Title: Transfer Learning for Generalized Factor Models
Description: Transfer learning for generalized factor models with support for continuous, count (Poisson), and binary data types. The package provides functions for single and multiple source transfer learning, source detection to identify positive and negative transfer sources, factor decomposition using Maximum Likelihood Estimation (MLE), and information criteria ('IC1' and 'IC2') for rank selection. The methods are particularly useful for high-dimensional data analysis where auxiliary information from related source datasets can improve estimation efficiency in the target domain.
Author: Zhijing Wang [aut, cre],
Peirong Xu [aut],
Hongyu Zhao [aut],
Tao Wang [aut]
Maintainer: Zhijing Wang <wangzhijing@sjtu.edu.cn>
Diff between transGFM versions 1.0.1 dated 2025-11-13 and 1.0.2 dated 2026-01-07
DESCRIPTION | 22 ++++++++++++++-------- MD5 | 2 +- 2 files changed, 15 insertions(+), 9 deletions(-)
Title: Stratigraphic Plug Alignment for Integrating Plug-Based and XRF
Data
Description: Implements the Stratigraphic Plug Alignment (SPA) procedure for
integrating sparsely sampled plug-based measurements (e.g., total organic
carbon, porosity, mineralogy) with high-resolution X-ray fluorescence
(XRF) geochemical data. SPA uses linear interpolation via the base
approx() function with constrained extrapolation (rule = 1) to preserve
stratigraphic order and avoid estimation beyond observed depths. The
method aligns all datasets to a common depth grid, enabling high-resolution
multivariate analysis and stratigraphic interpretation of core-based
datasets such as those from the Utica and Point Pleasant formations.
See R Core Team (2025)
<https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.html>
and Omodolor (2025)
<http://rave.ohiolink.edu/etdc/view?acc_num=case175262671767524>
for methodological background and geological context.
Author: Hope E. Omodolor [aut, cre] ,
Jeffrey M. Yarus [aut]
Maintainer: Hope E. Omodolor <hopeomodolor@gmail.com>
Diff between spaAlign versions 0.0.5 dated 2025-12-18 and 0.0.6 dated 2026-01-07
DESCRIPTION | 6 ++-- MD5 | 8 +++-- R/spa_align.R | 75 +++++++++++++++++++++++++++++++++++++++---------------- man/spa_align.Rd | 26 ++++++++++++++----- tests |only 5 files changed, 82 insertions(+), 33 deletions(-)
Title: Compare Microbial Networks of 'trans_network' Class of
'microeco' Package
Description: Compare microbial co-occurrence networks created from 'trans_network' class of 'microeco' package <https://github.com/ChiLiubio/microeco>.
This package is the extension of 'trans_network' class of 'microeco' package and especially useful when different networks are constructed and analyzed simultaneously.
Author: Chi Liu [aut, cre],
Minjie Yao [ctb],
Xiangzhen Li [ctb]
Maintainer: Chi Liu <liuchi0426@126.com>
Diff between meconetcomp versions 0.6.1 dated 2025-02-24 and 0.7.0 dated 2026-01-07
DESCRIPTION | 6 +++--- MD5 | 10 +++++----- R/cohesionclass.R | 8 +++++--- R/subnet_property.R | 8 ++++++-- man/cohesionclass.Rd | 10 ++++++---- man/subnet_property.Rd | 4 +++- 6 files changed, 28 insertions(+), 18 deletions(-)
Title: General Unilateral Load Estimator for Two-Layer Latent Factor
Models
Description: Implements general unilateral loading estimator for two-layer latent factor models with smooth, element-wise factor transformations. We provide data simulation, loading estimation,finite-sample error bounds, and diagnostic tools for zero-mean and sub-Gaussian assumptions. A unified interface is given for evaluating estimation accuracy and cosine similarity. The philosophy of the package is described in Guo G. (2026) <doi:10.1016/j.apm.2025.116280>.
Author: Guangbao Guo [aut, cre]
Maintainer: Guangbao Guo <ggb11111111@163.com>
Diff between GulFM versions 0.2.0 dated 2025-12-17 and 0.5.0 dated 2026-01-07
GulFM-0.2.0/GulFM/R/wholesale.R |only GulFM-0.2.0/GulFM/data |only GulFM-0.2.0/GulFM/man/Wine.Rd |only GulFM-0.2.0/GulFM/man/ionosphere.Rd |only GulFM-0.2.0/GulFM/man/wholesale.Rd |only GulFM-0.5.0/GulFM/DESCRIPTION | 11 +++++------ GulFM-0.5.0/GulFM/MD5 | 11 ++--------- GulFM-0.5.0/GulFM/NAMESPACE | 1 - 8 files changed, 7 insertions(+), 16 deletions(-)
Title: CHAP-GWAS: Leveraging Chromosomal Haplotypes to Improve
Genome-Wide Association Studies
Description: CHAP-GWAS (Chromosomal Haplotype-Integrated Genome-Wide Association
Study) provides a dynamically adaptive framework for genome-wide association
studies (GWAS) that integrates chromosome-scale haplotypes with single
nucleotide polymorphism (SNP) analysis. The method identifies and extends
haplotype variants based on their phenotypic associations rather than
predefined linkage blocks, enabling high-resolution detection of quantitative
trait loci (QTL). By leveraging long-range phased haplotype information,
CHAP-GWAS improves statistical power and offers a more comprehensive view of
the genetic architecture underlying complex traits.
Author: Shibo Wang [aut, cre],
Qiong Jia [aut],
Zhenyu Jia [aut, ctb]
Maintainer: Shibo Wang <shibow@ucr.edu>
Diff between CHAPGWAS versions 0.1.2 dated 2025-12-12 and 0.1.3 dated 2026-01-07
DESCRIPTION | 6 +++--- MD5 | 6 +++--- R/chapgwas.R | 18 ++++++++++++++---- man/SEL.HAP.Rd | 16 +++++++++++++--- 4 files changed, 33 insertions(+), 13 deletions(-)
Title: Data Visualization and Statistical Tools for Agroindustrial
Experiments
Description: Set of tools for statistical analysis, visualization, and reporting of
agroindustrial and agricultural experiments. The package provides functions
to perform ANOVA with post-hoc tests (e.g. Tukey HSD and Duncan MRR),
compute coefficients of variation, and generate publication-ready summaries.
High-level wrappers allow automated multi-variable analysis with optional
clustering by experimental factors, as well as direct export of results to
Excel spreadsheets and high-resolution image tables for reporting.
Functions build on 'ggplot2', 'stats', and related packages and follow
methods widely used in agronomy (field trials and plant breeding).
Key references include Tukey (1949) <doi:10.2307/3001913>,
Duncan (1955) <doi:10.2307/3001478>, and Cohen (1988, ISBN:9781138892899);
see also 'agricolae' <https://CRAN.R-project.org/package=agricolae>
and Wickham (2016, ISBN:9783319242750> for 'ggplot2'.
Versión en español: Conjunto de herramientas para el análisis estadístico,
[...truncated...]
Author: Joaquin Alejandro Salinas Angeles [aut, cre]
Maintainer: Joaquin Alejandro Salinas Angeles <joaquinsa03@gmail.com>
Diff between agrobox versions 0.1.0 dated 2025-11-19 and 0.2.0 dated 2026-01-07
DESCRIPTION | 30 +++++- MD5 | 17 ++- NAMESPACE | 21 ++++ NEWS.md |only R/agrobox.R | 248 +++++++++++++++++++++++++++++++++++++++++++--------- R/agroexcel.R |only R/agrosintesis.R |only R/agrotabla.R |only R/globals.R | 2 man/agrobox.Rd | 34 ++----- man/agroexcel.Rd |only man/agrosintesis.Rd |only man/agrotabla.Rd |only 13 files changed, 279 insertions(+), 73 deletions(-)
Title: Calculate Metrics for Trauma System Performance
Description: Hospitals, hospital systems, and even trauma systems that
provide care to injured patients may not be aware of robust metrics
that can help gauge the efficacy of their programs in saving the lives
of injured patients. 'traumar' provides robust functions driven by
the academic literature to automate the calculation of relevant
metrics to individuals desiring to measure the performance of their
trauma center or even a trauma system. 'traumar' also provides some
helper functions for the data analysis journey. Users can refer to the
following publications for descriptions of the methods used in
'traumar'. TRISS methodology, including probability of survival, and
the W, M, and Z Scores - Flora (1978)
<doi:10.1097/00005373-197810000-00003>, Boyd et al. (1987,
PMID:3106646), Llullaku et al. (2009) <doi:10.1186/1749-7922-4-2>,
Singh et al. (2011) <doi:10.4103/0974-2700.86626>, Baker et al. (1974,
PMID:4814394), and Champion et al. (1989)
<doi:10.1097/00005373-198905000- [...truncated...]
Author: Nicolas Foss [aut, cre],
Iowa Department of Health and Human Services [cph]
Maintainer: Nicolas Foss <nicolas.foss@hhs.iowa.gov>
Diff between traumar versions 1.2.2 dated 2025-08-26 and 1.2.3 dated 2026-01-07
DESCRIPTION | 8 - MD5 | 14 - NEWS.md | 303 ++++++++++++++++++++++++++--------------- R/globalVariables.R | 5 R/probability_of_survival.R | 107 +++++++++++--- build/partial.rdb |binary man/probability_of_survival.Rd | 31 +++- tests/testthat/test-stat_sig.R | 14 - 8 files changed, 332 insertions(+), 150 deletions(-)
Title: Deep Neural Networks for Survival Analysis with R 'torch'
Description: Provides deep learning models for right-censored survival data using the 'torch' backend.
Supports multiple loss functions, including Cox partial likelihood, L2-penalized Cox, time-dependent Cox,
and accelerated failure time (AFT) loss. Offers a formula-based interface, built-in support for cross-validation,
hyperparameter tuning, survival curve plotting, and evaluation metrics such as the C-index, Brier score,
and integrated Brier score. For methodological details, see Kvamme et al. (2019) <https://www.jmlr.org/papers/v20/18-424.html>.
Author: Imad EL BADISY [aut, cre]
Maintainer: Imad EL BADISY <elbadisyimad@gmail.com>
Diff between survdnn versions 0.7.0 dated 2025-12-23 and 0.7.5 dated 2026-01-07
DESCRIPTION | 8 - MD5 | 46 ++--- NEWS.md | 12 + R/callbacks.R | 4 R/evaluation.R | 18 +- R/gridsearch_survdnn.R | 23 ++ R/losses.R | 267 +++++++++++++++++++++++++++------- R/metrics.R | 6 R/predict.survdnn.R | 258 ++++++++++++++------------------ R/summary.survdnn.R | 77 ++++++++- R/survdnn.R | 211 +++++++++++++++++--------- R/tune_survdnn.R | 46 ++--- R/zzz.R | 7 README.md | 58 +++---- man/brier.Rd | 2 man/callback_early_stopping.Rd | 4 man/evaluate_survdnn.Rd | 2 man/gridsearch_survdnn.Rd | 16 +- man/predict.survdnn.Rd | 28 --- man/survdnn.Rd | 4 man/survdnn_losses.Rd | 32 +++- tests/testthat/test-losses.R | 125 +++++++++++---- tests/testthat/test-predict.survdnn.R | 4 tests/testthat/test-survdnn.R | 17 +- 24 files changed, 816 insertions(+), 459 deletions(-)
Title: Group Sequential Testing of a Treatment Effect Using a Surrogate
Marker
Description: Provides functions to implement group sequential procedures that allow for early stopping to declare efficacy using a surrogate marker and the possibility of futility stopping. More details are available in: Parast, L. and Bartroff, J (2024) <doi:10.1093/biomtc/ujae108>. A tutorial for this package can be found at <https://www.laylaparast.com/surrogateseq>. A Shiny App implementing the methods can be found at <https://parastlab.shinyapps.io/SurrogateSeqApp/>.
Author: Layla Parast [aut, cre],
Jay Bartroff [aut]
Maintainer: Layla Parast <parast@austin.utexas.edu>
Diff between SurrogateSeq versions 1.0 dated 2025-01-24 and 1.1 dated 2026-01-07
DESCRIPTION | 8 +-- MD5 | 8 +-- R/SurrogateSeq.functions.R | 100 +++++++++++++++++++++++++++++---------------- man/gs.boundaries.Rd | 2 man/gs.boundaries.fut.Rd | 2 5 files changed, 75 insertions(+), 45 deletions(-)
Title: Rank-Based Test to Evaluate a Surrogate Marker
Description: Uses a novel rank-based nonparametric approach to evaluate a surrogate marker
in a small sample size setting. Details are described in Parast et al (2024)
<doi:10.1093/biomtc/ujad035> and Hughes A et al (2025)
<doi:10.1002/sim.70241>. A tutorial for this package can be found at
<https://www.laylaparast.com/surrogaterank> and a Shiny App
implementing the package can be found at
<https://parastlab.shinyapps.io/SurrogateRankApp/>.
Author: Layla Parast [aut, cre],
Arthur Hughes [aut]
Maintainer: Layla Parast <parast@austin.utexas.edu>
Diff between SurrogateRank versions 2.1 dated 2025-09-10 and 2.2 dated 2026-01-07
DESCRIPTION | 9 - MD5 | 22 ++-- R/delta.calculate.extension.R | 12 +- R/rise.evaluate.R | 50 +++++++--- R/rise.screen.R | 180 ++++++++++++++++++++++++++++++--------- R/test.surrogate.extension.R | 20 ++-- R/test.surrogate.rise.R | 45 +++++++-- man/delta.calculate.extension.Rd | 12 +- man/rise.evaluate.Rd | 3 man/rise.screen.Rd | 26 ++++- man/test.surrogate.extension.Rd | 20 ++-- man/test.surrogate.rise.Rd | 29 +++++- 12 files changed, 304 insertions(+), 124 deletions(-)
Title: Information Theoretic Analysis of Gene Expression Data
Description: Implements Surprisal analysis for gene expression data such as RNA-seq or microarray experiments. Surprisal analysis is an information-theoretic method that decomposes gene expression data into a baseline state and constraint-associated deviations, capturing coordinated gene expression patterns under different biological conditions. References: Kravchenko-Balasha N. et al. (2014) <doi:10.1371/journal.pone.0108549>. Zadran S. et al. (2014) <doi:10.1073/pnas.1414714111>. Su Y. et al. (2019) <doi:10.1371/journal.pcbi.1007034>. Bogaert K. A. et al. (2018) <doi:10.1371/journal.pone.0195142>.
Author: Annice Najafi [aut, cre]
Maintainer: Annice Najafi <annicenajafi27@gmail.com>
Diff between SurprisalAnalysis versions 0.2 dated 2025-09-10 and 3.0.0 dated 2026-01-07
DESCRIPTION | 18 +-- MD5 | 22 ++-- NAMESPACE | 3 R/runApp.R | 2 R/surprisal_analysis.R | 49 +++++++--- inst/doc/NormalizationsZeroHandlingComparisons.R | 19 +-- inst/doc/NormalizationsZeroHandlingComparisons.Rmd | 19 +-- inst/doc/NormalizationsZeroHandlingComparisons.html | 27 ++--- inst/shiny/app.R | 21 ++-- inst/shiny/rsconnect/shinyapps.io/najafiannice/surprisal_analysis_app.dcf | 2 man/GO_analysis_surprisal_analysis.Rd | 5 - vignettes/NormalizationsZeroHandlingComparisons.Rmd | 19 +-- 12 files changed, 111 insertions(+), 95 deletions(-)
More information about SurprisalAnalysis at CRAN
Permanent link
Title: Extract Data from Professional Volleyball Leagues in North
America
Description: Gather boxscore, play-by-play, and auxiliary data from Major League Volleyball (MLV) <https://provolleyball.com>, League One Volleyball Pro (LOVB) <https://www.lovb.com/pro-league>, and Athletes Unlimited Pro Volleyball (AU) <https://auprosports.com/volleyball/> to create a repository of basic and advanced statistics for teams and players.
Author: David Awosoga [aut, cre, cph] ,
Matthew Chow [aut] ,
Ryan Du [aut]
Maintainer: David Awosoga <odo.awosoga@gmail.com>
Diff between rvolleydata versions 1.1.0 dated 2025-10-20 and 2.0.0 dated 2026-01-07
rvolleydata-1.1.0/rvolleydata/R/aupvb.R |only rvolleydata-1.1.0/rvolleydata/R/lovb.R |only rvolleydata-1.1.0/rvolleydata/R/mlv.R |only rvolleydata-1.1.0/rvolleydata/man/load_aupvb_leaderboards.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_aupvb_pbp.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_aupvb_player_info.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_lovb_events_log.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_lovb_officials.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_lovb_pbp.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_lovb_player_boxscore.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_lovb_player_info.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_lovb_schedule.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_lovb_team_boxscore.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_lovb_team_staff.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_mlv_events_log.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_mlv_officials.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_mlv_pbp.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_mlv_player_boxscore.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_mlv_player_info.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_mlv_schedule.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_mlv_team_boxscore.Rd |only rvolleydata-1.1.0/rvolleydata/man/load_mlv_team_staff.Rd |only rvolleydata-2.0.0/rvolleydata/DESCRIPTION | 8 rvolleydata-2.0.0/rvolleydata/MD5 | 51 rvolleydata-2.0.0/rvolleydata/NAMESPACE | 27 rvolleydata-2.0.0/rvolleydata/NEWS.md | 21 rvolleydata-2.0.0/rvolleydata/R/get_data.R |only rvolleydata-2.0.0/rvolleydata/R/utils.R | 79 + rvolleydata-2.0.0/rvolleydata/README.md | 11 rvolleydata-2.0.0/rvolleydata/inst/doc/rvolleydata-how-to-use.R | 46 rvolleydata-2.0.0/rvolleydata/inst/doc/rvolleydata-how-to-use.Rmd | 86 - rvolleydata-2.0.0/rvolleydata/inst/doc/rvolleydata-how-to-use.html | 667 +++------- rvolleydata-2.0.0/rvolleydata/man/load_events_log.Rd |only rvolleydata-2.0.0/rvolleydata/man/load_officials.Rd |only rvolleydata-2.0.0/rvolleydata/man/load_pbp.Rd |only rvolleydata-2.0.0/rvolleydata/man/load_player_boxscore.Rd |only rvolleydata-2.0.0/rvolleydata/man/load_player_info.Rd |only rvolleydata-2.0.0/rvolleydata/man/load_schedule.Rd |only rvolleydata-2.0.0/rvolleydata/man/load_team_boxscore.Rd |only rvolleydata-2.0.0/rvolleydata/man/load_team_staff.Rd |only rvolleydata-2.0.0/rvolleydata/tests/testthat/test_get_data.R | 20 rvolleydata-2.0.0/rvolleydata/vignettes/rvolleydata-how-to-use.Rmd | 86 - 42 files changed, 486 insertions(+), 616 deletions(-)
Title: Testing Infrastructure for Broom Model Generics
Description: Provides a number of testthat tests that can be
used to verify that tidy(), glance() and augment() methods meet
consistent specifications. This allows methods for the same generic to
be spread across multiple packages, since all of those packages can
make the same guarantees to users about returned objects.
Author: Alex Hayes [aut, cre] ,
Simon Couch [aut]
Maintainer: Alex Hayes <alexpghayes@gmail.com>
Diff between modeltests versions 0.1.7 dated 2025-07-24 and 0.1.8 dated 2026-01-07
DESCRIPTION | 8 ++++---- MD5 | 8 ++++---- NEWS.md | 4 ++++ data/argument_glossary.rda |binary data/column_glossary.rda |binary 5 files changed, 12 insertions(+), 8 deletions(-)
Title: Control Polygon Reduction
Description: Implementation of the Control Polygon Reduction and Control Net
Reduction methods for finding parsimonious B-spline regression models.
Author: Peter DeWitt [aut, cre] ,
Samantha MaWhinney [ths],
Nichole Carlson [ths]
Maintainer: Peter DeWitt <dewittpe@gmail.com>
Diff between cpr versions 0.4.0 dated 2024-02-15 and 0.4.1 dated 2026-01-07
DESCRIPTION | 11 + MD5 | 64 +++++------ NEWS.md | 149 ++++++++++++++------------ R/bsplineD.R | 2 R/btensor.R | 4 R/cn.R | 10 - R/cnr.R | 2 R/cp.R | 6 - R/get_spline.R | 16 +- R/order_statistics.R | 7 - R/plot.cpr_bs.R | 15 +- README.md | 20 +-- build/vignette.rds |binary inst/doc/cnr.Rmd | 26 ++-- inst/doc/cnr.html | 156 +++++++++++++--------------- inst/doc/cpr.R | 2 inst/doc/cpr.Rmd | 61 +++++----- inst/doc/cpr.html | 233 +++++++++++++++++++++++------------------- man/bsplineD.Rd | 2 man/btensor.Rd | 4 man/cn.Rd | 10 - man/cnr.Rd | 2 man/cp.Rd | 6 - man/get_spline.Rd | 16 +- man/order_statistics.Rd | 6 - man/plot.cpr_bs.Rd | 3 src/bsplines.cpp | 4 src/cpr.cpp | 13 +- tests/test-bsplineD.R | 14 +- tests/test-bsplines.R | 22 +-- tests/test-order_statistics.R | 20 +-- vignettes/cnr.Rmd | 26 ++-- vignettes/cpr.Rmd | 61 +++++----- 33 files changed, 520 insertions(+), 473 deletions(-)
Title: Model Classifier for Binary Classification
Description: A collection of tools that support data splitting, predictive modeling, and model evaluation.
A typical function is to split a dataset into a training dataset and a test dataset.
Then compare the data distribution of the two datasets.
Another feature is to support the development of predictive models and to compare the performance of several predictive models,
helping to select the best model.
Author: Choonghyun Ryu [aut, cre]
Maintainer: Choonghyun Ryu <choonghyun.ryu@gmail.com>
Diff between alookr versions 0.4.0 dated 2025-09-15 and 0.5.0 dated 2026-01-07
DESCRIPTION | 12 ++++++------ MD5 | 18 +++++++++--------- NEWS.md | 9 +++++++++ R/evaluate.R | 27 ++++++++++++++------------- R/modeling.R | 33 +++++++++++++++------------------ inst/doc/cleansing.html | 4 ++-- inst/doc/introduce.html | 4 ++-- inst/doc/modeling.html | 4 ++-- inst/doc/split.html | 4 ++-- man/compare_performance.Rd | 3 ++- 10 files changed, 63 insertions(+), 55 deletions(-)
Title: Superefficient Estimation of Future Conditional Hazards Based on
Marker Information
Description: Provides univariate and indexed (multivariate) nonparametric smoothed kernel estimators for the future conditional hazard rate function when time-dependent covariates are present, a bandwidth selector for the estimator's implementation and pointwise and uniform confidence bands. Methods used in the package refer to Bagkavos, Isakson, Mammen, Nielsen and Proust-Lima (2025) <doi:10.1093/biomet/asaf008>.
Author: Dimitrios Bagkavos [aut, cre],
Alex Isakson [ctb],
Enno Mammen [ctb],
Jens Nielsen [ctb],
Cecile Proust-Lima [ctb]
Maintainer: Dimitrios Bagkavos <dimitrios.bagkavos@gmail.com>
Diff between HQM versions 1.1 dated 2025-12-03 and 2.0 dated 2026-01-07
HQM-1.1/HQM/R/lin_interpolate_plus.R |only HQM-1.1/HQM/R/local_linear.R |only HQM-1.1/HQM/man/lin_interpolate_plus.Rd |only HQM-2.0/HQM/DESCRIPTION | 6 +- HQM-2.0/HQM/MD5 | 65 +++++++++++++--------------- HQM-2.0/HQM/R/Boot.HRandIndex.param.R | 17 ++++--- HQM-2.0/HQM/R/Boot.hqm.R | 25 ++-------- HQM-2.0/HQM/R/BwB.HRandIndex.param.R | 32 +++++++++---- HQM-2.0/HQM/R/Conf_bands.R | 40 +++-------------- HQM-2.0/HQM/R/Sim.True.Hazard.R | 28 +++--------- HQM-2.0/HQM/R/SingleIndCondFutHaz.R | 62 ++++++++++---------------- HQM-2.0/HQM/R/b_selection.R | 6 +- HQM-2.0/HQM/R/get_h_x.R | 20 ++++---- HQM-2.0/HQM/R/get_h_xll.R | 14 +++--- HQM-2.0/HQM/R/index_optim.R | 43 ++++++------------ HQM-2.0/HQM/man/Boot.HRandIndex.param.Rd | 6 +- HQM-2.0/HQM/man/Boot.hqm.Rd | 21 +++++---- HQM-2.0/HQM/man/Conf_bands.Rd | 8 +-- HQM-2.0/HQM/man/Pivot.Index.CIs.Rd | 41 ++++++++++++----- HQM-2.0/HQM/man/Quantile.Index.CIs.Rd | 40 +++++++++++------ HQM-2.0/HQM/man/Sim.True.Hazard.Rd | 19 +++++--- HQM-2.0/HQM/man/SingleIndCondFutHaz.Rd | 51 +++++++++++++++------ HQM-2.0/HQM/man/StudentizedBwB.Index.CIs.Rd | 46 +++++++++++++------ HQM-2.0/HQM/man/auc.hqm.Rd | 24 ++++++---- HQM-2.0/HQM/man/b_selection.Rd | 5 +- HQM-2.0/HQM/man/b_selection_index_optim.Rd | 2 HQM-2.0/HQM/man/bs.hqm.Rd | 8 ++- HQM-2.0/HQM/man/get_alpha.Rd | 2 HQM-2.0/HQM/man/get_h_x.Rd | 28 ++++++++---- HQM-2.0/HQM/man/get_h_xll.Rd | 33 +++++++++----- HQM-2.0/HQM/man/h_xt.Rd | 2 HQM-2.0/HQM/man/h_xt_vec.Rd | 4 - HQM-2.0/HQM/man/h_xtll.Rd | 4 - HQM-2.0/HQM/man/index_optim.Rd | 34 +++++++++----- HQM-2.0/HQM/man/llK_b.Rd | 2 35 files changed, 398 insertions(+), 340 deletions(-)
Title: Padé Approximant Coefficients
Description: Given a vector of Taylor series coefficients of sufficient length
as input, the function returns the numerator and denominator coefficients
for the Padé approximant of appropriate order (Baker, 1975)
<ISBN:9780120748556>.
Author: Avraham Adler [aut, cph, cre]
Maintainer: Avraham Adler <Avraham.Adler@gmail.com>
Diff between Pade versions 1.0.8 dated 2025-07-10 and 1.0.9 dated 2026-01-07
DESCRIPTION | 8 ++++---- MD5 | 14 +++++++------- NAMESPACE | 4 +++- R/Pade.R | 2 +- build/partial.rdb |binary inst/CITATION | 2 +- inst/NEWS.Rd | 8 ++++++++ man/Pade.Rd | 5 ++++- 8 files changed, 28 insertions(+), 15 deletions(-)
Title: Working with Healthcare Databases
Description: A system for identifying diseases or events from healthcare databases and
preparing data for epidemiological studies. It includes capabilities not
supported by 'SQL', such as matching strings by 'stringr' style regular
expressions, and can compute comorbidity scores (Quan et al. (2005)
<doi:10.1097/01.mlr.0000182534.19832.83>) directly on a database server. The
implementation is based on 'dbplyr' with full 'tidyverse' compatibility.
Author: Kevin Hu [aut, cre, cph]
Maintainer: Kevin Hu <kevin.hu@bccdc.ca>
Diff between healthdb versions 0.4.1 dated 2025-04-04 and 0.5.0 dated 2026-01-07
DESCRIPTION | 13 LICENSE | 4 MD5 | 167 +- NAMESPACE | 91 - NEWS.md | 122 + R/all_apart.R | 94 - R/bind_source.R | 218 +-- R/build_def.R | 176 +- R/collapse_episode.R | 74 - R/collapse_episode_dataframe.R | 187 +- R/collapse_episode_sql.R | 244 +-- R/compute_comorbidity.R | 824 ++++++------ R/compute_duration.R | 159 +- R/cut_period.R | 146 +- R/db_helpers.R | 47 R/def_to_dot.R | 154 +- R/define_case.R | 346 ++--- R/define_case_with_age.R |only R/exclude.R | 118 - R/execute_def.R | 324 ++--- R/fetch_var.R | 304 ++-- R/identify_rows.R | 114 - R/identify_rows_dataframe.R | 224 +-- R/identify_rows_sql.R | 282 ++-- R/if_dates.R | 258 ++-- R/is_wholenumber.R | 4 R/lookup.R | 102 - R/make_test_dat.R | 158 +- R/parsing_list.R | 48 R/pool_case.R | 460 +++---- R/report_n.R | 111 - R/restrict_dates.R | 107 - R/restrict_dates_dataframe.R | 114 - R/restrict_dates_sql.R | 746 +++++------ R/restrict_n.R | 61 R/restrict_n_dataframe.R | 83 - R/restrict_n_sql.R | 105 - R/utils-pipe.R | 28 R/zzz.R | 50 README.md | 400 +++--- build/partial.rdb |binary build/vignette.rds |binary inst/doc/healthdb.R | 371 ++--- inst/doc/healthdb.Rmd | 583 ++++----- inst/doc/healthdb.html | 1598 ++++++++++++------------- man/bind_source.Rd | 2 man/build_def.Rd | 4 man/collapse_episode.Rd | 2 man/compute_comorbidity.Rd | 204 +-- man/compute_duration.Rd | 12 man/define_case.Rd | 246 +-- man/define_case_with_age.Rd |only man/exclude.Rd | 88 - man/identify_row.Rd | 24 man/lookup.Rd | 2 man/restrict_date.Rd | 160 +- man/restrict_n.Rd | 90 - tests/testthat.R | 24 tests/testthat/helper.R | 590 ++++----- tests/testthat/setup.R | 10 tests/testthat/test-all_apart.R | 52 tests/testthat/test-bind_source.R | 90 - tests/testthat/test-build_def.R | 214 ++- tests/testthat/test-collapse_episode.R | 104 - tests/testthat/test-compute_comorbidity.R | 244 +-- tests/testthat/test-compute_dur.R | 63 tests/testthat/test-cut_period.R | 92 - tests/testthat/test-def_to_dot.R | 327 ++--- tests/testthat/test-define_case.R | 194 +-- tests/testthat/test-define_case_with_age.R |only tests/testthat/test-exclude.R | 146 +- tests/testthat/test-execute_def.R | 347 +++-- tests/testthat/test-fetch_var.R | 282 ++-- tests/testthat/test-identify_rows_dataframe.R | 156 +- tests/testthat/test-identify_rows_sql.R | 180 +- tests/testthat/test-if_dates.R | 187 +- tests/testthat/test-lookup.R | 40 tests/testthat/test-make_test_dat.R | 94 - tests/testthat/test-pool_case.R | 394 +++--- tests/testthat/test-report_n.R | 92 - tests/testthat/test-restrict_dates_dataframe.R | 95 - tests/testthat/test-restrict_dates_sql.R | 233 +-- tests/testthat/test-restrict_n_dataframe.R | 124 + tests/testthat/test-restrict_n_sql.R | 122 - tests/testthat/test-zzz.R | 8 vignettes/healthdb.Rmd | 583 ++++----- 86 files changed, 8011 insertions(+), 7729 deletions(-)
Title: Genetic Algorithm (GA) for Variable Selection from
High-Dimensional Data
Description: Provides a genetic algorithm for finding variable
subsets in high dimensional data with high prediction performance. The
genetic algorithm can use ordinary least squares (OLS) regression models or
partial least squares (PLS) regression models to evaluate the prediction
power of variable subsets. By supporting different cross-validation
schemes, the user can fine-tune the tradeoff between speed and quality of
the solution.
Author: David Kepplinger [aut, cre]
Maintainer: David Kepplinger <david.kepplinger@gmail.com>
Diff between gaselect versions 1.0.24 dated 2025-12-16 and 1.0.25 dated 2026-01-07
DESCRIPTION | 8 ++++---- MD5 | 10 +++++----- configure | 2 -- configure.ac | 6 ++---- src/Makevars.in | 1 - src/Makevars.win | 2 -- 6 files changed, 11 insertions(+), 18 deletions(-)
Title: Weighted Iterative Proportional Fitting
Description: Implementation of the weighted iterative proportional fitting (WIPF) procedure for updating/adjusting a N-dimensional array given a weight structure and some target marginals.
Acknowledgements:
The author wish to thank Conselleria de Educación, Cultura, Universidades y Empleo (grant CIAICO/2023/031), Ministerio de Ciencia, Innovación y Universidades (grant PID2021-128228NB-I00) and Fundación Mapfre (grant 'Modelización espacial e intra-anual de la mortalidad en España. Una herramienta automática para el cálculo de productos de vida') for supporting this research.
Author: Jose M. Pavia [aut, cre]
Maintainer: Jose M. Pavia <jose.m.pavia@uv.es>
Diff between WIPF versions 0.1.0-1 dated 2025-01-07 and 0.1.0-3 dated 2026-01-07
DESCRIPTION | 13 - MD5 | 25 ++- NAMESPACE | 2 NEWS.md |only R/WIPF.R |only R/WIPF1.R | 8 - R/WIPF2.R | 18 +- R/WIPF3.R | 20 +- R/array2df.R |only R/auxiliary_functions.R | 376 +++++++++++++++++++++++++++++++++++++++++++++++- R/df2array.R |only man/WIPF.Rd |only man/WIPF1.Rd | 6 man/WIPF2.Rd | 11 - man/WIPF3.Rd | 14 - man/array2df.Rd |only man/df2array.Rd |only 17 files changed, 436 insertions(+), 57 deletions(-)
Title: Threshold Sweep Extensions for Qualitative Comparative Analysis
Description: Provides threshold sweep methods for Qualitative Comparative
Analysis (QCA). Implements Condition Threshold Sweep-Single (CTS-S),
Condition Threshold Sweep-Multiple (CTS-M), Outcome Threshold Sweep (OTS),
and Dual Threshold Sweep (DTS) for systematic exploration of threshold
calibration effects on crisp-set QCA results. These methods extend
traditional robustness approaches by treating threshold variation as an
exploratory tool for discovering causal structures. Built on top of the
'QCA' package by Dusa (2019) <doi:10.1007/978-3-319-75668-4>, with function
arguments following 'QCA' conventions. Based on set-theoretic methods by
Ragin (2008) <doi:10.7208/chicago/9780226702797.001.0001> and established
robustness protocols by Rubinson et al. (2019)
<doi:10.1177/00491241211036158>.
Author: Yuki Toyoda [aut, cre],
Japan Society for the Promotion of Science [fnd]
Maintainer: Yuki Toyoda <yuki.toyoda.ds@hosei.ac.jp>
Diff between TSQCA versions 0.1.2 dated 2026-01-07 and 1.0.0 dated 2026-01-07
TSQCA-0.1.2/TSQCA/inst/doc/TSQCA_Reproducible_JA.R |only TSQCA-0.1.2/TSQCA/inst/doc/TSQCA_Reproducible_JA.Rmd |only TSQCA-0.1.2/TSQCA/inst/doc/TSQCA_Reproducible_JA.html |only TSQCA-0.1.2/TSQCA/inst/doc/TSQCA_Tutorial_JA.R |only TSQCA-0.1.2/TSQCA/inst/doc/TSQCA_Tutorial_JA.Rmd |only TSQCA-0.1.2/TSQCA/inst/doc/TSQCA_Tutorial_JA.html |only TSQCA-0.1.2/TSQCA/vignettes/TSQCA_Reproducible_JA.Rmd |only TSQCA-0.1.2/TSQCA/vignettes/TSQCA_Tutorial_JA.Rmd |only TSQCA-1.0.0/TSQCA/DESCRIPTION | 17 TSQCA-1.0.0/TSQCA/MD5 | 101 - TSQCA-1.0.0/TSQCA/NAMESPACE | 21 TSQCA-1.0.0/TSQCA/NEWS.md |only TSQCA-1.0.0/TSQCA/R/TSQCA-package.R | 364 ++-- TSQCA-1.0.0/TSQCA/R/sample_data.R | 24 TSQCA-1.0.0/TSQCA/R/tsqca_config_chart.R |only TSQCA-1.0.0/TSQCA/R/tsqca_core.R | 336 +++ TSQCA-1.0.0/TSQCA/R/tsqca_cts.R | 1020 +++++++---- TSQCA-1.0.0/TSQCA/R/tsqca_helpers.R |only TSQCA-1.0.0/TSQCA/R/tsqca_methods.R |only TSQCA-1.0.0/TSQCA/R/tsqca_ots_dts.R | 1029 +++++++---- TSQCA-1.0.0/TSQCA/R/tsqca_report.R |only TSQCA-1.0.0/TSQCA/README.md | 234 ++ TSQCA-1.0.0/TSQCA/build/partial.rdb |binary TSQCA-1.0.0/TSQCA/build/vignette.rds |binary TSQCA-1.0.0/TSQCA/inst/CITATION | 6 TSQCA-1.0.0/TSQCA/inst/doc/TSQCA_Reproducible_EN.R | 170 + TSQCA-1.0.0/TSQCA/inst/doc/TSQCA_Reproducible_EN.Rmd | 218 ++ TSQCA-1.0.0/TSQCA/inst/doc/TSQCA_Reproducible_EN.html | 454 +++-- TSQCA-1.0.0/TSQCA/inst/doc/TSQCA_Tutorial_EN.R | 283 ++- TSQCA-1.0.0/TSQCA/inst/doc/TSQCA_Tutorial_EN.Rmd | 1045 ++++++++---- TSQCA-1.0.0/TSQCA/inst/doc/TSQCA_Tutorial_EN.html | 844 ++++++++- TSQCA-1.0.0/TSQCA/man/SYMBOL_SETS.Rd |only TSQCA-1.0.0/TSQCA/man/TSQCA-package.Rd | 4 TSQCA-1.0.0/TSQCA/man/add_metrics_rows.Rd |only TSQCA-1.0.0/TSQCA/man/build_config_matrix.Rd |only TSQCA-1.0.0/TSQCA/man/build_single_chart.Rd |only TSQCA-1.0.0/TSQCA/man/config_chart_from_paths.Rd |only TSQCA-1.0.0/TSQCA/man/config_chart_multi_solutions.Rd |only TSQCA-1.0.0/TSQCA/man/config_matrix_to_md.Rd |only TSQCA-1.0.0/TSQCA/man/ctSweepM.Rd | 57 TSQCA-1.0.0/TSQCA/man/ctSweepS.Rd | 203 +- TSQCA-1.0.0/TSQCA/man/df_to_md_table.Rd |only TSQCA-1.0.0/TSQCA/man/dtSweep.Rd | 47 TSQCA-1.0.0/TSQCA/man/escape_md.Rd |only TSQCA-1.0.0/TSQCA/man/extract_all_metrics.Rd |only TSQCA-1.0.0/TSQCA/man/extract_conditions_from_paths.Rd |only TSQCA-1.0.0/TSQCA/man/extract_path_metrics_for_chart.Rd |only TSQCA-1.0.0/TSQCA/man/extract_paths_from_solution.Rd |only TSQCA-1.0.0/TSQCA/man/extract_solution_list.Rd |only TSQCA-1.0.0/TSQCA/man/extract_solution_metrics_for_chart.Rd |only TSQCA-1.0.0/TSQCA/man/extract_terms.Rd |only TSQCA-1.0.0/TSQCA/man/format_qca_solution.Rd |only TSQCA-1.0.0/TSQCA/man/format_qca_solutions.Rd |only TSQCA-1.0.0/TSQCA/man/format_qca_term.Rd |only TSQCA-1.0.0/TSQCA/man/generate_config_chart.Rd |only TSQCA-1.0.0/TSQCA/man/generate_cross_threshold_chart.Rd |only TSQCA-1.0.0/TSQCA/man/generate_report.Rd |only TSQCA-1.0.0/TSQCA/man/generate_solution_note.Rd |only TSQCA-1.0.0/TSQCA/man/generate_term_level_chart.Rd |only TSQCA-1.0.0/TSQCA/man/generate_threshold_level_chart.Rd |only TSQCA-1.0.0/TSQCA/man/get_all_terms.Rd |only TSQCA-1.0.0/TSQCA/man/get_condition_status.Rd |only TSQCA-1.0.0/TSQCA/man/get_config_labels.Rd |only TSQCA-1.0.0/TSQCA/man/get_n_solutions.Rd |only TSQCA-1.0.0/TSQCA/man/identify_epi.Rd |only TSQCA-1.0.0/TSQCA/man/otSweep.Rd | 190 +- TSQCA-1.0.0/TSQCA/man/parse_path_conditions.Rd |only TSQCA-1.0.0/TSQCA/man/parse_solution_terms.Rd |only TSQCA-1.0.0/TSQCA/man/print.tsqca_result.Rd |only TSQCA-1.0.0/TSQCA/man/qca_extract.Rd | 61 TSQCA-1.0.0/TSQCA/man/split_solution_terms.Rd |only TSQCA-1.0.0/TSQCA/man/summary.tsqca_result.Rd |only TSQCA-1.0.0/TSQCA/man/write_full_report.Rd |only TSQCA-1.0.0/TSQCA/man/write_simple_report.Rd |only TSQCA-1.0.0/TSQCA/tests/testthat/test-s3-methods.R |only TSQCA-1.0.0/TSQCA/vignettes/TSQCA_Reproducible_EN.Rmd | 218 ++ TSQCA-1.0.0/TSQCA/vignettes/TSQCA_Tutorial_EN.Rmd | 1045 ++++++++---- 77 files changed, 5678 insertions(+), 2313 deletions(-)
Title: Simularia Tools for the Analysis of Air Pollution Data
Description: A set of tools developed at Simularia for Simularia, to help
preprocessing and post-processing of meteorological and air quality data.
Author: Giuseppe Carlino [aut, cre],
Matteo Paolo Costa [ctb],
Simularia [cph, fnd]
Maintainer: Giuseppe Carlino <g.carlino@simularia.it>
Diff between simulariatools versions 3.0.0 dated 2025-09-01 and 3.1.0 dated 2026-01-07
DESCRIPTION | 11 - MD5 | 64 +++---- NAMESPACE | 8 NEWS.md | 96 +++++----- R/contourPlot2.R | 200 +++++++++++++++------ R/downloadBasemap.R | 4 R/importADSOBIN.R | 8 R/importRaster.R | 8 R/importSurferGrd.R | 13 - R/plotAvgRad.R | 11 - R/plotAvgTemp.R | 28 +-- R/plotStabilityClass.R | 9 R/removeOutliers.R | 2 R/stMeteo.R | 2 R/stabilityClass.R | 283 ++++++++++++++++++++++++++++++- R/vectorField.R | 4 README.md | 27 +- man/contourPlot2.Rd | 82 ++++++-- man/downloadBasemap.Rd | 2 man/importADSOBIN.Rd | 8 man/importRaster.Rd | 8 man/plotAvgRad.Rd | 2 man/plotAvgTemp.Rd | 2 man/plotStabilityClass.Rd | 4 man/removeOutliers.Rd | 2 man/stMeteo.Rd | 2 man/stabilityClass.Rd | 7 man/turnerStabilityClass.Rd |only man/vectorField.Rd | 3 tests/testthat/test_contourPlot2.R | 15 + tests/testthat/test_plotAvgRad.R |only tests/testthat/test_plotAvgTemp.R |only tests/testthat/test_plotStabilityClass.R |only tests/testthat/test_removeOutliers.R | 7 tests/testthat/test_rollingMax.R | 5 35 files changed, 676 insertions(+), 251 deletions(-)
More information about simulariatools at CRAN
Permanent link
Title: Estimates of Standard Errors for Risk and Performance Measures
Description: Estimates of standard errors of popular risk and performance
measures for asset or portfolio returns using methods as described in
Chen and Martin (2021) <doi:10.21314/JOR.2020.446>.
Author: Anthony Christidis [aut, cre],
Xin Chen [aut]
Maintainer: Anthony Christidis <anthony.christidis@stat.ubc.ca>
This is a re-admission after prior archival of version 1.2.6 dated 2025-12-03
Diff between RPESE versions 1.2.6 dated 2025-12-03 and 1.2.7 dated 2026-01-07
DESCRIPTION | 11 +++--- MD5 | 72 ++++++++++++++++++++++---------------------- NEWS.md | 9 ++++- R/DSR_SE.R | 25 ++++++++------- R/ES_SE.R | 25 ++++++++------- R/ESratio_SE.R | 25 ++++++++------- R/EstimatorSE.R | 25 ++++++++------- R/LPM_SE.R | 25 ++++++++------- R/Mean_SE.R | 25 ++++++++------- R/OmegaRatio_SE.R | 25 ++++++++------- R/RachevRatio_SE.R | 25 ++++++++------- R/SD_SE.R | 25 ++++++++------- R/SR_SE.R | 25 ++++++++------- R/SemiSD_SE.R | 25 ++++++++------- R/SoR_SE.R | 25 ++++++++------- R/VaR_SE.R | 25 ++++++++------- R/VaRratio_SE.R | 25 ++++++++------- R/printSE.R | 29 +++++++++-------- R/robMean_SE.R | 25 ++++++++------- inst/doc/RPESEVignette.pdf |binary man/DSR.SE.Rd | 25 ++++++++------- man/ES.SE.Rd | 25 ++++++++------- man/ESratio.SE.Rd | 25 ++++++++------- man/EstimatorSE.Rd | 25 ++++++++------- man/LPM.SE.Rd | 25 ++++++++------- man/Mean.SE.Rd | 25 ++++++++------- man/OmegaRatio.SE.Rd | 25 ++++++++------- man/RachevRatio.SE.Rd | 25 ++++++++------- man/SD.SE.Rd | 25 ++++++++------- man/SR.SE.Rd | 25 ++++++++------- man/SemiSD.SE.Rd | 25 ++++++++------- man/SoR.SE.Rd | 25 ++++++++------- man/VaR.SE.Rd | 25 ++++++++------- man/VaRratio.SE.Rd | 25 ++++++++------- man/printSE.Rd | 29 +++++++++-------- man/robMean.SE.Rd | 25 ++++++++------- vignettes/RPESEVignette.qmd |only vignettes/rpese-figure1.png |only 38 files changed, 503 insertions(+), 397 deletions(-)
Title: A Metadata and Text Extraction and Manipulation Tool Set
Description: Provides a function collection to extract metadata, sectioned text and study characteristics from scientific articles in 'NISO-JATS' format. Articles in PDF format can be converted to 'NISO-JATS' with the 'Content ExtRactor and MINEr' ('CERMINE', <https://github.com/CeON/CERMINE>). For convenience, two functions bundle the extraction heuristics: JATSdecoder() converts 'NISO-JATS'-tagged XML files to a structured list with elements title, author, journal, history, 'DOI', abstract, sectioned text and reference list. study.character() extracts multiple study characteristics like number of included studies, statistical methods used, alpha error, power, statistical results, correction method for multiple testing, software used. The function get.stats() extracts all statistical results from text and recomputes p-values for many standard test statistics. It performs a consistency check of the reported with the recalculated p-values. An estimation of the involved sample size is performed [...truncated...]
Author: Ingmar Boeschen [aut, cre]
Maintainer: Ingmar Boeschen <ingmar.boeschen@uni-hamburg.de>
Diff between JATSdecoder versions 1.2.1 dated 2025-07-29 and 1.2.2 dated 2026-01-07
DESCRIPTION | 8 - MD5 | 6 R/character_standardStats.R | 283 ++++++++++++++++++++++++++++++++------------ R/helper_letter.convert.R | 6 4 files changed, 223 insertions(+), 80 deletions(-)
Title: Interpreting Time Series and Autocorrelated Data Using GAMMs
Description: GAMM (Generalized Additive Mixed Modeling; Lin & Zhang, 1999)
as implemented in the R package 'mgcv' (Wood, S.N., 2006; 2011) is a nonlinear
regression analysis which is particularly useful for time course data such as
EEG, pupil dilation, gaze data (eye tracking), and articulography recordings,
but also for behavioral data such as reaction times and response data. As time
course measures are sensitive to autocorrelation problems, GAMMs implements
methods to reduce the autocorrelation problems. This package includes functions
for the evaluation of GAMM models (e.g., model comparisons, determining regions
of significance, inspection of autocorrelational structure in residuals)
and interpreting of GAMMs (e.g., visualization of complex interactions, and
contrasts).
Author: Jacolien van Rij [aut, cre],
Martijn Wieling [aut],
R. Harald Baayen [aut],
Hedderik van Rijn [ctb]
Maintainer: Jacolien van Rij <j.c.van.rij@rug.nl>
This is a re-admission after prior archival of version 2.4.1 dated 2022-06-17
Diff between itsadug versions 2.4.1 dated 2022-06-17 and 2.5 dated 2026-01-07
itsadug-2.4.1/itsadug/man/itsadug.Rd |only itsadug-2.5/itsadug/DESCRIPTION | 14 itsadug-2.5/itsadug/MD5 | 74 ++-- itsadug-2.5/itsadug/R/acf.R | 2 itsadug-2.5/itsadug/R/inspect.R | 54 --- itsadug-2.5/itsadug/R/itsadug.R | 11 itsadug-2.5/itsadug/R/pca.R | 2 itsadug-2.5/itsadug/R/plot.R | 4 itsadug-2.5/itsadug/R/predict.R | 39 +- itsadug-2.5/itsadug/R/test.R | 180 ++++++---- itsadug-2.5/itsadug/build/vignette.rds |binary itsadug-2.5/itsadug/inst/NEWS | 7 itsadug-2.5/itsadug/inst/doc/acf.R | 22 - itsadug-2.5/itsadug/inst/doc/acf.Rmd | 4 itsadug-2.5/itsadug/inst/doc/acf.html | 342 ++++++++++---------- itsadug-2.5/itsadug/inst/doc/inspect.R | 28 - itsadug-2.5/itsadug/inst/doc/inspect.Rmd | 1 itsadug-2.5/itsadug/inst/doc/inspect.html | 473 +++++++++++++--------------- itsadug-2.5/itsadug/inst/doc/overview.R | 28 - itsadug-2.5/itsadug/inst/doc/overview.html | 204 +++++------- itsadug-2.5/itsadug/inst/doc/test.R | 83 +++- itsadug-2.5/itsadug/inst/doc/test.Rmd | 75 +++- itsadug-2.5/itsadug/inst/doc/test.html | 290 ++++++++++------- itsadug-2.5/itsadug/man/acf_n_plots.Rd | 2 itsadug-2.5/itsadug/man/compareML.Rd | 23 - itsadug-2.5/itsadug/man/fadeRug.Rd | 4 itsadug-2.5/itsadug/man/fvisgam.Rd | 13 itsadug-2.5/itsadug/man/get_predictions.Rd | 5 itsadug-2.5/itsadug/man/itsadug-package.Rd |only itsadug-2.5/itsadug/man/plot_diff2.Rd | 2 itsadug-2.5/itsadug/man/plot_parametric.Rd | 2 itsadug-2.5/itsadug/man/plot_pca_surface.Rd | 2 itsadug-2.5/itsadug/man/plot_topo.Rd | 2 itsadug-2.5/itsadug/man/pvisgam.Rd | 6 itsadug-2.5/itsadug/man/report_stats.Rd | 2 itsadug-2.5/itsadug/man/wald_gam.Rd | 2 itsadug-2.5/itsadug/vignettes/acf.Rmd | 4 itsadug-2.5/itsadug/vignettes/inspect.Rmd | 1 itsadug-2.5/itsadug/vignettes/test.Rmd | 75 +++- 39 files changed, 1153 insertions(+), 929 deletions(-)
Title: Group Elastic Net Regularized GLMs and GAMs
Description: Efficient algorithms for fitting generalized linear and additive models with group elastic net penalties as described in Helwig (2025) <doi:10.1080/10618600.2024.2362232>. Implements group LASSO, group MCP, and group SCAD with an optional group ridge penalty. Computes the regularization path for linear regression (gaussian), multivariate regression (multigaussian), smoothed support vector machines (svm1), squared support vector machines (svm2), logistic regression (binomial), proportional odds logistic regression (ordinal), multinomial logistic regression (multinomial), log-linear count regression (poisson and negative.binomial), and log-linear continuous regression (gamma and inverse gaussian). Supports default and formula methods for model specification, k-fold cross-validation for tuning the regularization parameters, and nonparametric regression via tensor product reproducing kernel (smoothing spline) basis function expansion.
Author: Nathaniel E. Helwig [aut, cre]
Maintainer: Nathaniel E. Helwig <helwig@umn.edu>
Diff between grpnet versions 1.0 dated 2025-06-10 and 1.1 dated 2026-01-07
ChangeLog | 28 +++++++ DESCRIPTION | 10 +- MD5 | 38 +++++----- NAMESPACE | 3 R/R_grpnet_ordinal.R |only R/coef.grpnet.R | 29 ++++++- R/cv.grpnet.default.R | 176 ++++++++++++++++++++++++++++++++++++++++++++--- R/family.grpnet.R | 16 +++- R/grpnet.R | 6 + R/grpnet.default.R | 84 +++++++++++++++++++++- R/grpnet.formula.R | 4 - R/predict.grpnet.R | 142 +++++++++++++++++++++++++++++++++++-- build/partial.rdb |binary man/cv.grpnet.Rd | 17 ++++ man/family.grpnet.Rd | 12 ++- man/grpnet.Rd | 20 ++++- man/internals-grpnet.Rd | 13 +++ man/predict.cv.grpnet.Rd | 93 ++++++++++++++++++++++++ man/predict.grpnet.Rd | 167 ++++++++++++++++++++++++++++++++++++++++---- src/grpnet_init.c | 4 + src/grpnet_ordinal.f90 |only 21 files changed, 788 insertions(+), 74 deletions(-)
Title: SM/LM EGARCH & GARCH, VaR/ES Backtesting & Dual LM Extensions
Description: Implement and fit a variety of short-memory (SM) and long-memory
(LM) models from a very broad family of exponential generalized autoregressive
conditional heteroskedasticity (EGARCH) models, such as a MEGARCH (modified
EGARCH), FIEGARCH (fractionally integrated EGARCH), FIMLog-GARCH (fractionally
integrated modulus Log-GARCH), and more. The FIMLog-GARCH as part of the
EGARCH family is discussed in Feng et al. (2023)
<https://econpapers.repec.org/paper/pdnciepap/156.htm>. For convenience and
the purpose of comparison, a variety of other popular SM and LM GARCH-type
models, like an APARCH model, a fractionally integrated
APARCH (FIAPARCH) model, standard GARCH and fractionally integrated GARCH
(FIGARCH) models, GJR-GARCH and FIGJR-GARCH models, TGARCH and FITGARCH
models, are implemented as well as dual models with simultaneous modelling of
the mean, including dual long-memory models with a fractionally integrated
autoregressive moving average (FARIMA) model in the mean and a long [...truncated...]
Author: Dominik Schulz [aut, cre] ,
Yuanhua Feng [aut] ,
Christian Peitz [aut] ),
Oliver Kojo Ayensu [aut] ,
Thomas Gries [ctb] ,
Sikandar Siddiqui [ctb] ,
Shujie Li [ctb]
Maintainer: Dominik Schulz <dominik.schulz@uni-paderborn.de>
Diff between fEGarch versions 1.0.3 dated 2025-11-07 and 1.0.4 dated 2026-01-07
DESCRIPTION | 6 MD5 | 82 ++-- NEWS.md | 8 R/aparchfit.R | 5 R/class-egarch-spec.R | 11 R/class-fEGarch_forecast.R | 4 R/class-fEGarch_risk.R | 4 R/distr_est.R | 58 +-- R/fiaparchfit.R | 5 R/figarchfit.R | 6 R/figjrgarchfit.R | 6 R/fitgarchfit.R | 6 R/fitting-function.R | 8 R/forecasting-functions.R | 276 ++++++++++++++ R/garch_estim.R | 8 R/garchfit.R | 5 R/general_garch_fitting.R | 5 R/generics.R | 11 R/gjrgarchfit.R | 6 R/setup-estim.R | 61 +-- R/tgarchfit.R | 6 R/ufRisk-functions.R | 225 +++++++++--- README.md | 105 +++-- man/aparch.Rd | 7 man/backtest-tests.Rd | 4 man/distribution_estimation.Rd | 34 + man/fEGarch.Rd | 7 man/fiaparch.Rd | 7 man/figarch.Rd | 7 man/figjrgarch.Rd | 7 man/figures/README-unnamed-chunk-15-1.png |binary man/figures/README-unnamed-chunk-17-1.png |binary man/find_dist.Rd | 6 man/fitgarch.Rd | 7 man/forecasting-generics.Rd | 22 + man/forecasting-methods.Rd | 56 ++ man/garch.Rd | 7 man/garchm_estim.Rd | 7 man/gjrgarch.Rd | 7 man/measure_risk.Rd | 8 man/tgarch.Rd | 7 tests/testthat/test-forecasting.R | 562 ++++++++++++++++++++++++++---- 42 files changed, 1361 insertions(+), 318 deletions(-)
Title: Engression Modelling
Description: Fits engression models for nonlinear distributional regression. Predictors and targets can be univariate or multivariate. Functionality includes estimation of conditional mean, estimation of conditional quantiles, or sampling from the fitted distribution. Training is done full-batch on CPU (the python version offers GPU-accelerated stochastic gradient descent). Based on "Engression: Extrapolation through the lens of distributional regression" by Xinwei Shen and Nicolai Meinshausen (2024) in JRSSB. Also supports classification (experimental).
<doi:10.1093/jrsssb/qkae108>.
Author: Xinwei Shen [aut],
Nicolai Meinshausen [aut, cre]
Maintainer: Nicolai Meinshausen <meinshausen@stat.math.ethz.ch>
Diff between engression versions 0.1.4 dated 2023-11-22 and 0.1.5 dated 2026-01-07
DESCRIPTION | 12 +- MD5 | 10 +- R/engression.R | 78 +++++++++++++--- R/engressionfit.R | 239 ++++++++++++++++++++++++++++++++++++++++----------- man/engression.Rd | 16 ++- man/engressionfit.Rd | 16 ++- 6 files changed, 284 insertions(+), 87 deletions(-)
Title: Descriptive Analysis by Groups
Description: Create data summaries for quality control, extensive reports for exploring data, as well as publication-ready univariate or bivariate tables in several formats (plain text, HTML,LaTeX, PDF, Word or Excel. Create figures to quickly visualise the distribution of your data (boxplots, barplots, normality-plots, etc.). Display statistics (mean, median, frequencies, incidences, etc.). Perform the appropriate tests (t-test, Analysis of variance, Kruskal-Wallis, Fisher, log-rank, ...) depending on the nature of the described variable (normal, non-normal or qualitative). Summarize genetic data (Single Nucleotide Polymorphisms) data displaying Allele Frequencies and performing Hardy-Weinberg Equilibrium tests among other typical statistics and tests for these kind of data.
Author: Isaac Subirana [aut, cre] ,
Joan Salvador [ctb]
Maintainer: Isaac Subirana <isubirana@imim.es>
Diff between compareGroups versions 4.10.1 dated 2025-10-29 and 4.10.2 dated 2026-01-07
DESCRIPTION | 8 - MD5 | 10 - NEWS.md | 3 inst/app/server.R | 41 +++--- inst/doc/compareGroups_vignette.html | 237 +++++++++++++++++------------------ man/compareGroups-package.Rd | 4 6 files changed, 156 insertions(+), 147 deletions(-)
Title: Implementation of the Conic Multivariate Adaptive Regression
Splines in R
Description: An implementation of 'Conic Multivariate Adaptive Regression Splines (CMARS)' in R.
See Weber et al. (2011) CMARS: a new contribution to nonparametric regression with
multivariate adaptive regression splines supported by continuous optimization,
<DOI:10.1080/17415977.2011.624770>. It constructs models by using the terms
obtained from the forward step of MARS and then estimates parameters by using
'Tikhonov' regularization and conic quadratic optimization. It is possible to
construct models for prediction and binary classification. It provides performance
measures for the model developed. The package needs the optimisation software 'MOSEK'
<https://www.mosek.com/> to construct the models. Please follow the instructions in
'Rmosek' for the installation.
Author: Fatma Yerlikaya-Ozkurt [aut],
Ceyda Yazici [aut, cre],
Inci Batmaz [aut]
Maintainer: Ceyda Yazici <ceydayazici86@gmail.com>
This is a re-admission after prior archival of version 0.1.3 dated 2023-07-04
Diff between cmaRs versions 0.1.3 dated 2023-07-04 and 0.1.4 dated 2026-01-07
cmaRs-0.1.3/cmaRs/data/classdata.std.RData |only cmaRs-0.1.3/cmaRs/data/preddata.std.RData |only cmaRs-0.1.3/cmaRs/data/table.b6.RData |only cmaRs-0.1.4/cmaRs/DESCRIPTION | 18 ++++---- cmaRs-0.1.4/cmaRs/MD5 | 22 ++++----- cmaRs-0.1.4/cmaRs/NAMESPACE | 4 - cmaRs-0.1.4/cmaRs/R/cmaRs.R | 1 cmaRs-0.1.4/cmaRs/R/cmaRs.fit.R | 56 ++++++++++++------------- cmaRs-0.1.4/cmaRs/R/cmaRs.identical_function.R | 24 +++++----- cmaRs-0.1.4/cmaRs/build/vignette.rds |binary cmaRs-0.1.4/cmaRs/data/classdata.std.rda |only cmaRs-0.1.4/cmaRs/data/preddata.std.rda |only cmaRs-0.1.4/cmaRs/data/table.b6.rda |only cmaRs-0.1.4/cmaRs/inst/doc/Intro_to_cmaRs.R | 4 - cmaRs-0.1.4/cmaRs/inst/doc/Intro_to_cmaRs.pdf |binary 15 files changed, 65 insertions(+), 64 deletions(-)
Title: Spatial and Environmental Data Tools for Landscape Ecology
Description: Provides functions for landscape analysis and data retrieval.
The package allows users to download environmental variables from global
datasets (e.g., WorldClim, ESA WorldCover, Nighttime Lights), and to
compute spatial and landscape metrics using a hexagonal grid system
based on the H3 spatial index. It is useful for ecological modeling,
biodiversity studies, and spatial data processing in landscape ecology.
Fick and Hijmans (2017) <doi:10.1002/joc.5086>.
Zanaga et al. (2022) <doi:10.5281/zenodo.7254221>.
Uber Technologies Inc. (2022) "H3: Hexagonal hierarchical spatial index".
Author: Manuel Spinola [aut, cre]
Maintainer: Manuel Spinola <mspinola10@gmail.com>
Diff between paisaje versions 0.1.1 dated 2025-10-21 and 0.2.0 dated 2026-01-07
DESCRIPTION | 10 +- MD5 | 32 +++---- NAMESPACE | 11 -- R/calculate_it_metrics.R | 123 +++++++++++++--------------- R/extract_cat_raster.R | 192 ++++++++++++++++++++++++++++---------------- R/extract_num_raster.R | 73 +++++++++++----- R/get_esa_10m.R | 39 ++++++-- R/get_records.R | 122 +++++++++++++++------------ R/utils_globals.R | 7 + build/partial.rdb |binary build/vignette.rds |binary data/cr_outline_c.rda |binary man/calculate_it_metrics.Rd | 67 ++++++--------- man/extract_cat_raster.Rd | 57 ++++++------- man/extract_num_raster.Rd | 34 +++++-- man/get_esa_10m.Rd | 37 ++++++-- man/get_records.Rd | 69 +++++++-------- 17 files changed, 493 insertions(+), 380 deletions(-)
Title: Extract Data from NCAA Women's and Men's Volleyball Website
Description: Extracts team records/schedules and player statistics for the
2020-2025 National Collegiate Athletic Association (NCAA) women's and men's
divisions I, II, and III volleyball teams from <https://stats.ncaa.org>.
Functions can aggregate statistics for teams, conferences, divisions, or
custom groups of teams.
Author: Jeffrey R. Stevens [aut, cre, cph]
Maintainer: Jeffrey R. Stevens <jeffrey.r.stevens@protonmail.com>
Diff between ncaavolleyballr versions 0.5.0 dated 2025-10-11 and 0.5.1 dated 2026-01-07
DESCRIPTION | 6 +++--- MD5 | 34 +++++++++++++++++----------------- NEWS.md | 9 +++++++++ R/conference_stats.R | 6 ++++-- R/division_stats.R | 6 ++++-- R/group_stats.R | 27 ++++++++++++++++++++++----- R/match_pbp.R | 8 ++++++-- README.md | 28 ++++++++++++++-------------- build/vignette.rds |binary inst/CITATION | 4 ++-- inst/doc/data.Rmd | 5 +++++ inst/doc/data.html | 10 ++++++++++ man/conference_stats.Rd | 5 ++++- man/division_stats.Rd | 5 ++++- man/group_stats.Rd | 5 ++++- tests/testthat/test-match_pbp.R | 4 +++- tests/testthat/test-utils.R | 2 +- vignettes/data.Rmd | 5 +++++ 18 files changed, 117 insertions(+), 52 deletions(-)
More information about ncaavolleyballr at CRAN
Permanent link
Title: Machine Learning and Mapping for Spatial Epidemiology
Description: Provides tools for the integration, visualisation, and modelling of spatial epidemiological data using the method described in Azeez, A., & Noel, C. (2025). 'Predictive Modelling and Spatial Distribution of Pancreatic Cancer in Africa Using Machine Learning-Based Spatial Model' <doi:10.5281/zenodo.16529986> and <doi:10.5281/zenodo.16529016>. It facilitates the analysis of geographic health data by combining modern spatial mapping tools with advanced machine learning (ML) algorithms. 'mlspatial' enables users to import and pre-process shapefile and associated demographic or disease incidence data, generate richly annotated thematic maps, and apply predictive models, including Random Forest, 'XGBoost', and Support Vector Regression, to identify spatial patterns and risk factors. It is suited for spatial epidemiologists, public health researchers, and GIS analysts aiming to uncover hidden geographic patterns in health-related outcomes and inform evidence-based intervention [...truncated...]
Author: Adeboye Azeez [aut, cre],
Colin Noel [aut]
Maintainer: Adeboye Azeez <azizadeboye@gmail.com>
Diff between mlspatial versions 0.1.0 dated 2025-08-26 and 0.1.1 dated 2026-01-07
DESCRIPTION | 8 MD5 | 16 R/train_MLmodels.R | 31 - build/vignette.rds |binary inst/doc/mlspatial.R | 79 +-- inst/doc/mlspatial.Rmd | 95 ++-- inst/doc/mlspatial.html | 1094 ++++++++++++------------------------------------ man/train_xgb.Rd | 4 vignettes/mlspatial.Rmd | 95 ++-- 9 files changed, 490 insertions(+), 932 deletions(-)
Title: Interval Estimation by Likelihood Method
Description: Currently used CI method has its limitation when the test statistics are asymmetrical (chi-square test, F-test) or the model functions are non-linear. It can be overcome by using the likelihood functions for the interval estimation. 'inteli' package now supports interval estimation for the mean, variance, variance ratio, binomial distribution, Poisson distribution, odds ratio, risk difference, relative risk and their likelihood function plots. Testing functions are also provided.
Author: Minkyu Kim [aut, cre],
Kyun-Seop Bae [aut]
Maintainer: Minkyu Kim <mkim@acr.kr>
Diff between inteli versions 0.1.1 dated 2025-12-02 and 0.1.2 dated 2026-01-07
inteli-0.1.1/inteli/LICENSE |only inteli-0.1.1/inteli/NEWS.md |only inteli-0.1.1/inteli/R/varE.R |only inteli-0.1.1/inteli/R/varEplot.R |only inteli-0.1.1/inteli/R/varR.R |only inteli-0.1.1/inteli/R/varRplot.R |only inteli-0.1.1/inteli/man/varE.Rd |only inteli-0.1.1/inteli/man/varEplot.Rd |only inteli-0.1.1/inteli/man/varR.Rd |only inteli-0.1.1/inteli/man/varRplot.Rd |only inteli-0.1.2/inteli/DESCRIPTION | 25 ++++++----- inteli-0.1.2/inteli/MD5 | 40 +++++++++++------ inteli-0.1.2/inteli/NAMESPACE | 26 +++++++++-- inteli-0.1.2/inteli/R/lib.R |only inteli-0.1.2/inteli/R/lim.R |only inteli-0.1.2/inteli/R/liod.R |only inteli-0.1.2/inteli/R/lipois.R |only inteli-0.1.2/inteli/R/lir.R |only inteli-0.1.2/inteli/R/lird.R |only inteli-0.1.2/inteli/R/lirr.R |only inteli-0.1.2/inteli/R/liv.R |only inteli-0.1.2/inteli/R/qlib.R |only inteli-0.1.2/inteli/R/qlim.R |only inteli-0.1.2/inteli/R/qlipois.R |only inteli-0.1.2/inteli/R/qliv.R |only inteli-0.1.2/inteli/man/inteli-package.Rd | 68 +++++++++++++++--------------- inteli-0.1.2/inteli/man/lib.Rd |only inteli-0.1.2/inteli/man/lim.Rd |only inteli-0.1.2/inteli/man/liod.Rd |only inteli-0.1.2/inteli/man/lipois.Rd |only inteli-0.1.2/inteli/man/lir.Rd |only inteli-0.1.2/inteli/man/lird.Rd |only inteli-0.1.2/inteli/man/lirr.Rd |only inteli-0.1.2/inteli/man/liv.Rd |only inteli-0.1.2/inteli/man/qlib.Rd |only inteli-0.1.2/inteli/man/qlim.Rd |only inteli-0.1.2/inteli/man/qlipois.Rd |only inteli-0.1.2/inteli/man/qliv.Rd |only 38 files changed, 100 insertions(+), 59 deletions(-)
Title: Estimate Functional and Stochastic Parameters of Linear Models
with Correlated Residuals and Missing Data
Description: Implements the Generalized Method of Wavelet Moments with Exogenous Inputs estimator (GMWMX) presented in Voirol, L., Xu, H., Zhang, Y., Insolia, L., Molinari, R. and Guerrier, S. (2024) <doi:10.48550/arXiv.2409.05160>.
The GMWMX estimator allows to estimate functional and stochastic parameters of linear models with correlated residuals in presence of missing data.
The 'gmwmx2' package provides functions to load and plot Global Navigation Satellite System (GNSS) data from the Nevada Geodetic Laboratory and functions to estimate linear model model with correlated residuals in presence of missing data.
Author: Lionel Voirol [aut, cre] ,
Haotian Xu [aut] ,
Yuming Zhang [aut] ,
Luca Insolia [aut] ,
Roberto Molinari [aut] ,
Stephane Guerrier [aut]
Maintainer: Lionel Voirol <lionelvoirol@hotmail.com>
Diff between gmwmx2 versions 0.0.3 dated 2025-08-19 and 0.0.4 dated 2026-01-07
DESCRIPTION | 8 MD5 | 20 - NAMESPACE | 1 NEWS.md | 4 R/ngl.R | 437 ++++++++++++++++++++++------------- build/vignette.rds |binary inst/doc/estimate_small_network.html | 127 +++++----- inst/doc/fit_model.html | 173 ++++++------- inst/doc/load_plot_data_ngl.html | 87 +++--- inst/doc/plot_large_network.html | 5 man/download_station_ngl.Rd | 8 11 files changed, 509 insertions(+), 361 deletions(-)
Title: Functions to Analyze Single System Data
Description: Functions to visually and statistically analyze single system data.
Author: Charles Auerbach [aut, cre],
Wendy Zeitlin [aut]
Maintainer: Charles Auerbach <auerbach@yu.edu>
Diff between SSDforR versions 2.3 dated 2025-11-17 and 2.4 dated 2026-01-07
DESCRIPTION | 8 ++++---- MD5 | 26 +++++++++++++------------- R/TauUabove.R | 2 +- R/TauUbelow.R | 2 +- R/meanabove.R | 2 +- R/meanbelow.R | 2 +- R/medabove.R | 2 +- R/medbelow.R | 2 +- R/regabove.R | 2 +- R/regbelow.R | 2 +- R/robregabove.R | 2 +- R/robregbelow.R | 2 +- R/trimabove.R | 2 +- R/trimbelow.R | 2 +- 14 files changed, 29 insertions(+), 29 deletions(-)
Title: Spatial Bayesian Factor Analysis
Description: Implements a spatial Bayesian non-parametric factor analysis model
with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC).
Spatial correlation is introduced in the columns of the factor loadings
matrix using a Bayesian non-parametric prior, the probit stick-breaking
process. Areal spatial data is modeled using a conditional autoregressive
(CAR) prior and point-referenced spatial data is treated using a Gaussian
process. The response variable can be modeled as Gaussian, probit, Tobit, or
Binomial (using Polya-Gamma augmentation). Temporal correlation is
introduced for the latent factors through a hierarchical structure and can
be specified as exponential or first-order autoregressive. Full details of
the package can be found in the accompanying vignette. Furthermore, the
details of the package can be found in "Bayesian Non-Parametric Factor
Analysis for Longitudinal Spatial Surfaces", by Berchuck et al (2019),
<doi:10.1214/20-BA1253> in Bayesian Analysis.
Author: Samuel I. Berchuck [aut, cre]
Maintainer: Samuel I. Berchuck <sib2@duke.edu>
Diff between spBFA versions 1.4.0 dated 2025-09-30 and 1.5.0 dated 2026-01-07
DESCRIPTION | 8 ++++---- MD5 | 10 +++++----- NEWS.md | 4 ++++ data/reg.bfa_sp.rda |binary inst/doc/spBFA-example.html | 9 +++++---- src/Makevars | 10 +++++++++- 6 files changed, 27 insertions(+), 14 deletions(-)
Title: Fit and Compare Species-Area Relationship Models Using
Multimodel Inference
Description: Implements the basic elements of the multi-model
inference paradigm for up to twenty species-area relationship models (SAR), using simple
R list-objects and functions, as in Triantis et al. 2012 <DOI:10.1111/j.1365-2699.2011.02652.x>.
The package is scalable and users can easily create their own model and data objects. Additional
SAR related functions are provided.
Author: Thomas J. Matthews [aut, cre] ,
Francois Guilhaumon [aut] ,
Kevin Cazelles [rev]
Maintainer: Thomas J. Matthews <txm676@gmail.com>
Diff between sars versions 2.1.0 dated 2025-12-11 and 2.1.1 dated 2026-01-07
DESCRIPTION | 8 MD5 | 29 +- NAMESPACE | 2 NEWS.md | 7 R/class_summary.R | 16 + R/sar_threshold.R | 169 +++++++++--- build/vignette.rds |binary inst/doc/sars-r-package.Rmd | 13 inst/doc/sars-r-package.html | 52 ++- man/countryside_extrap.Rd | 124 ++++----- man/logLik.thresholdInt.Rd |only man/sar_countryside.Rd | 524 +++++++++++++++++++-------------------- man/sar_threshold.Rd | 104 ++++--- tests/testthat/test_thresholds.R | 3 tests/testthat/test_weibull3.R | 4 vignettes/sars-r-package.Rmd | 13 16 files changed, 605 insertions(+), 463 deletions(-)
Title: An Analyzer of International Large Scale Assessments in
Education
Description: An easy way to analyze international large-scale assessments and surveys in education or any other dataset that includes replicated weights (Balanced Repeated Replication (BRR) weights, Jackknife replicate weights,...) while also allowing for analysis with multiply imputed variables (plausible values). It supports the estimation of univariate statistics (e.g. mean, variance, standard deviation, quantiles), frequencies, correlation, linear regression and any other model already implemented in R that takes a data frame and weights as parameters. It also includes options to prepare the results for publication, following the table formatting standards of the Organization for Economic Cooperation and Development (OECD).
Author: Rodolfo Ilizaliturri [aut, cre],
Francesco Avvisati [aut],
Francois Keslair [aut]
Maintainer: Rodolfo Ilizaliturri <rodolfo.ilizaliturri@oecd.org>
Diff between Rrepest versions 1.5.4 dated 2025-02-19 and 1.6.9 dated 2026-01-07
DESCRIPTION | 12 +++--- MD5 | 47 ++++++++++++------------ NAMESPACE | 6 ++- R/coverage_column.R | 33 ++++++++++++++--- R/flags.R | 2 - R/n_obs_x.R | 2 - R/pv_rrepest_frequencies.R | 12 ++++-- R/pv_rrepest_lin_reg.R | 15 +++---- R/pv_rrepest_logistic_reg.R | 11 ++--- R/pv_rrepest_odds_ratio.R | 11 ++--- R/pv_rrepest_quantiletable.R |only R/repest_auxiliaries.R | 33 ++++++++++++++--- R/rrepest.R | 43 ++++++++++++++++++++-- R/rrepest_base.R | 57 ++++++++++++++++++++++++++--- README.md | 4 +- man/Rrepest.Rd | 3 + man/coverage_daggers.Rd | 54 ++++++++++++++-------------- man/format_data_categ_vars.Rd | 48 ++++++++++++------------- man/format_data_cont_vars.Rd | 44 +++++++++++------------ man/format_data_repest.Rd | 66 +++++++++++++++++----------------- man/indep_diff.Rd | 48 ++++++++++++------------- man/paired_indep_diff.Rd | 52 +++++++++++++-------------- man/rrepest_pisa_age_gender.Rd | 62 ++++++++++++++++---------------- man/rrepest_pisa_age_isced.Rd | 78 ++++++++++++++++++++--------------------- man/talis18_tt3g23o_freq.Rd | 66 +++++++++++++++++----------------- 25 files changed, 471 insertions(+), 338 deletions(-)
Title: Tools for Managing Imaging FlowCytobot (IFCB) Data
Description: A comprehensive suite of tools for managing, processing, and
analyzing data from the IFCB. I R FlowCytobot ('iRfcb') supports
quality control, geospatial analysis, and preparation of IFCB data for
publication in databases like <https://www.gbif.org>,
<https://www.obis.org>, <https://emodnet.ec.europa.eu/en>,
<https://shark.smhi.se/en/>, and <https://www.ecotaxa.org>. The package
integrates with the MATLAB 'ifcb-analysis' tool, which is described in
Sosik and Olson (2007) <doi:10.4319/lom.2007.5.204>, and provides
features for working with raw, manually classified, and machine
learning–classified image datasets. Key functionalities include image
extraction, particle size distribution analysis, taxonomic data
handling, and biomass concentration calculations, essential for
plankton research.
Author: Anders Torstensson [aut, cre] ,
Kendra Hayashi [ctb] ,
Jamie Enslein [ctb],
Raphael Kudela [ctb] ,
Alle Lie [ctb] ,
Jayme Smith [ctb] ,
DTO-BioFlow [fnd] ,
SBDI [fnd]
Maintainer: Anders Torstensson <anders.torstensson@smhi.se>
Diff between iRfcb versions 0.6.0 dated 2025-11-20 and 0.7.0 dated 2026-01-07
iRfcb-0.6.0/iRfcb/inst/doc/a-general-tutorial.R |only iRfcb-0.6.0/iRfcb/inst/doc/a-general-tutorial.Rmd |only iRfcb-0.6.0/iRfcb/inst/doc/a-general-tutorial.html |only iRfcb-0.6.0/iRfcb/inst/doc/qc-tutorial.R |only iRfcb-0.6.0/iRfcb/inst/doc/qc-tutorial.Rmd |only iRfcb-0.6.0/iRfcb/inst/doc/qc-tutorial.html |only iRfcb-0.6.0/iRfcb/vignettes/a-general-tutorial.Rmd |only iRfcb-0.6.0/iRfcb/vignettes/qc-tutorial.Rmd |only iRfcb-0.7.0/iRfcb/DESCRIPTION | 11 iRfcb-0.7.0/iRfcb/LICENSE | 4 iRfcb-0.7.0/iRfcb/LICENSE.note | 64 iRfcb-0.7.0/iRfcb/MD5 | 425 +- iRfcb-0.7.0/iRfcb/NAMESPACE | 406 +- iRfcb-0.7.0/iRfcb/NEWS.md | 35 iRfcb-0.7.0/iRfcb/R/defunct.R | 56 iRfcb-0.7.0/iRfcb/R/iRfcb-package.R | 72 iRfcb-0.7.0/iRfcb/R/ifcb_adjust_classes.R | 106 iRfcb-0.7.0/iRfcb/R/ifcb_annotate_batch.R | 350 +- iRfcb-0.7.0/iRfcb/R/ifcb_annotate_samples.R |only iRfcb-0.7.0/iRfcb/R/ifcb_convert_filenames.R | 139 iRfcb-0.7.0/iRfcb/R/ifcb_correct_annotation.R | 229 - iRfcb-0.7.0/iRfcb/R/ifcb_count_mat_annotations.R | 266 - iRfcb-0.7.0/iRfcb/R/ifcb_create_class2use.R | 96 iRfcb-0.7.0/iRfcb/R/ifcb_create_empty_manual_file.R | 139 iRfcb-0.7.0/iRfcb/R/ifcb_create_manifest.R | 131 iRfcb-0.7.0/iRfcb/R/ifcb_create_manual_file.R |only iRfcb-0.7.0/iRfcb/R/ifcb_download_dashboard_data.R | 773 ++--- iRfcb-0.7.0/iRfcb/R/ifcb_download_dashboard_metadata.R | 132 iRfcb-0.7.0/iRfcb/R/ifcb_download_test_data.R | 275 - iRfcb-0.7.0/iRfcb/R/ifcb_download_whoi_plankton.R | 352 +- iRfcb-0.7.0/iRfcb/R/ifcb_extract_annotated_images.R | 329 +- iRfcb-0.7.0/iRfcb/R/ifcb_extract_biovolumes.R | 709 ++-- iRfcb-0.7.0/iRfcb/R/ifcb_extract_classified_images.R | 278 - iRfcb-0.7.0/iRfcb/R/ifcb_extract_pngs.R | 344 +- iRfcb-0.7.0/iRfcb/R/ifcb_get_ecotaxa_example.R | 80 iRfcb-0.7.0/iRfcb/R/ifcb_get_ferrybox_data.R | 406 +- iRfcb-0.7.0/iRfcb/R/ifcb_get_mat_names.R | 86 iRfcb-0.7.0/iRfcb/R/ifcb_get_mat_variable.R | 114 iRfcb-0.7.0/iRfcb/R/ifcb_get_runtime.R | 156 - iRfcb-0.7.0/iRfcb/R/ifcb_get_shark_colnames.R | 78 iRfcb-0.7.0/iRfcb/R/ifcb_get_shark_example.R | 48 iRfcb-0.7.0/iRfcb/R/ifcb_get_trophic_type.R | 160 - iRfcb-0.7.0/iRfcb/R/ifcb_helper_functions.R | 1534 ++++------ iRfcb-0.7.0/iRfcb/R/ifcb_is_diatom.R | 139 iRfcb-0.7.0/iRfcb/R/ifcb_is_in_basin.R | 180 - iRfcb-0.7.0/iRfcb/R/ifcb_is_near_land.R | 508 +-- iRfcb-0.7.0/iRfcb/R/ifcb_list_dashboard_bins.R | 108 iRfcb-0.7.0/iRfcb/R/ifcb_match_taxa_names.R | 222 - iRfcb-0.7.0/iRfcb/R/ifcb_merge_manual.R | 406 +- iRfcb-0.7.0/iRfcb/R/ifcb_prepare_whoi_plankton.R | 638 ++-- iRfcb-0.7.0/iRfcb/R/ifcb_psd.R | 499 +-- iRfcb-0.7.0/iRfcb/R/ifcb_psd_plot.R | 326 +- iRfcb-0.7.0/iRfcb/R/ifcb_py_install.R | 196 - iRfcb-0.7.0/iRfcb/R/ifcb_read_features.R | 160 - iRfcb-0.7.0/iRfcb/R/ifcb_read_hdr_data.R | 216 - iRfcb-0.7.0/iRfcb/R/ifcb_read_mat.R | 122 iRfcb-0.7.0/iRfcb/R/ifcb_read_summary.R | 341 +- iRfcb-0.7.0/iRfcb/R/ifcb_replace_mat_values.R | 148 iRfcb-0.7.0/iRfcb/R/ifcb_run_image_gallery.R | 60 iRfcb-0.7.0/iRfcb/R/ifcb_summarize_biovolumes.R | 350 +- iRfcb-0.7.0/iRfcb/R/ifcb_summarize_class_counts.R | 280 - iRfcb-0.7.0/iRfcb/R/ifcb_summarize_png_counts.R | 364 +- iRfcb-0.7.0/iRfcb/R/ifcb_summarize_png_metadata.R | 176 - iRfcb-0.7.0/iRfcb/R/ifcb_volume_analyzed.R | 130 iRfcb-0.7.0/iRfcb/R/ifcb_volume_analyzed_from_adc.R | 164 - iRfcb-0.7.0/iRfcb/R/ifcb_which_basin.R | 192 - iRfcb-0.7.0/iRfcb/R/ifcb_zip_images_by_class.R |only iRfcb-0.7.0/iRfcb/R/ifcb_zip_matlab.R | 629 ++-- iRfcb-0.7.0/iRfcb/R/ifcb_zip_pngs.R | 391 +- iRfcb-0.7.0/iRfcb/R/zzz.R | 133 iRfcb-0.7.0/iRfcb/README.md | 218 - iRfcb-0.7.0/iRfcb/build/partial.rdb |binary iRfcb-0.7.0/iRfcb/build/vignette.rds |binary iRfcb-0.7.0/iRfcb/inst/CITATION | 22 iRfcb-0.7.0/iRfcb/inst/WORDLIST | 510 +-- iRfcb-0.7.0/iRfcb/inst/doc/introduction.R |only iRfcb-0.7.0/iRfcb/inst/doc/introduction.Rmd |only iRfcb-0.7.0/iRfcb/inst/doc/introduction.html |only iRfcb-0.7.0/iRfcb/inst/exdata/MATLAB-template.md | 232 - iRfcb-0.7.0/iRfcb/inst/exdata/README-template.md | 36 iRfcb-0.7.0/iRfcb/inst/exdata/ecotaxa_table_minimum.tsv | 10 iRfcb-0.7.0/iRfcb/inst/exdata/ecotaxa_table_with_classification.tsv | 22 iRfcb-0.7.0/iRfcb/inst/exdata/ecotaxa_table_without_classification.tsv | 18 iRfcb-0.7.0/iRfcb/inst/exdata/example.txt | 6 iRfcb-0.7.0/iRfcb/inst/exdata/example_ferrybox.txt | 6 iRfcb-0.7.0/iRfcb/inst/exdata/example_table_ifcb.tsv | 6 iRfcb-0.7.0/iRfcb/inst/python/create_manual_mat.py | 78 iRfcb-0.7.0/iRfcb/inst/python/edit_manual_file.py | 32 iRfcb-0.7.0/iRfcb/inst/python/psd.py | 920 ++--- iRfcb-0.7.0/iRfcb/inst/python/read_mat_file.py | 150 iRfcb-0.7.0/iRfcb/inst/python/replace_value_in_classlist.py | 56 iRfcb-0.7.0/iRfcb/inst/python/requirements.txt | 6 iRfcb-0.7.0/iRfcb/inst/python/save_class2use_to_mat.py | 20 iRfcb-0.7.0/iRfcb/inst/python/start_mc_adjust_classes_user_training.py | 62 iRfcb-0.7.0/iRfcb/inst/shiny/ifcb_image_gallery/server.R | 290 - iRfcb-0.7.0/iRfcb/inst/shiny/ifcb_image_gallery/ui.R | 66 iRfcb-0.7.0/iRfcb/man/create_package_manifest.Rd | 50 iRfcb-0.7.0/iRfcb/man/defunct.Rd | 32 iRfcb-0.7.0/iRfcb/man/figures/lifecycle-archived.svg | 42 iRfcb-0.7.0/iRfcb/man/figures/lifecycle-defunct.svg | 42 iRfcb-0.7.0/iRfcb/man/figures/lifecycle-deprecated.svg | 42 iRfcb-0.7.0/iRfcb/man/figures/lifecycle-experimental.svg | 42 iRfcb-0.7.0/iRfcb/man/figures/lifecycle-maturing.svg | 42 iRfcb-0.7.0/iRfcb/man/figures/lifecycle-questioning.svg | 42 iRfcb-0.7.0/iRfcb/man/figures/lifecycle-soft-deprecated.svg | 42 iRfcb-0.7.0/iRfcb/man/figures/lifecycle-stable.svg | 58 iRfcb-0.7.0/iRfcb/man/figures/lifecycle-superseded.svg | 42 iRfcb-0.7.0/iRfcb/man/iRfcb-package.Rd | 72 iRfcb-0.7.0/iRfcb/man/ifcb_adjust_classes.Rd | 94 iRfcb-0.7.0/iRfcb/man/ifcb_annotate_batch.Rd | 176 - iRfcb-0.7.0/iRfcb/man/ifcb_annotate_samples.Rd |only iRfcb-0.7.0/iRfcb/man/ifcb_convert_filenames.Rd | 84 iRfcb-0.7.0/iRfcb/man/ifcb_correct_annotation.Rd | 152 iRfcb-0.7.0/iRfcb/man/ifcb_count_mat_annotations.Rd | 122 iRfcb-0.7.0/iRfcb/man/ifcb_create_class2use.Rd | 86 iRfcb-0.7.0/iRfcb/man/ifcb_create_empty_manual_file.Rd | 131 iRfcb-0.7.0/iRfcb/man/ifcb_create_manifest.Rd | 84 iRfcb-0.7.0/iRfcb/man/ifcb_create_manual_file.Rd |only iRfcb-0.7.0/iRfcb/man/ifcb_download_dashboard_data.Rd | 197 - iRfcb-0.7.0/iRfcb/man/ifcb_download_dashboard_metadata.Rd | 76 iRfcb-0.7.0/iRfcb/man/ifcb_download_test_data.Rd | 111 iRfcb-0.7.0/iRfcb/man/ifcb_download_whoi_plankton.Rd | 94 iRfcb-0.7.0/iRfcb/man/ifcb_extract_annotated_images.Rd | 195 - iRfcb-0.7.0/iRfcb/man/ifcb_extract_biovolumes.Rd | 266 - iRfcb-0.7.0/iRfcb/man/ifcb_extract_classified_images.Rd | 184 - iRfcb-0.7.0/iRfcb/man/ifcb_extract_pngs.Rd | 144 iRfcb-0.7.0/iRfcb/man/ifcb_get_ecotaxa_example.Rd | 76 iRfcb-0.7.0/iRfcb/man/ifcb_get_ferrybox_data.Rd | 115 iRfcb-0.7.0/iRfcb/man/ifcb_get_mat_names.Rd | 86 iRfcb-0.7.0/iRfcb/man/ifcb_get_mat_variable.Rd | 114 iRfcb-0.7.0/iRfcb/man/ifcb_get_runtime.Rd | 68 iRfcb-0.7.0/iRfcb/man/ifcb_get_shark_colnames.Rd | 62 iRfcb-0.7.0/iRfcb/man/ifcb_get_shark_example.Rd | 48 iRfcb-0.7.0/iRfcb/man/ifcb_get_trophic_type.Rd | 74 iRfcb-0.7.0/iRfcb/man/ifcb_is_diatom.Rd | 116 iRfcb-0.7.0/iRfcb/man/ifcb_is_in_basin.Rd | 86 iRfcb-0.7.0/iRfcb/man/ifcb_is_near_land.Rd | 170 - iRfcb-0.7.0/iRfcb/man/ifcb_list_dashboard_bins.Rd | 64 iRfcb-0.7.0/iRfcb/man/ifcb_match_taxa_names.Rd | 123 iRfcb-0.7.0/iRfcb/man/ifcb_merge_manual.Rd | 162 - iRfcb-0.7.0/iRfcb/man/ifcb_prepare_whoi_plankton.Rd | 246 - iRfcb-0.7.0/iRfcb/man/ifcb_psd.Rd | 306 - iRfcb-0.7.0/iRfcb/man/ifcb_psd_plot.Rd | 144 iRfcb-0.7.0/iRfcb/man/ifcb_py_install.Rd | 106 iRfcb-0.7.0/iRfcb/man/ifcb_read_features.Rd | 99 iRfcb-0.7.0/iRfcb/man/ifcb_read_hdr_data.Rd | 84 iRfcb-0.7.0/iRfcb/man/ifcb_read_mat.Rd | 78 iRfcb-0.7.0/iRfcb/man/ifcb_read_summary.Rd | 108 iRfcb-0.7.0/iRfcb/man/ifcb_replace_mat_values.Rd | 106 iRfcb-0.7.0/iRfcb/man/ifcb_run_image_gallery.Rd | 58 iRfcb-0.7.0/iRfcb/man/ifcb_summarize_biovolumes.Rd | 256 - iRfcb-0.7.0/iRfcb/man/ifcb_summarize_class_counts.Rd | 110 iRfcb-0.7.0/iRfcb/man/ifcb_summarize_png_counts.Rd | 128 iRfcb-0.7.0/iRfcb/man/ifcb_summarize_png_metadata.Rd | 78 iRfcb-0.7.0/iRfcb/man/ifcb_volume_analyzed.Rd | 78 iRfcb-0.7.0/iRfcb/man/ifcb_volume_analyzed_from_adc.Rd | 80 iRfcb-0.7.0/iRfcb/man/ifcb_which_basin.Rd | 86 iRfcb-0.7.0/iRfcb/man/ifcb_zip_images_by_class.Rd |only iRfcb-0.7.0/iRfcb/man/ifcb_zip_matlab.Rd | 190 - iRfcb-0.7.0/iRfcb/man/ifcb_zip_pngs.Rd | 136 iRfcb-0.7.0/iRfcb/man/process_ifcb_string.Rd | 70 iRfcb-0.7.0/iRfcb/man/read_hdr_file.Rd | 34 iRfcb-0.7.0/iRfcb/man/retrieve_worms_records.Rd | 74 iRfcb-0.7.0/iRfcb/man/split_large_zip.Rd | 56 iRfcb-0.7.0/iRfcb/man/summarize_TBclass.Rd | 48 iRfcb-0.7.0/iRfcb/man/vol2C_lgdiatom.Rd | 54 iRfcb-0.7.0/iRfcb/man/vol2C_nondiatom.Rd | 54 iRfcb-0.7.0/iRfcb/tests/spelling.R | 6 iRfcb-0.7.0/iRfcb/tests/testthat.R | 24 iRfcb-0.7.0/iRfcb/tests/testthat/helper.R | 254 - iRfcb-0.7.0/iRfcb/tests/testthat/setup-venv.R | 42 iRfcb-0.7.0/iRfcb/tests/testthat/test-defunct.R | 14 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_adjust_classes.R | 109 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_annotate_batch.R | 266 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_annotate_samples.R |only iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_convert_filenames.R | 199 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_correct_annotation.R | 466 +-- iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_count_mat_annotations.R | 142 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_create_class2use.R | 46 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_create_empty_manual_file.R | 104 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_create_manifest.R | 207 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_create_manual_file.R |only iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_download_dashboard_data.R | 322 +- iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_download_dashboard_metadata.R | 28 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_download_test_data.R | 90 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_download_whoi_plankton.R | 42 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_extract_annotated_images.R | 305 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_extract_biovolumes.R | 446 +- iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_extract_classified_images.R | 482 +-- iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_extract_pngs.R | 152 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_get_ecotaxa_example.R | 76 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_get_ferrybox_data.R | 340 +- iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_get_mat_names.R | 86 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_get_mat_variable.R | 118 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_get_runtime.R | 158 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_get_shark_colnames.R | 74 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_get_shark_example.R | 58 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_get_trophic_type.R | 80 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_is_diatom.R | 121 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_is_in_basin.R | 118 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_is_near_land.R | 162 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_list_dashboard_bins.R | 26 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_match_taxa_names.R | 64 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_merge_manual.R | 266 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_prepare_whoi_plankton.R | 299 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_psd.R | 240 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_psd_plot.R | 196 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_py_install.R | 116 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_read_features.R | 120 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_read_hdr_data.R | 153 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_read_summary.R | 220 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_replace_mat_values.R | 280 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_run_image_gallery.R | 34 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_summarize_biovolumes.R | 230 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_summarize_class_counts.R | 88 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_summarize_png_counts.R | 230 - iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_summarize_png_metadata.R | 132 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_volume_analyzed.R | 94 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_volume_analyzed_from_adc.R | 79 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_which_basin.R | 130 iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_zip_images_by_class.R |only iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_zip_matlab.R | 276 + iRfcb-0.7.0/iRfcb/tests/testthat/test-ifcb_zip_pngs.R | 157 - iRfcb-0.7.0/iRfcb/vignettes/introduction.Rmd |only 224 files changed, 17108 insertions(+), 16661 deletions(-)
Title: Interactive Charts with the 'JavaScript' 'VChart' Library
Description: Provides an 'htmlwidgets' interface to 'VChart.js'.
'VChart', more than just a cross-platform charting library, but also an expressive data storyteller.
'VChart' examples and documentation are available here: <https://www.visactor.io/vchart>.
Author: Victor Perrier [aut, cre],
Fanny Meyer [aut]
Maintainer: Victor Perrier <victor.perrier@dreamrs.fr>
Diff between vchartr versions 0.1.4 dated 2025-01-15 and 0.1.5 dated 2026-01-07
DESCRIPTION | 8 MD5 | 23 NEWS.md | 41 - R/data.R | 408 +++++++-------- R/shiny.R | 60 +- build/vignette.rds |binary inst/doc/vchartr.R | 18 inst/doc/vchartr.html | 870 ++++++++++++++++----------------- inst/htmlwidgets/vchart.js | 3 inst/htmlwidgets/vchart.js.LICENSE.txt |only man/temperatures.Rd | 2 man/v_hist.Rd | 7 man/v_smooth.Rd | 2 13 files changed, 725 insertions(+), 717 deletions(-)
Title: Swash-Backwash Model for the Single Epidemic Wave
Description: The Swash-Backwash Model for the Single Epidemic Wave was developed by Cliff and Haggett (2006) <doi:10.1007/s10109-006-0027-8> to model the velocity of spread of infectious diseases across space. This package enables the calculation of the Swash-Backwash Model for user-supplied panel data on regional infections. The package provides additional functions for bootstrap confidence intervals, country comparison, visualization of results, and data management. Furthermore, it contains several functions for analysis and visualization of (spatial) infection data.
Author: Thomas Wieland [aut, cre]
Maintainer: Thomas Wieland <geowieland@googlemail.com>
Diff between swash versions 1.2.2 dated 2025-07-07 and 1.3.0 dated 2026-01-07
DESCRIPTION | 12 MD5 | 52 - NAMESPACE | 28 R/swash.R | 1667 ++++++++++++++++++++++++++++++-------- data/C19dNUTSdata.rda |only data/Infections.rda |only data/datalist | 3 data/did_fatalities_splm_coef.rda |only man/C19dNUTSdata.Rd |only man/Infections.Rd |only man/as_balanced.Rd | 15 man/binary_metrics.Rd |only man/binary_metrics_glm.Rd |only man/compare_countries.Rd | 15 man/confint-methods.Rd | 14 man/did_fatalities_splm_coef.Rd |only man/expgrowth-class.Rd |only man/exponential_growth.Rd | 18 man/is_balanced.Rd | 16 man/loggrowth-class.Rd | 13 man/logistic_growth.Rd | 3 man/metrics.Rd |only man/plot_breakpoints.Rd |only man/plot_coef_ci.Rd |only man/plot_regions-methods.Rd | 19 man/plot_regions.Rd | 54 + man/print-methods.Rd | 9 man/sbm-class.Rd | 5 man/sbm_ci-class.Rd | 13 man/show-methods.Rd | 12 man/summary-methods.Rd | 9 man/swash-package.Rd | 44 - man/swash.Rd | 4 33 files changed, 1567 insertions(+), 458 deletions(-)
Title: Standardized Moderation Effect and Its Confidence Interval
Description: Functions for computing a standardized moderation effect
in moderated regression and forming its confidence interval
by nonparametric bootstrapping as proposed in
Cheung, Cheung, Lau, Hui, and Vong (2022)
<doi:10.1037/hea0001188>. Also includes simple-to-use
functions for computing conditional effects (unstandardized
or standardized) and plotting moderation effects.
Author: Shu Fai Cheung [aut, cre] ,
David Weng Ngai Vong [ctb]
Maintainer: Shu Fai Cheung <shufai.cheung@gmail.com>
Diff between stdmod versions 0.2.11 dated 2024-09-22 and 0.2.12 dated 2026-01-07
stdmod-0.2.11/stdmod/inst/doc/moderation.R |only stdmod-0.2.11/stdmod/inst/doc/std_selected.R |only stdmod-0.2.11/stdmod/inst/doc/stdmod.R |only stdmod-0.2.11/stdmod/inst/doc/stdmod_lavaan.R |only stdmod-0.2.11/stdmod/vignettes/eg2_lm_xwy_std_ci.rds |only stdmod-0.2.11/stdmod/vignettes/eg_lm_xwy_std_ci.rds |only stdmod-0.2.11/stdmod/vignettes/egl_lavaan_boot.rds |only stdmod-0.2.11/stdmod/vignettes/stdmod_lm_std1_boot.rds |only stdmod-0.2.11/stdmod/vignettes/stdmod_lm_stdall_boot.rds |only stdmod-0.2.12/stdmod/DESCRIPTION | 11 stdmod-0.2.12/stdmod/MD5 | 54 stdmod-0.2.12/stdmod/NEWS.md | 10 stdmod-0.2.12/stdmod/README.md | 2 stdmod-0.2.12/stdmod/build/partial.rdb |binary stdmod-0.2.12/stdmod/build/vignette.rds |binary stdmod-0.2.12/stdmod/inst/doc/moderation.Rmd | 654 ++++--- stdmod-0.2.12/stdmod/inst/doc/moderation.html | 147 - stdmod-0.2.12/stdmod/inst/doc/plotmod.html | 30 stdmod-0.2.12/stdmod/inst/doc/std_selected.Rmd | 807 +++++---- stdmod-0.2.12/stdmod/inst/doc/std_selected.html | 136 - stdmod-0.2.12/stdmod/inst/doc/stdmod.Rmd | 863 ++++++---- stdmod-0.2.12/stdmod/inst/doc/stdmod.html | 4 stdmod-0.2.12/stdmod/inst/doc/stdmod_lavaan.Rmd | 454 +++-- stdmod-0.2.12/stdmod/inst/doc/stdmod_lavaan.html | 10 stdmod-0.2.12/stdmod/vignettes/mod_reg-1.png |only stdmod-0.2.12/stdmod/vignettes/mod_reg_stdall-1.png |only stdmod-0.2.12/stdmod/vignettes/moderation.Rmd | 654 ++++--- stdmod-0.2.12/stdmod/vignettes/moderation.Rmd.original |only stdmod-0.2.12/stdmod/vignettes/std_selected.Rmd | 807 +++++---- stdmod-0.2.12/stdmod/vignettes/std_selected.Rmd.original |only stdmod-0.2.12/stdmod/vignettes/std_selected_lm_raw_plot-1.png |only stdmod-0.2.12/stdmod/vignettes/std_selected_lm_xw_std_plot-1.png |only stdmod-0.2.12/stdmod/vignettes/std_selected_lm_xwy_std_plot-1.png |only stdmod-0.2.12/stdmod/vignettes/stdmod.Rmd | 863 ++++++---- stdmod-0.2.12/stdmod/vignettes/stdmod.Rmd.original |only stdmod-0.2.12/stdmod/vignettes/stdmod_lavaan.Rmd | 454 +++-- stdmod-0.2.12/stdmod/vignettes/stdmod_lavaan.Rmd.original |only 37 files changed, 3640 insertions(+), 2320 deletions(-)
Title: Species Distribution Modelling for Rare Species
Description: Performs species distribution modeling for rare species with unprecedented accuracy (Mondanaro et al., 2023 <doi:10.1111/2041-210X.14066>) and finds the area of origin of species and past contact between them taking climatic variability in full consideration (Mondanaro et al., 2025 <doi:10.1111/2041-210X.14478>).
Author: Alessandro Mondanaro [aut],
Mirko Di Febbraro [aut],
Silvia Castiglione [aut, cre],
Carmela Serio [aut],
Marina Melchionna [aut],
Giorgia Girardi [aut],
Pasquale Raia [aut]
Maintainer: Silvia Castiglione <silvia.castiglione@unina.it>
Diff between RRgeo versions 0.0.5 dated 2025-07-02 and 0.0.6 dated 2026-01-07
DESCRIPTION | 12 ++++++------ MD5 | 30 +++++++++++++++--------------- R/ENphylo_modeling.R | 2 +- R/ENphylo_prediction.R | 2 +- R/IMPUTED_CALIBRATION.R | 42 ++++++++++++++++++++++++++++++++---------- R/RRphylogeography.R | 2 +- R/cal14C.R | 2 +- R/eucop_data_preparation.R | 2 +- R/getENphylo_results.R | 2 +- build/vignette.rds |binary man/ENphylo_modeling.Rd | 2 +- man/ENphylo_prediction.Rd | 2 +- man/RRphylogeography.Rd | 2 +- man/cal14C.Rd | 2 +- man/eucop_data_preparation.Rd | 2 +- man/getENphylo_results.Rd | 2 +- 16 files changed, 65 insertions(+), 43 deletions(-)
Title: Download and Tidy Time Series Data from the Australian Bureau of
Statistics
Description: Downloads, imports, and tidies time series data from the
Australian Bureau of Statistics <https://www.abs.gov.au/>.
Author: Matt Cowgill [aut, cre] ,
Zoe Meers [aut],
Jaron Lee [aut],
David Diviny [aut],
Hugh Parsonage [ctb],
Kinto Behr [ctb],
Angus Moore [ctb],
Francis Markham [ctb]
Maintainer: Matt Cowgill <mattcowgill@gmail.com>
Diff between readabs versions 0.4.19 dated 2025-05-18 and 0.4.20 dated 2026-01-07
DESCRIPTION | 6 +++--- MD5 | 14 +++++++------- NEWS.md | 3 +++ R/sysdata.rda |binary build/vignette.rds |binary tests/testthat/test-download_data_cube.R | 3 ++- tests/testthat/test-match_tables.R | 8 -------- tests/testthat/test-readabs.R | 24 ++++++++---------------- 8 files changed, 23 insertions(+), 35 deletions(-)
Title: Microclimatic Data Processing
Description: Handling the microclimatic data in R. The 'myClim' workflow begins
at the reading data primary from microclimatic dataloggers,
but can be also reading of meteorological station data from files.
Cleaning time step, time zone settings and metadata collecting is the next step of the work flow.
With 'myClim' tools one can crop, join, downscale, and convert microclimatic data formats, sort them into localities,
request descriptive characteristics and compute microclimatic variables.
Handy plotting functions are provided with smart defaults.
Author: Matej Man [aut],
Vojtech Kalcik [aut, cre],
Martin Macek [aut],
Josef Bruna [aut],
Lucia Hederova [aut],
Jan Wild [aut],
Martin Kopecky [aut],
Institute of Botany of the Czech Academy of Sciences [cph]
Maintainer: Vojtech Kalcik <Vojtech.Kalcik@ibot.cas.cz>
Diff between myClim versions 1.5.0 dated 2025-09-30 and 1.5.1 dated 2026-01-07
DESCRIPTION | 12 MD5 | 34 NEWS.md | 3 R/calc.R | 22 R/prep.R | 2 R/read.R | 1 data/mc_data_example_agg.rda |binary data/mc_data_example_clean.rda |binary data/mc_data_example_raw.rda |binary data/mc_data_formats.rda |binary data/mc_data_heights.rda |binary data/mc_data_physical.rda |binary data/mc_data_sensors.rda |binary data/mc_data_vwc_parameters.rda |binary inst/doc/myclim-custom-loggers.html | 8 tests/data/HOBO/20847126_empty.txt | 4 tests/data/TMSoffsoil/data_93142790_0.csv | 382 ++++---- tests/data/clean-conflict/data_92201076_2023_10_14_0.csv | 668 +++++++-------- 18 files changed, 575 insertions(+), 561 deletions(-)
Title: Latent Binary Bayesian Neural Networks Using 'torch'
Description: Latent binary Bayesian neural networks (LBBNNs) are implemented using
'torch', an R interface to the LibTorch backend. Supports mean-field variational
inference as well as flexible variational posteriors using normalizing flows.
The standard LBBNN implementation follows Hubin and Storvik (2024) <doi:10.3390/math12060788>,
using the local reparametrization trick as in Skaaret-Lund et al. (2024)
<https://openreview.net/pdf?id=d6kqUKzG3V>. Input-skip connections are also supported,
as described in Høyheim et al. (2025) <doi:10.48550/arXiv.2503.10496>.
Author: Lars Skaaret-Lund [aut, cre],
Aliaksandr Hubin [aut],
Eirik Hoeyheim [aut]
Maintainer: Lars Skaaret-Lund <lars.skaaret-lund@nmbu.no>
Diff between LBBNN versions 0.1.2 dated 2025-12-10 and 0.1.3 dated 2026-01-07
LBBNN-0.1.2/LBBNN/data/Gallstone_Dataset.rda |only LBBNN-0.1.2/LBBNN/data/Mice_Dataset.rda |only LBBNN-0.1.2/LBBNN/data/Raisin_Dataset.rda |only LBBNN-0.1.2/LBBNN/data/Wine_quality.rda |only LBBNN-0.1.2/LBBNN/data/Wine_quality_dataset.rda |only LBBNN-0.1.2/LBBNN/data/mgp_dataset.rda |only LBBNN-0.1.2/LBBNN/man/Custom_activation.Rd |only LBBNN-0.1.2/LBBNN/man/FLOW.Rd |only LBBNN-0.1.2/LBBNN/man/Gallstone_Dataset.Rd |only LBBNN-0.1.2/LBBNN/man/LBBNN_Conv2d.Rd |only LBBNN-0.1.2/LBBNN/man/LBBNN_Linear.Rd |only LBBNN-0.1.2/LBBNN/man/LBBNN_Net.Rd |only LBBNN-0.1.2/LBBNN/man/LBBNN_plot.Rd |only LBBNN-0.1.2/LBBNN/man/MLP.Rd |only LBBNN-0.1.2/LBBNN/man/Mice_Dataset.Rd |only LBBNN-0.1.2/LBBNN/man/RNVP_layer.Rd |only LBBNN-0.1.2/LBBNN/man/Raisin_Dataset.Rd |only LBBNN-0.1.2/LBBNN/man/Wine_quality.Rd |only LBBNN-0.1.2/LBBNN/man/Wine_quality_dataset.Rd |only LBBNN-0.1.2/LBBNN/man/coef.LBBNN_Net.Rd |only LBBNN-0.1.2/LBBNN/man/mgp_dataset.Rd |only LBBNN-0.1.2/LBBNN/man/plot.LBBNN_Net.Rd |only LBBNN-0.1.2/LBBNN/man/predict.LBBNN_Net.Rd |only LBBNN-0.1.2/LBBNN/man/print.LBBNN_Net.Rd |only LBBNN-0.1.2/LBBNN/man/residuals.LBBNN_Net.Rd |only LBBNN-0.1.2/LBBNN/man/summary.LBBNN_Net.Rd |only LBBNN-0.1.2/LBBNN/man/train_LBBNN.Rd |only LBBNN-0.1.2/LBBNN/man/validate_LBBNN.Rd |only LBBNN-0.1.3/LBBNN/DESCRIPTION | 6 LBBNN-0.1.3/LBBNN/MD5 | 106 +- LBBNN-0.1.3/LBBNN/NAMESPACE | 30 LBBNN-0.1.3/LBBNN/NEWS.md | 6 LBBNN-0.1.3/LBBNN/R/FLOW.R | 61 - LBBNN-0.1.3/LBBNN/R/LBBNN_Model.R | 365 +++---- LBBNN-0.1.3/LBBNN/R/Layers.R | 675 +++++++------- LBBNN-0.1.3/LBBNN/R/RNVP.R | 91 - LBBNN-0.1.3/LBBNN/R/Train_validate.R | 293 ++---- LBBNN-0.1.3/LBBNN/R/custom_activation_functions.R | 21 LBBNN-0.1.3/LBBNN/R/data.R | 36 LBBNN-0.1.3/LBBNN/R/dataloader.R | 92 + LBBNN-0.1.3/LBBNN/R/local_explanations.R | 220 ++-- LBBNN-0.1.3/LBBNN/R/overwrite_functions.R | 477 +++++---- LBBNN-0.1.3/LBBNN/R/plotting_graphs.R | 294 ++---- LBBNN-0.1.3/LBBNN/README.md | 22 LBBNN-0.1.3/LBBNN/data/gallstone_dataset.rda |only LBBNN-0.1.3/LBBNN/data/raisin_dataset.rda |only LBBNN-0.1.3/LBBNN/inst/doc/LBBNN_tutorial.R | 35 LBBNN-0.1.3/LBBNN/inst/doc/LBBNN_tutorial.Rmd | 39 LBBNN-0.1.3/LBBNN/inst/doc/LBBNN_tutorial.html | 43 LBBNN-0.1.3/LBBNN/man/alpha_prior.Rd | 11 LBBNN-0.1.3/LBBNN/man/assign_names.Rd | 5 LBBNN-0.1.3/LBBNN/man/coef.lbbnn_net.Rd |only LBBNN-0.1.3/LBBNN/man/custom_activation.Rd |only LBBNN-0.1.3/LBBNN/man/density_initialization.Rd | 2 LBBNN-0.1.3/LBBNN/man/gallstone_dataset.Rd |only LBBNN-0.1.3/LBBNN/man/get_adj_mats.Rd | 9 LBBNN-0.1.3/LBBNN/man/get_dataloaders.Rd | 18 LBBNN-0.1.3/LBBNN/man/get_input_inclusions.Rd | 9 LBBNN-0.1.3/LBBNN/man/get_local_explanations_gradient.Rd | 20 LBBNN-0.1.3/LBBNN/man/lbbnn_conv2d.Rd |only LBBNN-0.1.3/LBBNN/man/lbbnn_linear.Rd |only LBBNN-0.1.3/LBBNN/man/lbbnn_net.Rd |only LBBNN-0.1.3/LBBNN/man/mlp.Rd |only LBBNN-0.1.3/LBBNN/man/normalizing_flow.Rd |only LBBNN-0.1.3/LBBNN/man/plot.lbbnn_net.Rd |only LBBNN-0.1.3/LBBNN/man/plot_active_paths.Rd |only LBBNN-0.1.3/LBBNN/man/plot_local_explanations_gradient.Rd | 16 LBBNN-0.1.3/LBBNN/man/predict.lbbnn_net.Rd |only LBBNN-0.1.3/LBBNN/man/print.lbbnn_net.Rd |only LBBNN-0.1.3/LBBNN/man/raisin_dataset.Rd |only LBBNN-0.1.3/LBBNN/man/residuals.lbbnn_net.Rd |only LBBNN-0.1.3/LBBNN/man/rnvp_layer.Rd |only LBBNN-0.1.3/LBBNN/man/std_prior.Rd | 8 LBBNN-0.1.3/LBBNN/man/summary.lbbnn_net.Rd |only LBBNN-0.1.3/LBBNN/man/train_lbbnn.Rd |only LBBNN-0.1.3/LBBNN/man/validate_lbbnn.Rd |only LBBNN-0.1.3/LBBNN/tests/testthat/test_smoke_training.R | 69 - LBBNN-0.1.3/LBBNN/vignettes/LBBNN_tutorial.Rmd | 39 78 files changed, 1540 insertions(+), 1578 deletions(-)
Title: Search Download and Handle Data from Copernicus Climate Data
Service
Description: Subset and download data from EU Copernicus Climate Data Service:
<https://cds.climate.copernicus.eu/>. Import information about the Earth's
past, present and future climate from Copernicus into R without the need of
external software.
Author: Pepijn de Vries [aut, cre]
Maintainer: Pepijn de Vries <pepijn.devries@outlook.com>
Diff between CopernicusClimate versions 0.0.4 dated 2025-12-05 and 0.0.5 dated 2026-01-07
DESCRIPTION | 6 +-- MD5 | 15 ++++--- NAMESPACE | 1 NEWS.md | 6 +++ R/jobs.R | 77 +++++++++++++++++++++++++++++++-------- R/retrieve.R | 19 +++------ inst/doc/download.html | 56 ++++++++-------------------- man/cds_job_results.Rd |only tests/testthat/test-exceptions.R | 29 ++++++++++++++ 9 files changed, 131 insertions(+), 78 deletions(-)
More information about CopernicusClimate at CRAN
Permanent link
Title: Causal Inference with Continuous (Multiple Time Point)
Interventions
Description: Estimation of counterfactual outcomes for multiple values of continuous interventions at different time points, and plotting of causal dose-response curves. Details are given in Schomaker, McIlleron, Denti, Diaz (2024) <doi:10.48550/arXiv.2305.06645>.
Author: Michael Schomaker [aut, cre],
Leo Fuhrhop [ctb],
Han Bao [ctb]
Maintainer: Michael Schomaker <michael.schomaker@stat.uni-muenchen.de>
Diff between CICI versions 0.9.7 dated 2025-12-19 and 0.9.8 dated 2026-01-07
DESCRIPTION | 6 MD5 | 23 ++- NAMESPACE | 13 + R/calc.weights.R |only R/gformula.r | 1 R/helper.r | 367 +++++++++++++++++++++++++++--------------------- R/msm.r |only R/print.msmResult.r |only R/sgf.R |only R/summary.Yweights.R |only man/CICI-package.Rd | 9 - man/calc.weights.Rd |only man/contrast.Rd | 2 man/msm.Rd |only man/print.msmResult.Rd |only man/sgf.Rd |only man/summary.feasible.Rd | 6 17 files changed, 248 insertions(+), 179 deletions(-)
Title: Create Interactive Chart with the JavaScript 'ApexCharts'
Library
Description: Provides an 'htmlwidgets' interface to 'apexcharts.js'.
'Apexcharts' is a modern JavaScript charting library to build interactive charts and visualizations with simple API.
'Apexcharts' examples and documentation are available here: <https://apexcharts.com/>.
Author: Victor Perrier [aut, cre],
Fanny Meyer [aut],
Juned Chhipa [cph] ,
Mike Bostock [cph]
Maintainer: Victor Perrier <victor.perrier@dreamrs.fr>
Diff between apexcharter versions 0.4.4 dated 2024-09-06 and 0.4.5 dated 2026-01-07
DESCRIPTION | 8 MD5 | 40 NEWS.md | 318 +- R/apex.R | 952 ++++---- R/apexcharter.R | 316 +- R/data.R | 200 - R/facets.R | 996 ++++---- R/format.R | 138 - R/grid.R | 442 +-- R/mixed-charts.R | 276 +- R/proxy.R | 490 ++-- R/utils.R | 276 +- README.md | 326 +- build/vignette.rds |binary inst/doc/apexcharter.R | 438 +-- inst/doc/apexcharter.html | 3148 ++++++++++++++-------------- inst/htmlwidgets/apexcharter.js | 2 inst/htmlwidgets/apexcharter.js.LICENSE.txt | 31 man/eco2mix.Rd | 2 man/format_num.Rd | 4 man/temperatures.Rd | 2 21 files changed, 4219 insertions(+), 4186 deletions(-)
Title: Create Non-Confidential Multi-Resolution Grids
Description: The need for anonymization of individual survey responses often leads to many suppressed grid cells in a regular grid. Here we provide functionality for creating multi-resolution gridded data, respecting the confidentiality rules, such as a minimum number of units and dominance by one or more units for each grid cell. The functions also include the possibility for contextual suppression of data. For more details see Skoien et al. (2025) <doi:10.48550/arXiv.2410.17601>.
Author: Jon Olav Skoien [aut, cre],
Nicolas Lampach [aut]
Maintainer: Jon Olav Skoien <jon.skoien@gmail.com>
Diff between MRG versions 0.3.21 dated 2025-11-27 and 0.3.23 dated 2026-01-07
DESCRIPTION | 6 +++--- MD5 | 10 +++++----- R/MRGmerge.R | 20 ++++++++++++-------- R/inspireID.R | 2 +- tests/multiResGrid.R | 25 +++++++++++-------------- tests/multiResGrid.Rout.save | 25 +++++++++++-------------- 6 files changed, 43 insertions(+), 45 deletions(-)
Title: Calculate Confidence Intervals
Description: This calculates a variety of different CIs for proportions
and difference of proportions that are commonly used in the
pharmaceutical industry including Wald, Wilson, Clopper-Pearson,
Agresti-Coull and Jeffreys for proportions. And Miettinen-Nurminen
(1985) <doi:10.1002/sim.4780040211>, Wald, Haldane, and Mee
<https://www.lexjansen.com/wuss/2016/127_Final_Paper_PDF.pdf> for
difference in proportions.
Author: Christina Fillmore [aut, cre] ,
GlaxoSmithKline Research & Development Limited [cph, fnd],
Mike Sprys [aut],
Dan Lythgoe [aut]
Maintainer: Christina Fillmore <christina.e.fillmore@gsk.com>
Diff between cicalc versions 0.1.0 dated 2025-07-21 and 0.2.0 dated 2026-01-07
DESCRIPTION | 10 MD5 | 35 +- NAMESPACE | 8 NEWS.md | 5 R/prop_ci.R | 102 ++++++ R/prop_ci_common_risk.R |only R/prop_ci_diff.R | 397 ++++++++++++++++++++++----- R/prop_ci_mn.R | 3 R/utils.R | 28 + man/ci_prop_diff_ha.Rd |only man/ci_prop_diff_mh_strata.Rd |only man/ci_prop_diff_nc.Rd |only man/ci_prop_diff_nc_strata.Rd |only man/ci_prop_mid_p.Rd |only man/ci_prop_wilson_strata.Rd | 1 man/ci_rel_risk_cmh_strata.Rd |only tests/testthat/_snaps/prop_ci.md | 70 ++++ tests/testthat/_snaps/prop_ci_common_risk.md |only tests/testthat/_snaps/prop_ci_diff.md | 52 +++ tests/testthat/test-prop_ci.R | 29 + tests/testthat/test-prop_ci_common_risk.R |only tests/testthat/test-prop_ci_diff.R | 71 ++++ tests/testthat/test-prop_ci_mn.R | 8 23 files changed, 734 insertions(+), 85 deletions(-)
Title: Credential Chain for Seamless 'OAuth 2.0' Authentication to
'Azure Services'
Description: Implements a credential chain for 'Azure OAuth 2.0' authentication
based on the package 'httr2''s 'OAuth' framework. Sequentially attempts authentication
methods until one succeeds. During development allows interactive
browser-based flows ('Device Code' and 'Auth Code' flows) and non-interactive
flow ('Client Secret') in batch mode.
Author: Pedro Baltazar [aut, cre]
Maintainer: Pedro Baltazar <pedrobtz@gmail.com>
Diff between azr versions 0.2.0 dated 2025-12-04 and 0.2.1 dated 2026-01-07
DESCRIPTION | 8 +- MD5 | 21 ++++--- NAMESPACE | 1 NEWS.md | 12 ++++ R/api-client.R | 21 +++++-- R/azure-clients.R | 4 - R/default-credential.R | 129 +++++++++++++++++++++++++++++++++++++++++++++++ R/defaults.R | 17 +++--- R/import-funs.R | 42 +++++++++++++++ man/DefaultCredential.Rd |only man/api_client.Rd | 5 + man/azr_graph_client.Rd | 2 12 files changed, 229 insertions(+), 33 deletions(-)
Title: Source a Script and Cache
Description: Provides a function that behaves nearly as base::source() but
implements a caching mechanism on disk, project based. It allows to
quasi source() R scripts that gather data but can fail or consume to
much time to respond even if nothing new is expected. It comes with
tools to check and execute on demand or when cache is invalid the
script.
Author: Xavier Timbeau [aut, cre, cph]
Maintainer: Xavier Timbeau <xavier.timbeau@sciencespo.fr>
Diff between sourcoise versions 1.0.0 dated 2025-12-09 and 1.1.0 dated 2026-01-07
DESCRIPTION | 12 MD5 | 61 ++- NAMESPACE | 3 NEWS.md | 15 R/cache_tools.R | 201 ++++++------ R/change.R |only R/exec_tools.R | 7 R/metadata_tools.R | 588 +++++++++++++++++++++----------------- R/other_tools.R | 36 ++ R/path_tools.R | 66 ++-- R/setroot.R | 7 R/setup_tools.R | 199 ++++++++---- R/sourcoise.R | 156 ++++++---- R/sourcoise_clear.R | 11 R/sourcoise_meta.R | 55 ++- R/sourcoise_refresh.R | 45 +- R/sourcoise_status.R | 13 R/zzz.R | 22 - README.md | 5 inst/doc/sourcoise.html | 39 +- inst/doc/sourcoise.qmd | 32 +- inst/ipch/ipch.qmd | 1 inst/ipch/prix_insee.R | 2 inst/ipch/slow.R | 4 man/sourcoise.Rd | 33 +- man/sourcoise_lapse.Rd |only man/sourcoise_meta.Rd | 6 man/sourcoise_priority.Rd |only man/sourcoise_untrack.Rd |only tests/testthat/complex_cases.R |only tests/testthat/test-change.R |only tests/testthat/test-inorout.R |only tests/testthat/test-source_args.R | 8 tests/testthat/test-sourcoise.R | 47 +-- vignettes/sourcoise.qmd | 32 +- 35 files changed, 1026 insertions(+), 680 deletions(-)
Title: Probabilistic Efficiency Analysis Using Explainable Artificial
Intelligence
Description: Provides a probabilistic framework that integrates Data Envelopment
Analysis (DEA) (Banker et al., 1984) <doi:10.1287/mnsc.30.9.1078> with machine
learning classifiers (Kuhn, 2008) <doi:10.18637/jss.v028.i05> to estimate both the
(in)efficiency status and the probability of efficiency for decision-making
units. The approach trains predictive models on DEA-derived efficiency labels
(Charnes et al., 1985) <doi:10.1016/0304-4076(85)90133-2>, enabling explainable
artificial intelligence (XAI) workflows with global and local interpretability
tools, including permutation importance (Molnar et al., 2018) <doi:10.21105/joss.00786>,
Shapley value explanations (Strumbelj & Kononenko, 2014) <doi:10.1007/s10115-013-0679-x>,
and sensitivity analysis (Cortez, 2011) <https://CRAN.R-project.org/package=rminer>.
The framework also supports probability-threshold peer selection and counterfactual
improvement recommendations for benchmarking and policy evaluation. T [...truncated...]
Author: Ricardo Gonzalez Moyano [cre, aut] ,
Juan Aparicio [aut] ,
Jose Luis Zofio [aut] ,
Victor Espana [aut]
Maintainer: Ricardo Gonzalez Moyano <ricardo.gonzalezm@umh.es>
Diff between PEAXAI versions 0.1.0 dated 2025-12-02 and 1.0.0 dated 2026-01-07
DESCRIPTION | 8 MD5 | 38 +- NAMESPACE | 5 R/PEAXAI_fitting.R | 768 +++++++++++++++++++++++++++++++++++------------- R/PEAXAI_peer.R | 58 ++- R/PEAXAI_predict.R |only R/PEAXAI_ranking.R | 17 - R/PEAXAI_targets.R | 68 +++- R/get_SMOTE_DMUs.R | 14 R/training.R | 61 ++- build/vignette.rds |binary inst/doc/PEAXAI.R | 13 inst/doc/PEAXAI.Rmd | 17 - inst/doc/PEAXAI.html | 476 +++++++++++++++++------------ man/PEAXAI_fitting.Rd | 19 + man/PEAXAI_peer.Rd | 11 man/PEAXAI_predict.Rd |only man/PEAXAI_ranking.Rd | 6 man/PEAXAI_targets.Rd | 5 man/find_beta_maxmin.Rd | 3 vignettes/PEAXAI.Rmd | 17 - 21 files changed, 1094 insertions(+), 510 deletions(-)
Title: Multivariate Regression Association Measure
Description: Implementations of an estimator for the multivariate regression association measure (MRAM) proposed in Shih and Chen (2026) <doi:10.1016/j.csda.2025.108288> and its associated variable selection algorithm. The MRAM quantifies the predictability of a random vector Y from a random vector X given a random vector Z. It takes the maximum value 1 if and only if Y is almost surely a measurable function of X and Z, and the minimum value of 0 if Y is conditionally independent of X given Z. The MRAM generalizes the Kendall's tau copula correlation ratio proposed in Shih and Emura (2021) <doi:10.1016/j.jmva.2020.104708> by employing the spatial sign function. The estimator is based on the nearest neighbor method, and the associated variable selection algorithm is adapted from the feature ordering by conditional independence (FOCI) algorithm of Azadkia and Chatterjee (2021) <doi:10.1214/21-AOS2073>. For further details, see the paper Shih and Chen (2026) <doi:10.1016/j.csda.20 [...truncated...]
Author: Jia-Han Shih [aut, cre],
Yi-Hau Chen [aut]
Maintainer: Jia-Han Shih <jhshih@math.nsysu.edu.tw>
Diff between MRAM versions 0.2.1 dated 2025-09-08 and 1.0.0 dated 2026-01-07
DESCRIPTION | 10 +++--- MD5 | 10 +++--- R/mram.R | 92 +++++++++++++++++++-------------------------------------- R/vs_mram.R | 13 +------- man/mram.Rd | 2 - man/vs_mram.Rd | 2 - 6 files changed, 47 insertions(+), 82 deletions(-)
Title: Landscape Epidemiology and Evolution
Description: A stochastic, spatially-explicit, demo-genetic model simulating the spread and evolution
of a plant pathogen in a heterogeneous landscape to assess resistance deployment strategies.
It is based on a spatial geometry for describing the landscape and allocation of different cultivars,
a dispersal kernel for the dissemination of the pathogen, and a SEIR
('Susceptible-Exposed-Infectious-Removed’) structure with a discrete time step.
It provides a useful tool to assess the performance of a wide range of deployment options with
respect to their epidemiological, evolutionary and economic outcomes.
Loup Rimbaud, Julien Papaïx, Jean-François Rey, Luke G Barrett,
Peter H Thrall (2018) <doi:10.1371/journal.pcbi.1006067>.
Author: Loup Rimbaud [aut] ,
Marta Zaffaroni [aut] ,
Jean-Francois Rey [aut, cre] ,
Julien Papaix [aut],
Jean-Loup Gaussen [ctb],
Manon Couty [ctb]
Maintainer: Jean-Francois Rey <jean-francois.rey@inrae.fr>
Diff between landsepi versions 1.5.2 dated 2025-07-31 and 1.5.3 dated 2026-01-07
DESCRIPTION | 12 MD5 | 24 R/landsepi-package.R | 4 build/vignette.rds |binary configure | 1502 +++++++++++++++++++++++--------------- configure.ac | 2 data/dispP_a40_b7.rda |binary data/landscapesTEST.rda |binary inst/doc/O1-run_simple_simul.html | 8 inst/doc/O5-bibliography.html | 20 inst/doc/landsepi_poster.pdf |binary inst/doc/list_of_parameters.pdf |binary man/landsepi-package.Rd | 4 13 files changed, 975 insertions(+), 601 deletions(-)
Title: Draw Network with Data
Description: Extends the 'ggplot2' plotting system to support network visualization. Inspired by the 'Method 1' in 'ggtree' (G Yu (2018) <doi:10.1093/molbev/msy194>), 'ggtangle' is designed to work with network associated data.
Author: Guangchuang Yu [aut, cre]
Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>
Diff between ggtangle versions 0.0.9 dated 2025-11-30 and 0.1.0 dated 2026-01-07
ggtangle-0.0.9/ggtangle/inst/doc/ggtangle.Rmd |only ggtangle-0.0.9/ggtangle/vignettes/ggtangle.Rmd |only ggtangle-0.1.0/ggtangle/DESCRIPTION | 13 ggtangle-0.1.0/ggtangle/MD5 | 31 - ggtangle-0.1.0/ggtangle/NAMESPACE | 10 ggtangle-0.1.0/ggtangle/NEWS.md | 9 ggtangle-0.1.0/ggtangle/R/cnet.r | 56 +- ggtangle-0.1.0/ggtangle/R/graph-layout.R | 128 +++- ggtangle-0.1.0/ggtangle/R/graph.r | 394 +++++++++----- ggtangle-0.1.0/ggtangle/R/layout_fishbone.R |only ggtangle-0.1.0/ggtangle/README.md | 6 ggtangle-0.1.0/ggtangle/build/vignette.rds |binary ggtangle-0.1.0/ggtangle/inst/doc/ggtangle.R | 78 ++ ggtangle-0.1.0/ggtangle/inst/doc/ggtangle.html | 665 ++++++++++++++----------- ggtangle-0.1.0/ggtangle/inst/doc/ggtangle.qmd |only ggtangle-0.1.0/ggtangle/man/cnetplot.Rd | 2 ggtangle-0.1.0/ggtangle/man/geom_edge_text.Rd |only ggtangle-0.1.0/ggtangle/man/layout_circular.Rd |only ggtangle-0.1.0/ggtangle/man/layout_fishbone.Rd |only ggtangle-0.1.0/ggtangle/man/layout_linear.Rd |only ggtangle-0.1.0/ggtangle/vignettes/ggtangle.qmd |only 21 files changed, 898 insertions(+), 494 deletions(-)
Title: Estimations using Conley Standard Errors
Description: Functions calculating Conley (1999) <doi:10.1016/S0304-4076(98)00084-0> standard errors. The package started by merging and extending multiple packages and
other published scripts on this econometric technique. It strongly emphasizes computational optimization. Details are available in the function documentation and in
the vignette.
Author: Christian Dueben [aut, cre],
Richard Bluhm [cph],
Luis Calderon [cph],
Darin Christensen [cph],
Timothy Conley [cph],
Thiemo Fetzer [cph],
Leander Heldring [cph]
Maintainer: Christian Dueben <cdueben.ml+cran@proton.me>
Diff between conleyreg versions 0.1.8 dated 2025-03-19 and 0.1.9 dated 2026-01-07
DESCRIPTION | 8 ++++---- MD5 | 10 +++++----- NEWS.md | 3 +++ build/partial.rdb |binary build/vignette.rds |binary src/dist_mat.cpp | 25 ++----------------------- 6 files changed, 14 insertions(+), 32 deletions(-)
Title: Automatic Dynamic Regression using Extreme Gradient Boosting
Description: Dynamic regression for time series using Extreme Gradient Boosting with hyper-parameter tuning via Bayesian Optimization or Random Search.
Author: Giancarlo Vercellino [aut, cre, cph]
Maintainer: Giancarlo Vercellino <giancarlo.vercellino@gmail.com>
Diff between audrex versions 2.0.1 dated 2022-03-23 and 3.0.0 dated 2026-01-07
audrex-2.0.1/audrex/R/support.R |only audrex-2.0.1/audrex/man/engine.Rd |only audrex-3.0.0/audrex/DESCRIPTION | 21 audrex-3.0.0/audrex/MD5 | 20 audrex-3.0.0/audrex/NAMESPACE | 23 audrex-3.0.0/audrex/NEWS.md | 10 audrex-3.0.0/audrex/R/data2.R | 24 audrex-3.0.0/audrex/R/main.R | 1476 +++++++++++++++++++++++++++- audrex-3.0.0/audrex/man/audrex.Rd | 5 audrex-3.0.0/audrex/man/bitcoin_gold_oil.Rd | 10 audrex-3.0.0/audrex/man/covid_in_europe.Rd | 10 audrex-3.0.0/audrex/tests |only 12 files changed, 1484 insertions(+), 115 deletions(-)
Title: Quantify and Monetize the Burden of Disease Attributable to
Exposure
Description: This R package has been developed with a focus on air pollution and noise but can applied to other exposures. The initial development has been funded by the European Union project BEST-COST. Disclaimer: It is work in progress and the developers are not liable for any calculation errors or inaccuracies resulting from the use of this package.
References (in chronological order):
WHO (2003a) "Assessing the environmental burden of disease at national and local levels" <https://www.who.int/publications/i/item/9241546204> (accessed October 2025);
WHO (2003b) "Comparative quantification of health risks: Conceptual framework and methodological issues" <doi:10.1186/1478-7954-1-1> (accessed October 2025);
Miller & Hurley (2003) "Life table methods for quantitative impact assessments in chronic mortality" <doi:10.1136/jech.57.3.200> (accessed October 2025);
Steenland & Armstrong (2006) "An Overview of Methods for Calculating the Burden of Disease Due to Specific Risk Fac [...truncated...]
Author: Alberto Castro [cre, aut] ,
Axel Luyten [aut] ,
Arno Pauwels [ctb] ,
Liliana Vazquez Fernandez [ctb] ,
Vanessa Gorasso [ctb] ,
Carl Michael Baravelli [ctb] ,
Susanne Breitner [ctb] ,
Maria Lepnurm [ctb] ,
Maria Jose Rueda Lopez [ctb] ,
Iracy Pimenta [...truncated...]
Maintainer: Alberto Castro <alberto.castrofernandez@swisstph.ch>
Diff between healthiar versions 0.2.1 dated 2025-11-11 and 0.2.1.1 dated 2026-01-07
DESCRIPTION | 6 MD5 | 24 build/vignette.rds |binary data/exdat_cantons.rda |binary data/exdat_lifetable.rda |binary data/exdat_noise.rda |binary data/exdat_ozone.rda |binary data/exdat_pm.rda |binary data/exdat_prepare_mdi.rda |binary data/exdat_socialize.rda |binary inst/CITATION | 9 inst/doc/intro_to_healthiar.R | 1286 +- inst/doc/intro_to_healthiar.html |18305 +++++++++++++++++++-------------------- 13 files changed, 9814 insertions(+), 9816 deletions(-)
Title: Seamless R and C++ Integration
Description: The 'Rcpp' package provides R functions as well as C++ classes which
offer a seamless integration of R and C++. Many R data types and objects can be
mapped back and forth to C++ equivalents which facilitates both writing of new
code as well as easier integration of third-party libraries. Documentation
about 'Rcpp' is provided by several vignettes included in this package, via the
'Rcpp Gallery' site at <https://gallery.rcpp.org>, the paper by Eddelbuettel and
Francois (2011, <doi:10.18637/jss.v040.i08>), the book by Eddelbuettel (2013,
<doi:10.1007/978-1-4614-6868-4>) and the paper by Eddelbuettel and Balamuta (2018,
<doi:10.1080/00031305.2017.1375990>); see 'citation("Rcpp")' for details.
Author: Dirk Eddelbuettel [aut, cre] ,
Romain Francois [aut] ,
JJ Allaire [aut] ,
Kevin Ushey [aut] ,
Qiang Kou [aut] ,
Nathan Russell [aut],
Inaki Ucar [aut] ,
Doug Bates [aut] ,
John Chambers [aut]
Maintainer: Dirk Eddelbuettel <edd@debian.org>
Diff between Rcpp versions 1.1.0.8.1 dated 2025-12-08 and 1.1.0.8.2 dated 2026-01-07
DESCRIPTION | 6 +++--- MD5 | 10 +++++----- build/partial.rdb |binary build/vignette.rds |binary inst/include/Rcpp/DataFrame.h | 21 +-------------------- inst/include/Rcpp/proxy/AttributeProxy.h | 20 +++++++------------- 6 files changed, 16 insertions(+), 41 deletions(-)
More information about RandomGaussianNB at CRAN
Permanent link