpp | 2 +-
8 files changed, 25 insertions(+), 20 deletions(-)