|
#define | give_log log_p |
|
#define | R_D__0 (log_p ? ML_NEGINF : 0.) /* 0 */ |
|
#define | R_D__1 (log_p ? 0. : 1.) /* 1 */ |
|
#define | R_DT_0 (lower_tail ? R_D__0 : R_D__1) /* 0 */ |
|
#define | R_DT_1 (lower_tail ? R_D__1 : R_D__0) /* 1 */ |
|
#define | R_D_Lval(p) (lower_tail ? (p) : (0.5 - (p) + 0.5)) /* p */ |
|
#define | R_D_Cval(p) (lower_tail ? (0.5 - (p) + 0.5) : (p)) /* 1 - p */ |
|
#define | R_D_val(x) (log_p ? ::log(x) : (x)) /* x in pF(x,..) */ |
|
#define | R_D_qIv(p) (log_p ? ::exp(p) : (p)) /* p in qF(p,..) */ |
|
#define | R_D_exp(x) (log_p ? (x) : ::exp(x)) /* exp(x) */ |
|
#define | R_D_log(p) (log_p ? (p) : ::log(p)) /* log(p) */ |
|
#define | R_D_Clog(p) (log_p ? ::log1p(-(p)) : (0.5 - (p) + 0.5)) /* [log](1-p) */ |
|
#define | R_Log1_Exp(x) ((x) > -M_LN2 ? ::log(-::expm1(x)) : ::log1p(-::exp(x))) |
|
#define | R_D_LExp(x) (log_p ? R_Log1_Exp(x) : ::log1p(-x)) |
|
#define | R_DT_val(x) (lower_tail ? R_D_val(x) : R_D_Clog(x)) |
|
#define | R_DT_Cval(x) (lower_tail ? R_D_Clog(x) : R_D_val(x)) |
|
#define | R_DT_qIv(p) |
|
#define | R_DT_CIv(p) |
|
#define | R_DT_exp(x) R_D_exp(R_D_Lval(x)) /* exp(x) */ |
|
#define | R_DT_Cexp(x) R_D_exp(R_D_Cval(x)) /* exp(1 - x) */ |
|
#define | R_DT_log(p) (lower_tail? R_D_log(p) : R_D_LExp(p))/* log(p) in qF */ |
|
#define | R_DT_Clog(p) (lower_tail? R_D_LExp(p): R_D_log(p))/* log(1-p) in qF*/ |
|
#define | R_DT_Log(p) (lower_tail? (p) : R_Log1_Exp(p)) |
|
#define | R_Q_P01_check(p) |
|
#define | R_Q_P01_boundaries(p, _LEFT_, _RIGHT_) |
|
#define | R_P_bounds_01(x, x_min, x_max) |
|
#define | R_P_bounds_Inf_01(x) |
|
#define | R_D_fexp(f, x) (give_log ? -0.5*log(f)+(x) : exp(x)/sqrt(f)) |
|
#define | R_D_forceint(x) floor((x) + 0.5) |
|
#define | R_D_nonint(x) (fabs((x) - floor((x)+0.5)) > 1e-7) |
|
#define | R_D_negInonint(x) (x < 0. || R_D_nonint(x)) |
|
#define | R_D_nonint_check(x) |
|